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Abstract

Purpose: To develop a knowledge-based planning (KBP) model that predicts dosi-

metric indices and facilitates planning in CyberKnife intracranial stereotactic radio-

surgery/radiotherapy (SRS/SRT).

Methods: Forty CyberKnife SRS/SRT plans were retrospectively used to build a lin-

ear KBP model which correlated the equivalent radius of the PTV (req_PTV) and the

equivalent radius of volume that receives a set of prescription dose (req_Vi, where

Vi = V10%, V20% . . . V120%). To evaluate the model’s predictability, a fourfold cross-

validation was performed for dosimetric indices such as gradient measure (GM) and

brain V50%. The accuracy of the prediction was quantified by the mean and the

standard deviation of the difference between planned and predicted values, (i.e.,

GM = GMpred − GMclin and fractional V50% = (V50%pred − V50%clin)/V50%clin) and a

coefficient of determination, R2. Then, the KBP model was incorporated into the

planning for another 22 clinical cases. The training plans and the KBP test plans

were compared in terms of the new conformity index (nCI) as well as the planning

efficiency.

Results: Our KBP model showed desirable predictability. For the 40 training plans,

the average prediction error from cross-validation was only 0.36 � 0.06 mm for

GM, and 0.12 � 0.08 for V50%. The R2 for the linear fit between req_PTV and req_vi

was 0.985 � 0.019 for isodose volumes ranging from V10% to V120%; particularly,

R2 = 0.995 for V50% and R2 = 0.997 for V100%. Compared to the training plans, our

KBP test plan nCI was improved from 1.31 � 0.15 to 1.15 � 0.08 (P < 0.0001).

The efficient automatic generation of the optimization constraints by using our

model requested no or little planner’s intervention.

Conclusion: We demonstrated a linear KBP based on PTV volumes that accurately

predicts CyberKnife SRS/SRT planning dosimetric indices and greatly helps achieve

superior plan quality and planning efficiency.
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1 | INTRODUCTION

Stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT)

are advanced and highly precise forms of radiation therapy. They

have been clinically used to treat intracranial tumors and functional

abnormalities of the brain.1–4 In contrast to conventional fraction-

ated radiation therapy; SRS/SRT delivers one or a few fractions of

large ablative dose to a relatively smaller target volume with sub-mil-

limeter target localization accuracy.5–7 The normal tissue sparing for

the surrounding brain tissues is achieved by a very steep dose falloff

outside the target regions. Favorable treatment results for brain

tumors, for example, meningioma have been obtained using SRS/

SRT.4,8–15 The dedicated machines designed for effective SRS and

SRT include Gammaknife, conventional linear accelerator, and Cyber-

Knife, which is a compact, image-guided linear accelerator with a

robotic manipulator.

Treatment planning system (TPS) of Cyberknife SRS/SRT such as

Multiplan (Accuray Inc., Sunnyvale, CA) cooperates optimizes inverse

treatment planning with the full function of Cyberknife for the accu-

rate and versatile SRS/ SRT system. Depending on the complexity of

the patient case, however, planning can be very time-consuming.16

Also, the knowledge and experience of the planner in this complex

technology is essential for the quality of treatment planning.17 The

variation in Cyberknife manual planning between institutions and

planners is a potential issue in terms of a consistent and high treat-

ment quality of SRS/SRT.

Knowledge-based planning (KBP) is a promising technique to

tackle the challenges of planning efficiency and variation. KBP learns

from the database of past clinical plans and captures clinician knowl-

edge and experience in terms of rules and algorithms. KBP offers a

shift toward the direction of treatment planning automation, stan-

dardized plan quality, and improved treatment planning efficiency.

According to a recent review article,18 more than 70 papers in data-

driven KBP have been published for various IMRT technologies such

as VMAT and Tomotherapy. Methods of knowledge models have

been developed for predicting such parameters as dosimetric and

dose–volume points, voxel-level doses, and objective function

weights. To allow the investigation of KBP in numerous clinical appli-

cations, some model development has led to commercial products in

multiple TPSs including RapidPlan (Eclipse, Varian Medical Systems,

Palo Alto, CA, USA),19,20 Erasmus-iCycle (Monaco, Elekta, Crawly,

UK),21 and PlanIQ (Sun Nuclear, Melbourne, Florida, USA).22 For var-

ious cancer sites23–27 like brain, head and neck, spine, lung, prostate,

etc,19,28,29 the benefits of KBP have been demonstrated in achieving

comparable or improved planning quality, reduced planning time, and

plan quality variation.

Particular for intracranial SRS/SRT, several groups have success-

fully developed KBP models for plan evaluation and optimiza-

tion.16,30,31 Shiraishi et al30 developed a comprehensive KBP method

for achievable DVH prediction. Their quality metric estimation helps

identify suboptimal treatment plans and guides the target objectives

for the plan optimization. Ziemer et al26 proposed a KBP for plan-

ning automation using artificial neural network. They found that KBP

yielded an equivalent or better planned compared to the manual

planning. However, none of these studies applies to Cyberknife.

Therefore, KBP for Cyberknife intracranial SRS/SRT planning is still

lacking.

This study evaluates a KBP model for CyberKnife SRS/SRT treat-

ments. We demonstrate a rigorous method to derive the "empirical

values" that meets the clinic-specific needs for different clinical set-

tings and plan constraints. Our model predicts dosimetric indices

which facilitate the automatic generation of shell constraints for iso-

dose tuning and yield a highly efficient automated planning process.

Here, we aim to extend KBP’s clinical benefit to CyberKnife intracra-

nial patients.

2 | MATERIALS AND METHODS

This study was an Institutional Review Board (IRB)-exempted retro-

spective review of intracranial SRS/SRT plans from 2017 to 2019 at

Boston Medical Center. From April 2017 to January 2018, 40 con-

secutive intracranial SRS/SRT treated plans (26 patients) were

selected for the initial analysis. Prescription dose (Rx) range was

15 Gy to 30 Gy in 1 or 5 fractions. Disease types included 35 brain

metastases, 4 meningioma, and 1 glioblastoma (GBM). Seven of the

total 40 plans (18%) had planning target volume (PTV) near (<1 cm)

or overlapping with brainstem. One of the seven patients had right

cochlear within 1cm. In the other 33 plans, PTV was more than 5cm

away from critical organs at risk (OARs) (Table 1).

All the plans were created with Accuray TPS Multiplan version

4.6.1 using sequential optimization. Per our clinical practice, one to

two fixed circular collimators were used according to the TPS con-

formality automatic selection based on the size of the PTV. The

diameter of the bigger collimator around 2/3 or equal to the maxi-

mum PTV dimensions. The diameter of the smaller collimator is

about the size of the minimum dimension of the PTV. Three to four

shell constraints were applied, and additional OAR constraints were

added when necessary. The size of the shells varied with different

planners: In general, two smaller shells (like 1–2 mm and 6–8 mm)

were used for high dose falloff, and one to two bigger shells for the

low dose spreading (50% dose or lower). The sizes of larger shells

(i.e., 10–20 mm or 30–50 mm) depend on the sizes of PTVs. The

maximum constraints for PTVs were chosen as 200% of the RX. For

TAB L E 1 Model plan characteristics.

Prescription

Number
of plans
n (%)
(N = 40)

PTV volumes
Mean (cc)

Number
of Plans
with OAR
involvement

20Gy x 1 17 (42.5%) 0.82 (range: 0.05-4.28) 1

18Gy x 1 7 (17.5) 1.84 (range: 0.02-4.11) 1

15Gy x 1 1 (2.5%) 0.03 0

6Gy x 5 8 (20%) 21.91 (range: 1.44-74.17) 1

5Gy x 5 7 (17.5%) 9.63 (range: 0.36-23.18) 4
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the patients with multiple targets, each target yielded a separate

plan. The target coverage goal was to cover at least 95% of the PTV

volume with the prescription dose. All the final dose distributions

were calculated using Raytracing algorithm with high resolution.

2.A | Univariate regressions

A linear model using univariate regression was built for the 40 train-

ing plans. The coefficients of determinants, R2, were used as a mea-

sure of goodness of fit. The model correlated the equivalent radius

of the PTVs (req_PTV) and the equivalent radius of volume receiving a

set of percentage of the prescription dose (req_Vi, where Vi = V10%,

V20% . . . V120%).

req Vi ¼ αireq PTV þβi (1)

where α and β referred to the slope and offset of the fitted line, and

req_vi and req_PTV are the radius of a sphere with geometric volume

equals of Vi and PTV, respectively. Once α and β are obtained from

the model, various dose volumes can be predicted for a given PTV

volume.

2.B | Model Validation and Prediction evaluation

The plan quality metrics such as conformity index (CI) and gradient

measure (GM) are commonly used to evaluate intracranial stereotac-

tic radiotherapy plans. GM is defined as.

GM¼ð 3
4π

Þ
1
3

V
1
3
50%�V

1
3
100%

h i
(2)

The new conformity index (nCI) used in this study is defined as.

nCI¼ TV
TVRX

X
VRX

TVRX
(3)

where TV = tumor volume (cc), TVRX = tumor volume receiving pre-

scription dose (cc), and = VRXprescription isodose volume (cc). The

brain volume receiving 50% of the prescription dose was also ana-

lyzed to investigate the model.

For our 40 training cases which were clinically approved, the mean

target volume was 6.74 cc (range: 0.02–74.17 cc), the target coverage

was 97.8 � 0.02%, and nCI 1.31 � 0.15. The mean GM was

4.52 � 2.00 mm, and the mean brain V50% was 23.17 � 43.25 cc.

To evaluate the predication accuracy of the model, the 40 plans

were evaluated as one group first. Then the fourfold cross-validation

was applied as following: the 40 plans were randomly assigned to

four groups, each with ten plans. In turns, three of the groups were

used to build the model and the validation was performed using the

rest one group. The accuracy of our model prediction was quantified

by the mean and the standard deviation of the difference between

actual clinical and model predicted values, that is, GM = GMpred -

GMclin and V50%=V50%pred - V50%clin. For the latter, due to the large

spread of the absolute PTV volumes, the fractional brain difference

of V50% was used instead and therefore fractional brain

ΔV50% ¼ V50%pred�V50%clin

V50%clin
.

2.C | Clinical application of the model

As our model predicts various dose volumes for a given PTV volume,

and the dose volumes can be translated to some distances from the

target volume boundaries. Therefore, our model allows KBP that

automate the optimization process by providing dose constraint at

each shell for Cyberknife plan optimization.

From January 2019 to June 2019, 22 intracranial SRS/SRT plans

(11 patients, Table 2) were directly generated with the incorporation of

our KBP model. The maximum dose constraints of shells during opti-

mization were generated using the model’s prediction based on the

PTV volume. Additional OAR constraints were used when OAR was

close to the target. The quality of the KBP plans utilizing the model was

evaluated and compared with the 40 training plans with manual opti-

mization. The dosimetric indices nCI, GM, and fractional brain V50%

were compared here for target coverage and normal tissue sparing

analysis. The unpaired t test with Welch’s correction was also used.

3 | RESULTS

3.A | The univariate regression results

For the 40 training plans, the R2 for the linear fit between req_PTV

and req_vi was 0.985 � 0.019 for isodose volumes ranging from V10%

to V120% (Table 3); particularly, for V50% R2 = 0.995 and for V100%

R2 = 0.997 (Fig. 1).

3.B | Prediction accuracy

For the 40 training plans, the mean absolute error of predicted vs

actual clinical GM was 0.38 � 0.25 mm (Fig. 2). For V50% predica-

tion, the mean absolute error of fractional brain V50% was

0.12 � 0.08 (Fig. 3). No volume dependence was observed in both

GM and fractional brain V50% prediction.

As to the prediction accuracy analysis using the fourfold cross-

validation method, the results were very similar to the above: the

average absolute prediction error for GM was 0.39 � 0.23 mm, and

for fractional brain V50% was 0.12 � 0.08.

3.C | Clinical application of KBP model

For the 22 KBP test plans, the mean PTV volume was

6.50 � 11.0 cc (range: 0.05–46.91 cc), while that was 6.74 cc

TAB L E 2 KBP test plans’ characteristics.

Prescription

Number
of plans
n (%)
(N = 22)

PTV volumes
Mean (cc)

OAR
involvement
Number
of Plans

20Gy x 1 10 (45.5%) 0.58 (range: 0.05-2.22) 0

18Gy x 1 2 (9.0%) 1.44 (range: 0.08-2.39) 0

8Gy x 3 1 (4.5%) 4.24 0

6Gy x 5 9 (40.9%) 14.50(range: 3.61-46.91) 2
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� 13.5 cc for the 40 training plans (P = 0.94). The PTV volume dis-

tribution indicated no significant patient-specific characteristics

between training and testing cases. In 2 of the 22 plans (9.1%), PTV

was less than 1 cm away from the brainstem. The prediction error of

our model was 0.33 � 0.31 for GM, and was 0.08 � 0.07 (Fig. 4) for

fractional brain V50%.

It was found that nCI in the 22 KBP test plans was improved to

that of the training plans that were planned with no KBP model:

1.15 � 0.08 vs. 1.31 � 0.15 (p < 0.0001, Fig. 5). No difference was

found for GM: 4.5 � 2.3 mm vs 4.5 � 2.0mm (P = 0.97). Slight

improvement was observed for the ratio of brain V50%/PTV:

4.4 � 1.2 vs 5.4 � 2.7 (P = 0.0475).

3.D | Planning efficiency using the model

For 20/22 patients plans, there were no nearby OAR involvement and

three to four automated shell constraints (maximum dose) generated

from the model were found sufficient in the sequential optimization.

All the accepted plans were achieved with one iteration. For the

other two plans where OARs were involved, additional constraint for

the OAR maximum dose was added, and one or two more iterations

was involved depending on the planning goal for the OARs sparing.

4 | DISCUSSION

We have demonstrated a linear and highly accurate KBP model that

predicts CyberKnife SRS/SRT planning dosimetric indices for plan

TAB L E 3 Linear model fitting parameters for equation (1).

β α R2

V10% 0.854 2.994 0.951

V20% 0.321 2.200 0.984

V30% 0.265 1.727 0.993

V40% 0.215 1.516 0.994

V50% 0.176 1.391 0.995

V60% 0.141 1.305 0.995

V70% 0.108 1.237 0.995

V80% 0.076 1.177 0.996

V90% 0.044 1.119 0.996

V100% 0.011 1.052 0.997

V110% -0.025 0.960 0.991

V120% -0.047 0.795 0.935

F I G . 1 . The linear fitting between the
equivalent radius of V50% (left), V100%

(right) and the equivalent radius of PTV for
all 40 patients, R2 = 0.995 (left), 0.997
(right), red color indicates plans with OAR
involvement.

F I G . 2 . a) The predicted vs. the actual clinical gradient measure (GM) values b) GM prediction error vs. the PTV volume, the mean and the
standard deviation for the absolute GM prediction error: 0.38mm and 0.25mm. Due to the large spread of volumes, the x axis was plotted on
a log scale for the better illustration.
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evaluation and optimization. Our work considers both single-fraction

and multi-fraction plans. The high accuracy of the model was sup-

ported by the optimal R2 and the small prediction error from the

fourfold cross-validation. The model predicted GM to be within

0.4 mm, and V50% within 12%. The 40 training plans used for

modeling consisted a wide range of PTV volumes (range: 0.02 cc-

74.17 cc), and the prediction accuracy was found independent of

volume sizes [Figs. 2(b) and 3(b)]. No stratification is needed during

our model generation and therefore our model is less sophisticated

than previously published studies such as Shiraishi et al’s model.30

However, our KBP model for Cyberknife agree with other published

KBP models for other modalities in terms of achieving consistent

and improved plan quality with higher efficiency.

Our method mainly focuses on PTV coverage and conformity,

since not many OARs are usually involved in intracranial SRS/SRT.

Although no OAR data were used for the model generation, our

modeled linear regression is not only limited to the patients with

simple geometry where no OAR is a concern. As highlighted in

Fig. 1, the patients with the OAR(s) in close proximity to the PTV

also follow the high linear correlation between the equivalent radius

of PTV volume and the equivalent radius of V50%/V100%. There-

fore, our model can be applied to the intracranial SRS/SRT patients

with different geometrical complexity.

We believe that our method helps improve planning efficiency and

plan quality in different scenarios. For the cases with close OAR-PTV

proximity, using our model parameters for the shell constraints saves

planner’s time by quickly achieving acceptable PTV coverage.

F I G . 3 . a) the predicted vs. the actual clinical brain V50%, b) the fractional brain V50% prediction error vs. the PTV volume, the mean and the
standard deviation for the absolute fractional brain V50% error: 0.12 and 0.08. Due to the large spread of volumes, the x axis was plotted on a
log scale for the better illustration.

F I G . 4 . Predicted vs clinical values of
GM (mm) and brain V50% (cc) for the
training plans and KBP plans.

Training KBP

1.0

1.1

1.2

1.3

1.4

1.5

nCI

nC
I

F I G . 5 . Comparison of nCI between the training plans (n = 40)
and KBP test plans (n = 22).
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Consequently, it becomes more straightforward for the planner to move

on to the fine-tuning the plan in regards to the OAR constraints, which

is likely to yield a more desirable OAR sparing. For the cases with no

OARs for optimization, our model helps achieve consistent plan quality.

According to our experience, when the target structures are away from

any OARs, choosing what metrics for plan evaluation may be arbitrary,

and very few metrics may end up being used. Due to the different plan

evaluation metrics chosen by the physician or the planner, the plan

quality may varies significantly even in the same clinic. Our method can

efficiently alleviate the problem of inconsistent plan quality, particularly

for the uncomplicated cases where no OAR is a concern.

One of our future works is to consider different planning strate-

gies beyond our clinical practice. Due to the limited number of struc-

tures in CyberKnife MultiPlan, each target was planned individually

for multiple-target cases in this work. A summation plan was then

created to evaluate the total dose to the targets and OARs. There

are other planning strategies in CyberKnife MultiPlan for multiple

targets, for example: to combine the targets with the same prescrip-

tion level and then create constraint shells for the combined volume.

Also in the manual plans, one to two fixed cone collimators are used

for planning to ensure the treatment efficiency. However, with the

availability of IRIS collimator and MLCs, the plan dosimetric indices

could be different from the ones generated with fixed cone. We are

currently working on the KBP model extension to include such plan-

ning strategies. Another potential future work is about the optimiza-

tion approach in newer Cyberknife treatment planning system (i.e.,

Precision), which is different from the discussed sequential optimiza-

tion. It will be interesting to investigate the difference of the KBP

models of the two systems in the future.

There may be a great potential of our KBP model to be directly

adopted in other institutions. Here, we provide our model parameters

(Table 3) for the reference purpose to the readers who are interested

in using this model. On the other hand, the readers are encouraged to

fit their own model based on their own training plans. In addition, our

methodology is also applicable to other modalities such as Gamma-

Knife or Linac-based stereotactic treatments and to other body sites.

Our future work also includes the investigation of the model parame-

ters variations between institutions, modalities, and body sites.

5 | CONCLUSION

Our work demonstrated a linear and highly accurate knowledge-

based model that predicts CyberKnife SRS/SRT planning dosimetric

indices. The developed model helps automate planning process by

generating shell constraints based on PTV volumes, which yield com-

parable or improved quality plans and enhanced efficiency, compar-

ing to the conventional manual planning.
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