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This Letter proposes an automated method for the detection and suppression of muscle artefacts (MAs) in the single-channel
electroencephalogram (EEG) signal based on variational mode decomposition (VMD) and zero crossings count threshold criterion without
the use of reference electromyogram (EMG). The proposed method involves three major steps: decomposition of the input EEG signal
into two modes using VMD; detection of MAs based on zero crossings count thresholding in the second mode; retention of the first mode
as MAs-free EEG signal only after detection of MAs in the second mode. The authors evaluate the robustness of the proposed method on
a variety of EEG and EMG signals taken from publicly available databases, including Mendeley database, epileptic Bonn database and
EEG during mental arithmetic tasks database (EEGMAT). Evaluation results using different objective performance metrics depict the
superiority of the proposed method as compared to existing methods while preserving the clinical features of the reconstructed EEG signal.
1. Introduction: Electroencephalogram (EEG) represents the
electrical activity of the brain [1]. EEG signal can be recorded
using surface electrodes from the scalp and its amplitude is in micro-
volts [1]. Since it is a non-invasive signal acquisition technique, it
finds numerous applications in the field of neuroscience, diagnosis
of neurological disorders, brain–computer interface, cognitive
science, psychology and physio-psychological research [1].
However, it is often corrupted by different artefacts such as ocular
artefacts (eye blinks), muscle artefacts (biting, chewing, etc.),
cardiac activity [1, 2]. These artefacts represent the electrical activ-
ities of regions other than the brain [1]. Muscle artefacts (MAs) are
the most frequent artefacts which are introduced in the EEG signal
due to the contraction and relaxation of muscles. MA considerably
distorts activities of a and b subbands of EEG signals. However, it
almost impacts all EEG local subbands due to its broad-spectrum,
starting as low as 2 Hz [3]. Generally, MAs have a high amplitude,
broad-spectrum, and high sensitivity as compared to EEG signals
[4]. However, these artefacts are difficult to standardise as the spectral
and topographical characteristics of MAs vary based on the magni-
tude and particular type of muscle contraction, and different indivi-
duals [3, 5]. MAs are more difficult to suppress without distorting
the clinical features of the EEG signal as compared to OAs and
cardiac artefacts [4, 6]. Therefore, many filtering and source separ-
ation techniques have been presented for suppressing the MAs.

1.1. Related work: Various methods have been proposed to suppress
MAs based on digital and adaptive filtering [7], regression [8], blind
source separation (BSS) [2, 9–12], wavelet and signal decomposition
[4, 13–16]. Since digital filtering based methods use low-pass filters
in order to suppress the high-frequency content from the
MA-contaminated EEG data, EEG content is also distorted in the fil-
tering process due to spectral overlap between EEG and MAs [4, 5].
In [7], the adaptive filter has been used to remove MAs and EOG
from EEG based on the least mean square algorithm. However, it
requires a reference EOG and EMG signal, which may not be
always available. A regression-based surface MAs correction in the
EEG signal has been proposed in [8]. Although it is computationally
simple, it predicts MAs only in the band 51–69 Hz in regression ana-
lysis, which may not always be correct and needs to be changed de-
pending upon the MAs. In [2, 9, 17], independent component
analysis (ICA) has been used to suppress the MA components by
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discarding the independent components (ICs) containing MAs.
However, the rejection of ICs directly can result in the loss of
some of the EEG components captured in those ICs. Furthermore,
several assumptions in the ICA-based methods, such as the independ-
ence of sources along with non-Gaussian distributions, the same
number of sources and sensors, the mixtures being linear combina-
tions of sources limit the reliability of ICA-based method in the sup-
pression of MAs in single-channel EEG signal. Another BSS
technique, namely canonical correlation analysis (CCA), has been
applied in [10–12] for the segregation of MAs and EEG sources
based on the assumption of mutually uncorrelated sources while
maximally autocorrelated. Although CCA is able to segregate MAs
from the brain activity due to low autocorrelation of EMG in com-
parison with EEG [10], the selection of robust threshold in autocor-
relation is challenging for a large dataset. Furthermore, ICA and CCA
based methods require multichannel EEG data for the separation of
EEG and MA components [13]. Due to the inclination towards am-
bulatory EEG based systems, there is a surge of interest recently
towards developing light-weight, less complex systems with a
limited number of EEG channels or single channel [13]. Therefore,
few single-channel artefact rejection techniques have been proposed
for the suppression of MAs. Davies and James [18] proposed the use
of single-channel ICA (SC-ICA) to decompose a single-channel EEG
into ICs. However, it incurs the problem of strict assumptions of sta-
tionary sources and disjointness in spectral-domain [13, 19]. A dis-
crete wavelet transform (DWT)-based denoising algorithm namely
‘SURE’ with thresholding, has been proposed for MAs removal
from ictal EEG recordings [20]. However, the performance of this
method is significantly degraded under low signal-to-noise ratio
(SNR) due to smaller values of wavelet coefficients. In [21],
wavelet denoising has been used for removing motion artefacts for
functional near-infrared spectroscopy, but it fails to show
improvement for the databases without known motion. Some of
the MAs removal techniques exploit the use of decomposition
techniques (such as wavelet transform [14], empirical mode decom-
position (EMD) and ensemble EMD (EEMD) [4, 13]) for generating
multi-channel EEG data from single-channel EEG to further enable
the application of BSS methods (such as ICA, CCA, and multiset
CCA (MCCA)) [4, 15, 16].

Most of the MAs suppression methods exploit BSS methods for
separating the MAs information from the acquired multi-channel
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Fig. 1 Flow diagram for the proposed MAs suppression method
EEG signals. However, the orthogonality condition for EEG signals
and MAs may not hold true, which is most commonly assumed in
the ICA techniques. Though some of the improved ICA techniques
are effective in suppressing the MAs by discarding independent
component(s) (IC(s)), the need for simultaneously acquired multi-
channel EEG signals limits their applicability in portable and ambu-
latory EEG applications. In addition, the improper identification of
ICs in the presence of several EEG artefacts can result in the loss of
important clinical information in the EEG signal.

1.2. Objective and major contributions: Literature studies demon-
strate that most of the existing MAs suppression methods need
multi-channel EEG signals to exploit BSS techniques (ICA and
CCA), which affects the patient’s convenience. Also, many of the
existing techniques demand the reference EMG signal for filtering
out the MAs signal which may not be always available. As men-
tioned earlier, few single-channel MAs suppression techniques
have been proposed based on two-stage processing: generate multi-
channel EEG signals by using decomposition techniques; and
extraction of different sources using the decomposed modes.
However, these techniques are not only quite computationally
complex but also employ visual inference to discard the extracted
component with MAs. Therefore, there is a need to develop an
effective automated method that not only preserves the clinically
valuable information in the reconstructed EEG signal but is also
computationally less complex.

This Letter proposes a novel and effective method to suppress
MAs based on variational mode decomposition (VMD) without
the use of any reference signal. The proposed method works in
three steps: decomposition of the input EEG signal into two
modes using VMD; rejection of MA components in the second
mode based on a proposed zero-crossings count (zc) feature; reten-
tion of the first mode as MAs-free EEG signal only after detection
of the presence of MAs in the second mode. Evaluation results
depict that the proposed method not only suppresses MAs with
minimal loss of clinically valuable features but is also computation-
ally very simple. Finally, the major contributions of the Letter can
be summarised as follows:

† Investigation of VMD with specific parameters for extracting the
MAs from EEG signals in one of the decomposed modes.
† Exploring the zero-crossings count feature for the detection of
MAs in modes.
† Proposed MAs detection and suppression in single-channel EEG
signal without the use of reference EMG signal, unlike many exist-
ing multi-channel EEG signal based MAs suppression methods
and/or MAs suppression with the use of reference EMG signals.
† Demonstration of comparative analysis of detecting and sup-
pressing MAs using the proposed method and recent existing
MAs-removal methods evaluated on various publicly available
databases.
† Demonstration of the robustness of the proposed method in
detecting and suppressing MAs for varying processing lengths of
EEG signal and for inter-variability among subjects from different
databases using different performance metrics.
† Detection and suppression of MAs from EEG signal with low
computational time complexity.

The rest of the Letter is organised as follows: Section 2 describes
the major components of the proposed method. Section 3 discusses
the performance results obtained on different EEG signals taken
from various publicly available databases. Section 4 concludes
the Letter.

2. Proposed VMD-based MAs removal method: The flow
diagram for the proposed MAs suppression method based on
VMD is shown in Fig. 1. The proposed method consists of three
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major stages: decomposition of the original EEG signal into two
modes using VMD; rejection of the second mode containing
MAs based on zero crossings count feature; retention of the first
mode as MAs-free EEG signal only after detection of MAs. In
this section, we present a brief overview of VMD and its
application in the suppression of MAs.

2.1. Variational mode decomposition: VMD is a non-recursive
decomposition of a real-valued signal x t( ) into a distinct
bandlimited M number of modes (each with different centre
frequency) [22–24]. Each mode is a combination of amplitude
modulated and frequency modulated (AM–FM) signal which can
be represented as

v t( ) = a t( ) cos f t( )( )
(1)

where f t( ) is a non-decreasing phase and a t( ) is the non-negative
envelope of the v t( ).

VMD formulates the problem of estimating the bandwidth of
each mode as the following constrained variational problem:

min
vm{ }, vm{ }

∑
m

∥∥∥∥∥∂t d t( ) + j

pt

( )
∗vm t( )

[ ]
e−jvmt
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2

2

⎧⎨
⎩

⎫⎬
⎭

s.t.
∑M
m=1

vm t( ) = x t( )
(2)

where vm t( ) represents the mth mode, vm represents its centre
frequency, x t( ) represents the signal to be decomposed, d t( ) is
the impulse signal and ∂t is the gradient with respect to t. This
constrained problem is converted into the unconstrained problem
by making use of the Lagrange multiplier and quadratic
penalty term, thereby introducing an augmented Lagrange multi-
plier [22].

The solution to the above-constrained optimisation problem is
obtained in a sequence of iterations using the alternate direction
method of multipliers and the following update equations are
obtained for mode and centre frequency [22]:

v̂n+1
m v( ) = x̂ v( ) −∑

j=m v̂nj v( ) + l̂
n
v( )/2( )

1+ 2a v− vn
m

( )2 . (3)

Here, the modes are directly updated in the spectral domain using
Wiener filtering with centre frequency of vm. v̂ v( ) denotes the
mode spectrum, n is the iteration number and a is the data fidelity
parameter

vn+1
m =

�1
0 v v̂m v( )∣∣ ∣∣2 dv�1
0 v̂m v( )∣∣ ∣∣2 dv . (4)

The centre frequency is updated as the centre of gravity of the cor-
responding mode’s power spectrum. The Lagrangian multiplier is
Healthcare Technology Letters, 2020, Vol. 7, Iss. 2, pp. 35–40
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Fig. 2 Algorithm 1: Pseudocode for VMD

Fig. 4 Illustrates the zc count feature in the second mode of decomposed
clean and MAs-contaminated EEG signal taken from one subject (with 19
channels) of the Mendeley database
updated in the unconstrained problem as

l̂ n+1 = l̂ n + z x̂−
∑
m

v̂n+1
m

( )
, (5)

until
∑

k v̂n+1
m − v̂nm

∥∥ ∥∥2
2≤ e. l denotes the Lagrangian multiplier.

The algorithm for VMD is summarised in Fig. 2.

2.2. Utilisation of VMD for suppression of MAs: In this section, we
propose the use of VMD to effectively suppress MAs from the EEG
signal by adjusting specific VMD parameters. The choice of two
design parameters: data fidelity parameter (a) and the number of
modes (M ) plays a major role in effectively removing MAs from
the EEG signal. The value of a decides the bandwidth allowed in
each mode and the number of modes should be selected in such a
way that the energy is distributed across the modes appropriately.
In this work, the parameters are chosen as a = 12 and M = 2
after rigorous experimental assessment. Let x n[ ] denote a
single-channel EEG signal. The decomposed modes of x n[ ] using
VMD with the aforementioned parameters can be represented as

vj n, f , v
{ } = VMD x n[ ]{ }, (6)

where j = 1, 2, ..., L. The decomposed modes of x n[ ] are shown
in Fig. 3. It can be observed from the figure that the first mode
Fig. 3 Illustrates the original EEG signal decomposition and reconstruction
using VMD
a Input EEG signal taken from EEGMAT (EEG during mental arithmetic
tasks) database contaminated with MAs
b, c Decomposed modes using VMD (the first mode illustrates the
information of MA-free EEG)
d Reconstructed EEG signal
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v1 n[ ] effectively captures true EEG information. However, the
information of MAs is captured in the second mode v2 n[ ].

In this Letter, we propose the zero-crossings count (zc) feature to
detect the presence of MAs in the second mode v2 n[ ] which can be
computed as

zc =
∑L
n=1

g n[ ], (7)

where g n[ ] can be computed as

g n[ ] = 1 (sign v2 n[ ]( )
. 0)&&(sign v2 n+ 1[ ]( )

, 0)

0 otherwise
,

{
(8)

and, L denotes the size of zc.
Fig. 4 depicts the zc feature. It can be observed from the figure

that the values of zc feature in the second mode are higher in the
presence of MAs as compared to the MAs-free EEG signal.
Then, the zc feature is compared with a predefined threshold for
the detection of MAs in the second mode. The predefined threshold
is chosen as the mean value of both the decision boundaries shown
in Fig. 4. Once the MAs are detected in the second mode, the first
mode is chosen as an MAs-free EEG signal.

3. Results and discussion: In this section, we evaluate the
performance of the proposed method on EEG signals taken from
different publicly available databases. In this section, we first
describe different test databases and performance metrics. Then,
simulation results are presented to demonstrate the effectiveness
of the proposed method in suppressing MAs from single-channel
EEG.

3.1. Test databases and performance metrics: The proposed
method has been tested on EEG and EMG signals taken from
five publicly available databases including Mendeley database
[25], epileptic Bonn database (set ‘Z’) [26], EEG during mental
arithmetic tasks (EEGMAT) [27], examples of electromyograms
[27] and cerebral vasoregulation in elderly with stroke (CVES)
database [27]. Mendeley database consists of clean EEG recordings
from various subjects, each with 19 electrodes positioned using
a 10–20 electrode placement system. The data is recorded at a
sampling rate of 200 Hz. Epileptic Bonn database consists of five
37
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different sets of databases denoted as sets A, B, C, D and E with Z,
O, N, F and S folders, respectively, where Z and O contain EEG
recordings of five healthy subjects with eyes open and closed, re-
spectively. N and F contain inter-ictal recordings from seizure
patients and S represents the seizure-EEG signals. Each set consists
of 23.6 s recording of 100 signals sampled at 173.61 Hz. In this
Fig. 5 Comparative denoising results for the existing methods and proposed
method
a Original artefact-free EEG signal taken from EEGMAT database
b EMG signal taken from examples of electromyograms database
c MAs-corrupted EEG signal
d Reconstructed EEG signal using wavelet [21]
e Reconstructed EEG signal using EEMD-CCA [16]
f Reconstructed EEG signal using EEMD [13]
g Reconstructed EEG signal using EMD-CCA [16]
h Reconstructed EEG signal using EEMD-MCCA [4]
i Reconstructed EEG signal using proposed method

Table 1 Comparison results for proposed and existing MAs suppression methods

Method Database PRD RM

EEMD-CCA [16] Mendeley 45.00 (8.12) 0.11 (
Epileptic Bonn (Set Z) 39.00 (4.49) 0.11 (

EEGMAT 41.36 (8.21) 0.11 (
EEMD [13] Mendeley 43.61 (7.61) 0.11 (

Bonn 38.01 (4.61) 0.10 (
EEGMAT 39.81 (8.01) 0.11 (

EMD-CCA [16] Mendeley 59.56 (7.81) 0.15 (
Epileptic Bonn (Set Z) 53.81 (7.71) 0.15 (

EEGMAT 52.21 (8.97) 0.14 (
Wavelet Denoising [21] Mendeley 45.51 (7.61) 0.11 (

Epileptic Bonn (Set Z) 41.52 (5.32) 0.11 (
EEGMAT 42.52 (8.62) 0.11 (

EEMD-MCCA [4] Mendeley 44.78 (7.72) 0.11 (
Epileptic Bonn (Set Z) 38.94 (5.21) 0.11 (

EEGMAT 41.32 (7.83) 0.11 (
proposed method Mendeley 41.46 (7.44) 0.10 (

Epileptic Bonn (Set Z) 36.13 (4.51) 0.09 (
EEGMAT 37.74 (8.11) 0.10 (
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work, we used only the set Z. EEGMAT database consists of
EEG and ECG signals recorded from 36 subjects before and
during the performance of mental arithmetic tasks. The signals
are recorded at the sampling frequency of 500 Hz using a
23-channel system. Examples of electromyograms consist of three
clean EMG (MAs) signals recorded from healthy subjects and
patients with myopathy and neuropathy. The CVES database
consists of clean EMG signals along with blood pressure (BP),
sit-stand, head-up tilt, etc. In this work, we generate various real-
isations of MAs-contaminated EEG data by mixing clean EEG
signals and EMG signals randomly from all records of these data-
bases after re-sampling at the rate of 200 Hz.

In this work, different performance metrics including, percentage
root mean square difference (PRD), root mean square error
(RMSE), signal-to-noise ratio (SNR), mean absolute error
(MAE), correlation coefficient (CC) and time complexity (TC),
have been used to perform objective assessment of the recon-
structed signal quality after MAs suppression. Let r n[ ] denote the
reconstructed EEG signal after MAs suppression. The error
between original and reconstructed signals can be given as
e n[ ] = x n[ ] − r n[ ]. The performance metrics can be calculated as

PRD =
���������������������∑N

n=1 e[n]
2∑N

n=1 (x n[ ] −Mx)
2

√
(9)

RMSE =
��������������∑N

n=1 e n[ ]2( )
N

√
(10)

SNR = 10 log10
(1/N )

∑N
n=1 x n[ ]| |2

(1/N )
∑N

n=1 r n[ ] − x n[ ]| |2 (11)

MAE =
∑N

n=1 |e n[ ]|
N

(12)

CC =
∑N

n=1 (x n[ ] −Mx) r n[ ] −Mr

( )
���������������������∑N

n=1 x n[ ] −Mx

( )2√ ���������������������∑N
n=1 r n[ ] −Mr

( )2√ (13)

where Mx and Mr denote the mean of x n[ ] and r n[ ], respectively,
and N represents the number of samples in the EEG signal. TC
denotes the execution time in seconds.
(mean (standard deviation))

SE SNR (dB) MAE CC TC (s)

0.006) 7.20 (1.30) 0.08 (0.005) 0.90 (0.03) 1.20 (0.60)
0.006) 8.20 (1.10) 0.08 (0.006) 0.93 (0.01) 1.10 (0.50)
0.008) 7.80 (1.50) 0.08 (0.007) 0.92 (0.03) 1.60 (0.30)
0.006) 7.46 (1.30) 0.08 (0.006) 0.90 (0.03) 1.00 (0.40)
0.004) 8.44 (1.00) 0.08 (0.004) 0.93 (0.01) 0.90 (0.30)
0.007) 8.13 (1.50) 0.08 (0.006) 0.92 (0.03) 0.90 (0.30)
0.020) 4.46 (1.10) 0.11 (0.010) 0.81 (0.05) 0.25 (0.10)
0.020) 5.45 (1.20) 0.10 (0.010) 0.85 (0.05) 0.30 (0.20)
0.020) 5.76 (1.40) 0.10 (0.010) 0.85 (0.06) 0.30 (0.20)
0.001) 7.10 (1.20) 0.08 (0.001) 0.90 (0.03) 0.20 (0.10)
0.002) 7.70 (1.10) 0.08 (0.002) 0.92 (0.02) 0.63 (0.10)
0.002) 7.60 (1.50) 0.08 (0.002) 0.91 (0.03) 0.20 (0.10)
0.006) 7.26 (1.20) 0.08 (0.005) 0.90 (0.30) 1.50 (0.40)
0.007) 8.26 (1.10) 0.08 (0.006) 0.93 (0.10) 1.60 (0.30)
0.009) 7.81 (1.40) 0.08 (0.008) 0.92 (0.30) 1.50 (0.40)
0.008) 8.00 (1.30) 0.07 (0.007) 0.92 (0.03) 0.10 (0.10)
0.002) 9.00 (1.00) 0.07 (0.002) 0.95 (0.01) 0.10 (0.05)
0.010) 8.62 (1.60) 0.07 (0.009) 0.93 (0.03) 0.10 (0.10)
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Table 2 Impact of processing EEG length for the proposed method

Time, s Database PRD SNR (dB) MAE CC TC (s) ZC (EEG) ZC (MAs)

5 Mendeley 42.00 7.64 0.08 0.91 0.06 266 (36.31) 595 (77.88)
Bonn (Set Z) 37.88 8.50 0.08 0.93 0.07 195 (54.74) 650 (15.14)
EEGMAT 39.60 8.18 0.08 0.92 0.05 242 (48.99) 583 (70.00)

10 Mendeley 41.43 8.00 0.07 0.92 0.10 525 (70.42) 1164 (157.57)
Bonn (Set Z) 36.00 9.00 0.07 0.94 0.10 384 (96.21) 1270 (25.58)
EEGMAT 37.89 8.62 0.07 0.93 0.10 485 (92.42) 1150 (107.97)

15 Mendeley 42.79 7.65 0.07 0.91 0.20 783 (105.16) 1729 (224.03)
Bonn (Set Z) 37.84 8.50 0.07 0.93 0.15 567 (104.49) 1886 (34.99)
EEGMAT 40.18 8.07 0.07 0.92 0.20 732 (134.21) 1709 (157.19)

20 Mendeley 43.64 7.45 0.07 0.91 0.25 1038 (142.25) 2376 (235.29)
Bonn (Set Z) 38.97 8.24 0.07 0.93 0.30 750 (141.44) 2532 (41.12)
EEGMAT 41.96 7.71 0.07 0.91 0.30 970 (181.37) 2326 (188.87)
3.2. Performance comparison: In this Letter, we first evaluate the
performance of the proposed method in detecting the presence of
MAs in the EEG signals. Results show that our proposed method
achieves a Se of 100% in detecting all the MAs-corrupted EEG
signals taken from all three databases. To present the efficacy
of the proposed method, we implement some of the existing denois-
ing methods such as EEMD [13], EEMD-CCA [16], EMD-CCA
[16], EEMD-MCCA [4] and wavelet denoising [21] for suppressing
MAs from the EEG signal. It can be seen from Fig. 5 that the
proposed method outperforms the existing methods in suppressing
the MAs. Comparison evaluation results in terms of objective
performance metrics for the proposed method and existing
methods are shown in Table 1. It can be seen from the table that
the proposed method outperforms other existing methods in terms
of performance metrics and is computationally simple. Also, it can
be seen from the mean and standard deviation values that the pro-
posed method is robust to the inter-variability among subjects in
order to suppress MAs from EEG signals. We also analyse the
impact of varying processing length of EEG signal on evaluation
results for detection and suppression of MAs. Table 2 depicts the
impact of processing EEG length on performance metrics and zero
crossings count (ZC) feature (mean (standard deviation)). It can be
seen that processing length of EEG signal of 10 s gives better devi-
ation between the mean value of ZC (decision boundaries) in the case
of MAs-free EEG signal and EEG signal contaminated with MAs for
deciding a robust threshold for the detection of MAs. Also, it gives
better MAs suppression in terms of different objective performance
metrics. Based on the results, we can state that our proposed
method can provide adequate EEG analysis in different ambulatory
systems due to the effective suppression of MAs.

4. Conclusion: In this work, we proposed an effective automated
method based on VMD to suppress MAs from the EEG signal in
three steps. In the first step, VMD is used with specific parameters
to decompose the original EEG signal into two modes. In the
second step, detection of the presence of MAs is accomplished
based on zero crossings count thresholding in the second decom-
posed mode. Finally, in order to get a MAs-free EEG signal, the
first mode is retained only if the presence of MAs is detected in
the second mode; otherwise, the original signal is considered as
MAs-free signal. The proposed method has been tested on a
variety of publicly available databases for various MAs-corrupted
EEG signals of all subjects. Comparison results in terms of different
performance metrics demonstrate that the proposed method can ef-
fectively suppress the MAs as compared to existing methods.
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