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The advantage of self‑protecting 
interventions in mitigating 
epidemic circulation 
at the community level
Romualdo Pastor‑Satorras1* & Claudio Castellano2,3

Protecting interventions of many types (both pharmaceutical and non‑pharmaceutical) can be 
deployed against the spreading of a communicable disease, as the worldwide COVID‑19 pandemic has 
dramatically shown. Here we investigate in detail the effects at the population level of interventions 
that provide an asymmetric protection between the people involved in a single interaction. Masks 
of different filtration types, either protecting mainly the wearer or the contacts of the wearer, are 
a prominent example of these interventions. By means of analytical calculations and extensive 
simulations of simple epidemic models on networks, we show that interventions protecting more 
efficiently the adopter (e.g the mask wearer) are more effective than interventions protecting 
primarily the contacts of the adopter in reducing the prevalence of the disease and the number of 
concurrently infected individuals (“flattening the curve”). This observation is backed up by the study 
of a more realistic epidemic model on an empirical network representing the patterns of contacts in 
the city of Portland. Our results point out that promoting wearer‑protecting face masks and other self‑
protecting interventions, though deemed selfish and inefficient, can actually be a better strategy to 
efficiently curtail pandemic spreading.

The recent COVID-19 pandemic has shown how fragile world societies are when confronted to the runaway 
spreading of a new virus  strain1. In stark contrast with other diseases, however, the combination of recent sci-
entific advances, liberal funding by governments and the availability of large scale manufacturing, has allowed 
to create and deploy world-wide vaccines for the SARS-CoV-2 virus at unprecedented  speed2, a fact that has 
without any doubts greatly diminished the death toll expected in this pandemic. Despite this huge effort, how-
ever, more than nine months lapsed between the declaration of the COVID-19 pandemic by WHO in March 
2020 and the approval of the first vaccine in December 2020. The large-scale deployment of vaccines worldwide 
required additional months and is still an unsolved problem in many areas of the planet. Moreover, the protection 
guaranteed by vaccines against recently emerged new variants is far from perfect. In this context, societies have 
had and still have to fight the propagation of the virus by adopting also more traditional non-pharmaceutical 
 interventions3. These interventions, aiming at limiting the spread of a  disease1, include collective actions, such 
as school closures, prohibition of large meetings, closing of public transportation, curfews or lockdown  orders4. 
At an individual level, non-pharmaceutical interventions include, among others, physical distancing, hand and 
respiratory hygiene, and face masks. Understanding the impact of each of these interventions at the level of the 
single transmission event among individuals and how this translates at the community level is a crucial goal, 
which has attracted a huge scientific  interest5–17.

In this paper we present an analysis of how the reduction of the chance that the disease is transmitted in 
a single contact, induced by a generic type of protecting intervention, results in an overall mitigation of the 
epidemic circulation in the population. In particular, we focus on asymmetric interventions having different 
efficacies at the individual level, i.e., in reducing the infectivity of an infected individual with respect to decreas-
ing the susceptibility of a susceptible one.

As one of the most widely adopted means to fight the current pandemic, mask wearing is the paradigmatic 
example of these types of interventions. Given the evidence for the airborne transmission of SARS-CoV-2 by 
means of droplets and  aerosols18, recent research has shown that face masks are a very effective way to reduce 
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the spread of COVID-1919–26. Different types of masks exist, characterized by very different protecting perfor-
mance, both qualitatively and  quantitatively27,28. Some protect mainly the mask wearer, such as valved masks 
endowed with an exhalation valve. Others mainly protect the contacts of the mask wearer, such as surgical or 
cloth masks. Such asymmetric efficacy is however more general. For example, vaccines reduce the susceptibility 
of individuals to being infected upon contact with an infectious person, but they need not be equally effective 
in reducing the capability of vaccinated infected individuals to transmit the pathogen further if they ever catch 
the  disease29. Also, symptomatic treatment reducing cough and sneezing hinders the possibility to transmit the 
disease onward but it does not reduce the chance to be infected.

Here we present a comparative analysis of the global efficiency of generic protective interventions (PI) in 
the context of epidemic models on  networks30, representing the patterns of social contacts among people that 
mediate the propagation of an infective  pathogen31. We use a formulation over networks with a static topology, 
parametrizing the effect of PIs in terms of the fraction of adopters and of the efficacy of adoption in reducing 
the chance to receiving/transmitting the disease.

We analyze the effect of different types of PIs at the community level by considering two paradigmatic mod-
els of disease propagation in  networks32,33: the Susceptible-Infected-Removed (SIR) model for non-recurrent 
diseases, that confer immunity and develop in outbreaks (similarly to COVID-19, at least on short time scales), 
and the Susceptible-Infected-Susceptible (SIS) model for recurrent diseases that may lead to a steady endemic 
state. Using a combination of numerical simulations and analytical calculations we show that the adoption of 
asymmetric PIs leads to surprisingly different scenarios. In particular interventions protecting the adopter turn 
out to have a stronger effect at the population level. If PIs of the same efficacy in reducing infectivity/suscepti-
bility are available, it is better to use PIs protecting the adopter, as they suppress more the global circulation of 
the disease. We investigate the origin of this unexpected finding and show that the conclusion holds also when 
considering more realistic interaction patterns and disease dynamics.

Results
Modeling the effect of protecting interventions. The effect of protecting interventions on the propa-
gation of a disease can be modeled by considering the modification of the probability that the disease is transmit-
ted between an infected and a susceptible  individual20,34. Consider a population of N individuals, whose pattern 
of contacts is determined by a complex  network35, in which nodes represent individuals and edges the presence 
of social contacts between pairs of individuals. The network is fully described by its adjacency matrix aij , taking 
value 1 if nodes i an j are connected, and zero otherwise. From a statistical perspective, the network can be char-
acterized by its degree distribution P(k), representing the probability that a randomly chosen node has degree k 
(i.e., it is connected to k other individuals).

Disease transmission is mediated by contacts between infected and susceptible individuals. The properties 
of this transmission are mathematically  encoded32,33 in terms of an infection rate β , representing the probability 
per unit time that the infection is transmitted from an infected to a susceptible along a single contact. Protect-
ing interventions induce a reduction of this infection rate in two possible manners. An intervention involving 
the infected individual diminishes the infection rate along any edge emanating from him/her by a factor αo . An 
intervention affecting the susceptible individual decreases, by a factor αi , the infection rate of any edge pointing 
to him/her. For example, in the case of airborne transmission, a mask may reduce the number of viral particles 
exhaled by an infected individual and also reduce the number of viral particles that a susceptible can inhale from 
the  environment20. As the example of masks shows, the factors αo and αi are not necessarily equal. For example 
valved masks strongly protect the wearer αi ≪ 1 while they do not impede viral transmission towards the others 
αo ≈ 1 . For cloth masks the opposite is true. We compare scenarios where a single type of PI (with given αo and 
αi ) is adopted by a fraction f of the population. For a given edge pointing from node i to node j, the infection 
rate associated to the disease transmission from i to j takes the form

where mi are quenched Bernoulli stochastic variables taking value 1 with probability f and zero with probability 
1− f  . From this definition it is obvious that, even if the contact network is undirected (symmetric aij)35, the 
transmission network given by (1) is effectively directed, with βij  = βji unless f = 0 (no PI adoption in the 
population) or f = 1 (whole population adopting PI), which lead to βij = βaij and βij = βαiαoaij , respectively. 
In these cases, the infection process is symmetric if the underlying contact network is undirected. In our study 
we are concerned with the differences between PIs that mostly protect the adopter, characterized by αi ≪ αo , 
and PIs that mostly protect his/her contacts, given by αo ≪ αi . For the sake of simplicity, we focus on what we 
call SELF interventions (with αi < 1 , αo = 1 ) that offer protection to the adopter and no protection for his/her 
contacts, and OTHER interventions ( αi = 1 , αo < 1 ), that offer protection to the contacts, and no protection 
to the adopter.

In the following, we investigate the effects of PIs in fundamental models of disease propagation, either non-
recurrent or recurrent.

Non‑recurrent diseases. As an example of a communicable non-recurrent disease (that is, a disease that 
confers permanent immunity), we consider the simple Susceptible-Infected-Removed (SIR)  model32. The SIR 
model is defined in terms of three compartments. Susceptible individuals are healthy and can contract the dis-
ease. Infected individuals carry the disease and can infect susceptible ones upon contact with a rate (probability 
per unit time) given by the factor βij in Eq.  (1). In their turn, infected individuals can recover and become 
removed with a constant rate µ . By rescaling time, we can absorb the rate µ and consider a single parameter, the 
spreading rate � = β/µ.

(1)βij = βaij[1−mi(1− αo)]
[

1−mj(1− αi)
]

,
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Focusing for simplicity on homogeneous networks with a uniform degree ki = K , a mean-field theoretical 
analysis (see Methods “Mean-field theory for the SIR model” section) shows that the SIR model exhibits a transi-
tion between a phase with non-extensive outbreaks only and a phase with macroscopic ones, at a critical value 
of the spreading rate � (see Methods “Mean-field theory for the SIR model” section)

From this expression, we see that the threshold is symmetric in the parameters αi and αo , in agreement with 
the results in Ref.20, and that the maximum system-wide protection is obtained, for a given value of adoption 
probability f, when αiαo = 0 , which can be attained either in the perfect SELF scenario ( αi = 0 ) or in the perfect 
OTHER case ( αo = 0 ). In the same theoretical framework, it is also possible to calculate the total prevalence 
R∞ , i.e., the overall fraction of individuals infected by the disease throughout the outbreak, obtaining, slightly 
above the threshold (see Methods “Mean-field theory for the SIR model” section)

where � = �− �c quantifies the distance from the critical threshold. This expression reveals that, at variance with 
the position of the threshold, the size of an outbreak is not symmetric with respect to the efficacy of PIs: At fixed 
values of f, � and of the threshold �c (i.e. for the product αiαo fixed to a constant A), if we substitute αo = A/αi , 
the total prevalence is easily shown to be an increasing function of αi , while setting αi = A/αo leads to a total 
prevalence that decreases with αo . In other words, while using more effective SELF interventions (i.e., reducing 
αi ) decreases R∞ , imposing more effective OTHER interventions (i.e reducing αo ) creates the opposite result, 
an increase of R∞ . This signals that SELF interventions, protecting the adopter, are more effective than OTHER 
interventions, protecting the contacts, at reducing the overall spreading of the disease at the community level. 
This is confirmed by integrating numerically the homogeneous mean field Eqs. (11)–(15), for generic values of 
αi and αo (see Fig. 1a).

Most of the parameter space results in R∞(OTHER) > R∞(SELF) , i.e. a larger circulation of the disease when 
OTHER interventions are adopted.

The comparison of SELF and OTHER scenarios provides remarkable insight also at the level of the individual. 
As shown in Methods “Mean-field theory for the SIR model” section, the relation between the asymptotic preva-
lence R1(∞) for adopting individuals and the prevalence R0(∞) for nonadopting ones is

which does not depend on the protection level αo offered to contacts. This means that adopting interventions 
offering more protection to contacts (i.e. reducing αo ) has exactly the same effect on the prevalence of adopting 
and nonadopting individuals. In particular, if OTHER PIs are used, since αi = 1 then R1(∞) = R0(∞) , for any 
value of αo . In such a case, from the point of view of a given individual, adopting an intervention is perfectly 
equivalent to not adopting it, as the probability to be eventually infected is exactly the same. With the benefit 
of hindsight this result is not so odd: If αi = 1 , PIs do not provide any protection against the transmission from 
others to the adopter, hence for the individual adopter the risk of being infected cannot be smaller than for a 
non-adopter. However, Eq. (4) reveals that, while adopting a PI always implies some degree of inconvenience 
(think for example at the bother of wearing a mask), no immediate utility exists for the individual adopting an 
OTHER PI, while such a utility exists for SELF PIs. See the concluding section for further discussion.

From now on we mostly focus on the comparison of the effects at the population level of SELF and OTHER 
interventions with exactly the same efficacy α ( αi = α for the SELF case, αo = α for the OTHER case). For refer-
ence we consider also the case NONE, where no intervention is adopted, corresponding to αi = αo = 1 , and the 
case BOTH, given by αi = αo = α , and representing equally protecting performance in both directions. In this 
last case (i.e., along the diagonal in Fig. 1a) SELF PIs outperform OTHER PIs for any value of the fraction f of 
adopters. This is checked by considering R∞(OTHER)− R∞(SELF) as a function of α and f. The values plotted 
in Fig. 1b, which are nonnegative for any value of α and f, demonstrate that in all cases SELF interventions are 
better than or equal to OTHER interventions in curbing disease diffusion. These conclusions remain true for 
other values of the infectivity � > �c as we can see from Supplementary Figs. SF1 to SF4, where we present fig-
ures analogous to Figs. 1 and 2 for � = 1.0 and � = 2.0 . Interestingly, from Fig. 1b it turns out that the difference 
between the two types of PI is maximal for very small values of α (as expected) and in general, for intermediate, 
α-dependent values of the adoption fraction f.

The numerical solution of MF equations also allows us to determine the height Im of the peak of incidence 
over time. This is a crucial quantity that must be kept as low as possible in order to avoid the saturation of health 
care systems by an inflow of too many seriously ill individuals. Figure 1c shows clearly that also in this respect 
SELF PIs perform better than the OTHER counterparts, as witnessed by the asymmetry of the plot with respect 
to the diagonal. The same conclusion is confirmed by Fig. 1d: Im(OTHER)− Im(SELF) ≥ 0 for any value of α 
and f. Adopting SELF interventions “flattens the curve” more effectively than the adoption of OTHER PIs does. 
A comparison between panels (b) and (d) in Fig. 1 reveals also that PI adoption affects differently the total 
number of infected individuals with respect to the peak incidence. In particular, the improved performance of 
SELF PIs is maximized for α → 0 and f ≈ 0.3 for what concerns the flattening of the curve, while f ≈ 0.45 for 
the total size of the outbreak.

Unanticipated effects can also be observed by comparing the performance of OTHER PIs with a scenario with 
no interventions at all, and given by αi = αo = 1 , see Fig. 2. While it is expected that the effect of PIs grows with 

(2)�c =
1

K − 1

1

f αiαo + 1− f
.

(3)R∞ ≃
2�

�2c (K − 1)

f αi + 1− f

f α2
i αo + 1− f

,

(4)R1(∞) = 1− [1− R0(∞)]αi ,
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efficacy (small α ) and widespread PI adoption (f close to 1) it is surprising to see that in a large domain of the 
parameter space R∞(NONE)− R∞(OTHER) is very close to zero (PIs do not significantly change the number 
of people eventually infected) while Im(NONE)− Im(OTHER) is rather large: OTHER PIs do not lead to an 
overall reduction of the outbreak size but indeed substantially flatten the curve.

The previous predictions have been obtained within the mean-field framework. The comparison with numeri-
cal simulations, to check whether the picture derived above remains true, requires to take into account the phe-
nomenology of the stochastic SIR model in finite systems (see Methods “Phenomenology of the SIR model in 
finite networks” section), but reveals new interesting features. Figure 3a shows that, also in numerical simulations, 
the better efficacy of SELF interventions at the population level remains valid for any value of the infectivity � . 
Indeed the average size R∞ of extensive outbreaks is smaller when SELF PIs, rather than OTHER PIs, are adopted.

Different values of the asymptotic prevalence for long times R∞ reflect a different temporal evolution. The 
mean-field approach predicts (see Methods “Mean-field theory for the SIR model” section) that the initial growth 
is exponential, with a characteristic time scale depending only on the threshold value, and thus on the product 
αoαi , and hence is equal for both SELF and OTHER scenarios with the same αi = αo = α . The difference in the 
value of R∞ stems from the fact that this exponential growth ends later in the OTHER case, thus corresponding 
to a higher value of the peak incidence Im . Notice that this is different with what happens for the NONE ( αi = 1 , 
αo = 1 ) or BOTH ( αi = αo < 1 ) scenarios. In these other cases already the exponential growth rate is different. 

Figure 1.  SELF interventions are more effective than OTHER interventions at the population 
level. (a) Difference between the final prevalence R∞ for the OTHER and the SELF scenario 
( R∞(OTHER)− R∞(SELF) ), as a function of αi and αo of the individual PI. Notice that R∞(OTHER) depends 
only on αo , and R∞(SELF) depends only on αi . The solid black line indicates the zero value. (b) Difference 
between the final prevalence R∞ for the OTHER and the SELF scenario as a function of the fraction f of 
adopters and the efficacy α of the individual PI. The solid yellow line denotes where �c(α) = � . Above it, the 
system is subcritical and R∞(OTHER)− R∞(SELF) = 0 . (c) Difference between the maximum value of the 
incidence Im for the OTHER and the SELF scenario ( Im(OTHER)− Im(SELF) ), as a function of αi and αo of the 
individual PI. Notice that Im(OTHER) depends only on αo , and Im(SELF) depends only on αi . The solid black 
line indicates the zero value. (d) Difference between the maximum value of the incidence Im for the OTHER 
and the SELF scenario as a function of the fraction f of adopters and the efficacy α of the individual PI. The solid 
yellow line denotes where �c(α) = � . In all plots quantities greater than zero indicate that SELF interventions 
perform better. Solution of homogeneous MF equations for a network of degree K = 7 and for � = 0.5 . In 
panels (a) and (c) f = 0.5 . For these parameters, in panels (a) and (c) both SELF and OTHER strategies operate 
above their respective thresholds.
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Figure 2.  OTHER interventions flatten the curve but barely reduce prevalence with respect to no intervention. 
(a) Difference between the final prevalence R for the NONE and the OTHER scenario as a function of the 
fraction f of adopters and the efficacy α of the individual PI. (b) Difference between the maximum value of the 
incidence Im for the NONE and the OTHER scenario as a function of the fraction f of adopters and the efficacy 
α of the individual PI. Solution of MF equations for a homogeneous network of degree K = 7 for � = 0.5 . The 
solid yellow lines are where �c(α) = � for the OTHER scenario.

Figure 3.  Numerical simulations confirm analytical results. Results of numerical simulations on a random 
regular network of degree K = 7 . The various curves are for the different scenarios of PI deployment. In all cases 
f = 0.5 and α = 0.2 . SIR dynamics: (a) Value of the average size R∞ of extensive outbreaks as a function of � ; 
network size N = 104 , single random infected seed. (b) Temporal evolution of the incidence I(t) for a single 
realization of the dynamics; network size N = 105 , 50 initial random infected seeds, � = 0.5 . The exponential 
growth is the same for SELF and OTHER scenarios, but it lasts longer in the OTHER case. (c) Value of the 
probability Ps to observe an extensive outbreak as a function of � ; network size N = 103 , single random infected 
seed. SIS dynamics: (d) Value of the stationary density I of infected nodes as a function of � . Network size 
N = 104.
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Performing simulations of the stochastic SIR model (see Methods “Phenomenology of the SIR model in finite 
networks” section) and analyzing the temporal evolution of the number of infected individuals (see Fig. 3b), 
these differences are clearly observed. The maximum value of the incidence in the SELF case is in general lower 
than in the OTHER case: adopter-protecting interventions are more effective than contact-protecting interven-
tions in “flattening the curve” and thus reduce the maximum instantaneous pressure on health care systems.

SELF interventions, however, are not the silver bullet against epidemics. Indeed, while they reduce the overall 
prevalence of the infectious disease, they are worse than OTHER interventions at preventing the emergence of 
a macroscopic outbreak. As Fig. 3c shows, the probability that a macroscopic outbreak emerges is larger for the 
SELF prescription than for the OTHER one. This means that, if people adopt SELF PIs, it is more likely that a 
single infected individual can give rise to a macroscopic outbreak. However, as shown above, if such an outbreak 
occurs, or if the disease is introduced in different nodes (for example because several infected individuals arrive 
simultaneously in a community) the outbreak will affect, on average, less people if SELF PIs are adopted.

Recurrent diseases. The paradigmatic model for recurrent diseases, leading to a steady endemic state, is 
the Susceptible-Infected-Susceptible (SIS)  model32. In this case the epidemic transition separates values of the 
parameter � = β/µ for which the disease quickly goes extinct ( � ≤ �c ), from values such that an endemic state 
is reached ( � > �c ), with a steady fraction of infected individuals. Also in this case it is possible to investigate 
the effect of different types of interventions via a mean-field approach for homogeneous networks (see Meth-
ods “Mean-field theory for the SIS model” section), obtaning for the threshold

while the stationary density of infected nodes in the vicinity of this threshold is

Hence the phenomenology of the SIS model is analogous to what is found for SIR: The onset of the endemic 
state is a symmetric function of the PI efficacies. The prevalence about it, however, is, for a constant αoαi , an 
increasing function of αi and a decreasing one of αo . Interventions protecting the adopter (small αi , αo = 1 ) 
result in lower disease circulation at the population level than interventions protecting contacts of the adopter 
(small αo , αi = 1 ). These predictions are verified numerically to be true for all values of � > �c , not only close 
to the transition (see Fig. 3d).

An application to COVID‑19 diffusion. While we have considered so far extremely simple epidemic 
models on idealized networks, the qualitative conclusions extend to more complicated epidemic models and 
more general types of networks. For example, the extension to heterogeneous networks with a general degree 
distribution P(k), presented in the Supplementary Information, leads to results perfectly analogous to those 
discussed above. To give a more realistic example, here we consider a Susceptible-Exposed-Infected-Recovered 
(SEIR) dynamics on a large weighted network describing interactions among people in Portland,  OR36. This 
network has been inferred using mobile device data before social distancing measures were enacted during the 
COVID-19 pandemic. SEIR model parameters were calibrated to describe the first wave of COVID-19 in 2020 
(see Methods “Details on the network and the epidemic model for COVID-19” section for more details). The 
size of the network is N = 214, 393 , which is a substantial fraction of the census population of Portland city in 
2020, namely NP = 652, 50337.

In this framework, we tested the four scenarios for PI efficacy, assuming again f = 0.5 . Figure 4 shows that 
also in this case SELF interventions flatten the curve of the number of infected people more effectively than 
OTHER interventions with the same individual efficacy. With respect to the final prevalence R∞ , adopting SELF 
PI reduces the value in the absence of interventions R∞(NONE) = 0.595 to R∞(SELF) = 0.487 , which is signifi-
cantly (beyond stochastic fluctuations) smaller than R∞(OTHER) = 0.510 , while for interventions with both 
SELF and OTHER efficacy the prevalence is R∞(BOTH) = 0.406 . On the scale of the city, extrapolating these 
values for a population of NP = 652, 503 , the adoption of SELF PI instead of OTHER PI would imply a reduction 
of around 15, 000 in the total number of cases. For the maximum number of simultaneously infected people, we 
obtain the values Im(NONE) = 0.238 , Im(SELF) = 0.166 , Im(OTHER) = 0.180 , and Im(BOTH) = 0.130 , which 
on the city scale implies a reduction of around 9, 000 concurrently infected individuals when SELF interventions 
are used instead of OTHER interventions.

Although we do not claim these numbers to be directly applicable to a real world scenario, the results clearly 
show that the collective effects leading to a better performance of SELF interventions with respect to OTHER 
interventions at the population level are at work also for more complicated epidemic models on realistic networks.

Discussion
A vast range of protecting interventions of different type, both pharmaceutical and non-pharmaceutical, can 
be used to combat the diffusion of an infectious disease. Each intervention may in general affect differently the 
infectivity and the susceptibility of the single individual.

Here we have considered, in a simple formalism based on disease propagation on networks, the effects of 
generic PIs on the reduction of the total number of infected individuals and of the maximum number of indi-
viduals concurrently infected, the so-called goal of “flattening the curve”, to prevent the saturation of health care 
systems. In the simple setting adopted, PIs are characterized by two parameters which, in the case of masks, gauge 

(5)�c =
1

K

1

f αiαo + 1− f
,

(6)I ≃
�

�2cK

f αi + 1− f

f αoα
2
i + 1− f
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the level of viral particle filtration offered from the mask wearer to the environment ( αo ), and in the opposite 
direction ( αi).

The results presented above demonstrate that collective effects have surprising consequences for what con-
cerns the level of global protection guaranteed by different kinds of intervention. In agreement with many other 
publications, we find, of course, that no matter how imperfect, the adoption of PIs reduces the circulation of an 
infectious disease with respect to the case of no adoption, and that a higher efficiency at the individual level guar-
antees a higher protection for the whole community. Surprisingly, however, we find that interventions protecting 
the adopter (SELF PIs) or interventions protecting mostly contacts of the adopter (OTHER PIs) have not the 
same effect, even for equal efficacy of the individual intervention. SELF PIs turn out to reduce more the overall 
incidence of the infection and to “flatten the curve” more efficiently, i.e., they reduce more drastically the peak 
value of the number of individuals simultaneously infected. Although we have focused on purely SELF ( αo = 1 , 
αi < 1 ) and purely OTHER ( αo < 1 , αi = 1 ) interventions, the same picture applies when SELF (OTHER) PIs 
provide some small level of protection also in the other direction, i.e. αi ≪ αo ( αi ≫ αo ), respectively. Our 
results are presented in terms of a mean-field theory for the simple SIR and SIS models of disease propagation 
in homogeneous networks, that can be readily extended to heterogeneous contact patterns (see Supplementary 
Information), and are backed up with numerical simulations. Additionally, we consider a SEIR model, often 
used for COVID-19 analyses and estimations, on an empirical network representing contact patterns in the city 
of Portland. This last analysis allows us to confirm the expected effect of the different kinds of PIs in a realistic 
scenario. Our results can be interpreted in the framework of the general theory for heterogeneous agents put 
forward by  Miller34, predicting that control strategies having a heterogeneous impact on susceptibilities are more 
effective in reducing epidemic size while strategies with heterogeneous impact on infectivities reduce more the 
probability of large outbreaks.

What causes the difference between the performance of the SELF and OTHER strategies? To investigate this 
issue we considered a system where the choice of the PI is not individual-based, but contact-based: in other 
words, βij is still a quenched random variable given by (1), but the variables mi and mj are extracted independently 
for each edge. Hence, considering the example of mask wearing, an individual i can use a mask when interact-
ing with contact j1 and not use it when interacting with contact j2 . In such a case (see Supplementary Fig. SF5) 
SELF and OTHER scenarios give exactly the same results. Therefore asymmetry arises at the community level 
only if each individual consistently adopts (or does not adopt) the protecting intervention in every interaction.

Figure 4.  SEIR dynamics on the Portland network. (a) I vs t for a single run; (b) Distribution of the fraction 
R of recovered people in the asymptotic state for 100 runs in each of the 4 scenarios; (c) Distribution of the 
maximum fraction Im of simultaneously infected people for 100 runs in each of the 4 scenarios.
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Concerning the example of masks, our results place a strong question mark on policies adopted to curb the 
diffusion of COVID-19. During the initial stages of the pandemic, concerns were raised about the use of valved 
masks, as it was argued that they do not protect  contacts38. This led to advice against their use by the World 
Health Organization (WHO)39 and the Centers for Disease Control and Prevention (CDC)40, and to outright 
bans in some  cities41 and in major US  airlines42. At the same time the usage of masks protecting contacts of the 
wearer has been encouraged. As we have shown, unless effective masks providing protection in both directions 
can be widely used, it is better to adopt SELF (valved) masks to maximally reduce the impact of the disease at 
the population level.

This global effect is not the only argument pushing to reconsider this type of policies. Another compelling 
reason has to do with the utility of single individuals. The usage of PIs can be imposed by ordinances issued by 
the government, but the adoption of individual PIs, even if policed by authorities, always involves a personal 
choice. As shown above, the adoption of an intervention that protects only the contacts of the adopter ( αi = 1 ) 
does not imply any direct utility for the adopter: The probability to be eventually infected is exactly the same for 
adopting and nonadopting persons. On the other hand, adopting an intervention (for example wearing a mask) 
is a burden, so that the net direct utility for adopting an OTHER PI is negative. A positive overall payoff for the 
individual adopting an OTHER PI can be obtained only if many people cooperate so that the common good is 
achieved, overcoming the inconvenience implied by the adoption. Thus OTHER PIs are both less effective at the 
population level and less likely to be adopted at the individual one. No such barrier to adoption exists for self-
protecting (SELF) PIs: In such a case it is not only beneficial at the collective level, but also in the selfish interest 
of each individual to adopt a protecting intervention. Hence, we conjecture that the overall higher effectiveness 
of self-protecting interventions at the community level will be further enhanced by the fact that they are more 
likely to be spontaneously adopted.

Methods
Mean‑field theory for the SIR model. In the case of a homogeneous network, with all nodes sharing the 
same degree k = K , a mean-field approximation considers that all nodes with the same PI state are equivalent, 
and therefore we can characterize the dynamics by the probability that a node in a given PI state (adopter, nona-
dopter) is in the compartment S, I, or R. Under these conditions, the dynamics of the network is defined by the 
set of probabilities

that an individual in the PI state a, taking values a = 1 (adopter) and a = 0 (nonadopter), is infected, susceptible 
or recovered, respectively. In a population of fixed size, these sets of probabilities are subject to the normaliza-
tion condition

The mean-field equations for the system are constructed by considering the contacts that can change the number 
of infected individuals in each PI state. Thus, the rate equation for the number of removed individuals takes the 
form

for all PI states. For the density of infected adopting individuals, we can  write30,32

In this equation, the first term considers the decay to the recovered state with rate µ . The second term considers 
the probability of a new infection along a given edge, that is proportional to the density of susceptible adopting 
individuals, and the probability that the edge points to an adopting infected individual (with probability f), which 
will lead to an effective infection rate βαiαo , or to an infected nonadopting individual (with probability 1− f  ), 
associated to an effective infection rate βαi . The term K − 1 takes into account that infected individuals have at 
most only K − 1 edges available to propagate the infection, since one is used up by the neighbor that induced 
their infection. Rescaling time by µ , we can write

where � = β/µ and we have defined

From here, the rate equation for adopting susceptible individuals is

Finally, for nonadopting individuals, we can write

(7)Ia, Sa, Ra,

(8)Ia + Sa + Ra = 1.

(9)
dRa

dt
= µIa,

(10)
dI1

dt
= −µI1 + (K − 1)S1

[

fI1βαiαo + (1− f )I0βαi
]

.

(11)
dI1

dt
= −I1 + �αi(K − 1)S1θ ,

(12)θ = f αoI1 + (1− f )I0.

(13)
dS1

dt
= −�αi(K − 1)S1θ .
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From the general Eq. (9), considering that µ is absorbed into the time rescaling, we have

and from Eqs. (13) and (15),

where φ(t) =
∫ t
0
θ(t ′)dt′ can be written as

and where we assume an initial condition given by a vanishing fraction of infected individuals.

Threshold evaluation. To estimate the value of the threshold, we consider the final outbreak size, given by the 
number of removed individuals at time t → ∞ . Since Ia(∞) = 0 , we have from the normalization condition, 
Eq. (8), Ra(∞) = 1− Sa(∞) . In this infinite time limit, defining φ∞ ≡ φ(∞),

A non-zero solution is obtained when d�(φ∞)
dφ∞

∣

∣

∣

φ∞=0
≥ 1 , leading to the threshold condition � > �c to observe a 

finite outbreak, with

Behavior close to the threshold. In the limit � → �
+
c  , we have that Ra(∞) and φ∞ are both small. From Eq. (19), 

performing an expansion for small φ∞ up to second order, we can solve it and obtain

where � = �− �c is the distance to the critical threshold. For the total prevalence, R∞ = fR1(∞)+ (1− f )R0(∞) , 
using Eq. (17) and the normalization condition, we can write

where the have expanded the exponential factors to leading order. Combining Eqs. (23) and (22), we finally 
obtain the total prevalence close to the threshold

Relation between R0(∞) and R1(∞). Taking the limit t → ∞ in (17) and eliminating φ∞ we obtain S1 = Sαi0  , 
from which, using the condition Ra(∞) = 1− Sa(∞) , we arrive at

Initial time behavior. To estimate the initial time behavior of the epidemic outbreak, we consider the limit of a 
very small density of infected individuals. Linearizing the corresponding equations, we have

Using these expressions in Eq. (12), we have

(14)
dI0

dt
=− I0 + �(K − 1)S0θ ,

(15)
dS0

dt
=− �(K − 1)S0θ .

(16)Ra(t) =

∫ t

0

Ia(t
′)dt′,

(17)S1(t) = e−�(K−1)αiφ(t), S0(t) = e−�(K−1)φ(t),

(18)φ(t) = f αoR1(t)+ (1− f )R0(t),

(19)φ∞ =f αoR1(∞)+ (1− f )R0(∞)

(20)=f αo[1− e−�(K−1)αiφ∞] + (1− f )[1− e−�(K−1)φ∞] ≡ �(φ∞).

(21)�c =
1

(K − 1)
[

f αiαo + 1− f
] .

(22)φ∞ ≃
2�

�3c (K − 1)2

1

f αoα
2
i + 1− f

,

(23)
R∞ =f [1− e−�(K−1)αiφ∞] + (1− f )[1− e−�(K−1)φ∞]

≃�(K − 1)[f αi + 1− f ]φ∞,

(24)R∞ ≃
2�

�2c (K − 1)

f αi + 1− f

f α2
i αo + 1− f

.

(25)R1(∞) = 1− [1− R0(∞)]αi .

(26)İ1 ≃− I1 + �(K − 1)αiθ ,

(27)İ0 ≃− I0 + �(K − 1)θ .
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Defining the characteristic time scale

the solution for θ is

Using these expressions, we can integrate Eqs. (26) and (27) to obtain

while the total incidence I(t) = fI1(t)+ (1− f )I0(t) has the form

For the initial condition, let us consider that a randomly chosen node is initially infected. In this case, 
Im(0) = I0(0) = 1/N , and therefore

Therefore

Phenomenology of the SIR model in finite networks. Two types of outbreaks. Starting from a single 
infected node, outbreaks can develop in two qualitatively different  ways43. Some of them die after a few infection 
events; others instead survive much longer and affect an extensive fraction of the individuals. This is reflected in 
the distribution of outbreak sizes, which has two components. For small values of � only the small component 
exists, made up by short-lived small outbreaks and weakly depending on N. For large values of � also the second 
component exists, peaked around a size proportional to N. The epidemic threshold marks the birth of the large, 
extensive component. This distinction is exactly defined only in the thermodynamic limit (indeed the threshold 
is properly defined only in this limit), but it is operatively meaningful also for finite, but large, size N. The fraction 
of outbreaks belonging to the large component is the probability Ps that an extensive outbreak emerges. It is zero 
below the threshold and grows with � > �c above it. The average size of extensive outbreaks R∞ (i.e. the average 
value calculated only for the large component) is another observable that is zero up to �c and grows with � . For 
epidemics on undirected networks the two quantities  coincide43. On directed networks (such as the effective 
networks over which the epidemic spreads if PIs are used) they are in general  different34,44.

By construction, the mean-field approach on  networks30,43 deals only with extensive outbreaks in an infinite 
size system. Hence the quantity R∞ computed above has to be compared with the average size of macroscopic 
outbreaks, which must be defined, in simulations, as outbreaks larger than a given fraction of the whole system. 
We take this fraction to be 0.01. Clearly only for N → ∞ and sufficiently far from the transition point, results 
are independent from the choice of this fraction.

Temporal evolution. For simulations in finite systems starting with a single infected node, one must take into 
account that the exponential growth is preceded by a regime dominated by stochastic fluctuations, whose dura-
tion has quite large variations depending on the realization of the process. Only when a sufficiently large fluctua-
tion in the number of infected nodes I(t) is generated, exponential growth is triggered. Averaging at fixed time 
the value of I(t) over many such realizations leads to a spurious bending as a function of time. Moreover, the 
duration of the initial stochastic regime (and hence the size of the spurious bending) is different in the various 
scenarios, further complicating the analysis. To overcome these difficulties, as it is customary, we start from 
a larger number of initial infected nodes, namely 50, so that the initial regime dominated by fluctuations is 
strongly suppressed.

Mean‑field theory for the SIS model. The mean-field equations for the SIS model in a homogeneous 
network of degree ki = K depend only on the densities of infected adopting and nonadopting individuals Ia , 
and take the  form30,32

(28)θ̇ = f αo İ1 + (1− f )İ0 ≃ −θ +
�

�c
θ .

(29)τ =
�c

�− �c
,

(30)θ(t) = θ(0)et/τ .

(31)I1(t) ≃�c(K − 1)αiθ(0)e
t/τ

(32)I0(t) ≃�c(K − 1)θ(0)et/τ ,

(33)I(t) ≃ �c(K − 1)
[

f αi + 1− f
]

θ(0)et/τ .

(34)θ(0) =
1

N

[

f αo + 1− f
]

.

(35)I(t) ≃
�c(K − 1)

N

[

f αi + 1− f
][

f αo + 1− f
]

et/τ .

(36)İ1 =− I1 + (1− I1)�Kαiθ

(37)İ0 =− I0 + (1− I0)�Kθ ,
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with

Threshold evaluation. We can compute the threshold �c by performing a linear stability analysis around the 
solution Ia = 0 , corresponding to the healthy, non-endemic state. The Jacobian matrix of Eqs. (36) and (37), 
evaluated at the origin, is

whose associated eigenvalues are �1 = −1 and �2 = −1+ �K(f αiαo + 1− f ) . The healthy state becomes 
unstable when the largest eigenvalue becomes positive, that is, −1+ �K(f αiαo + 1− f ) > 0 . This defines the 
threshold �c , given by

such that for � > �c there is a steady infected state with a non-zero prevalence.

Behavior close to the threshold. For homogeneous networks of degree K, the steady state condition İa = 0 trans-
lates into the relations

Inserting these into the definition of θ , Eq. (38), we obtain the self-consistent equation

Equation (43) can be solved close to the threshold, in the limit of small θ , performing a Taylor expansion up to 
second order, which leads to the solution

Using the lowest order approximation I1 ≃ �Kαiθ and I0 ≃ �Kθ , the final steady state prevalence 
I = fI1 + (1− f )I0 takes the form, close to the threshold

in close analogy to the SIR result in Eq. (24).

Initial time behavior. It is easy to see that the initial time behavior of the SIS model is described by the same 
equations as the SIR case, simply replacing the factor K − 1 by K. Therefore, the time initial time evolution of an 
outbreak initiated by a randomly chosen node takes the form, as Eq. (35),

Details on the network and the epidemic model for COVID‑19. We consider as the contact pattern 
for the SEIR dynamics the static contact network determined in Ref.36 for the city of Portland, Oregon, before 
social distancing measures were enacted. The network has N = 214,393 nodes and M = 1,538,092 edges, so that 
the average degree is �k� = 14.4 . Further details on network statistics can be found in the original publication. 
The network is undirected and weighted, with each contact weighted according to its duration.

On top of this network we perform simulations of the SEIR epidemic model in continuous time, using the 
Gillespie algorithm. The model is characterized by three parameters. An exposed node E spontaneously becomes 
infectious (I) at a rate α , while the transition between the infectious state I to the recovered state R occurs spon-
taneously at rate µ . In the absence of PI, an infectious node i transmits the infection to a susceptible neighbor j 
at a rate βwij where wij is the weight associated to the network edge. In the presence of PIs this quantity is further 
modified as in Eq. (1). The values of the parameters are the same calibrated for COVID-19 in Ref.36: α = 1/3 , 
ν = 1/14 , β = 1.337 . The initial condition for simulations is that a fraction 10−3 of the individuals is infected 
and the rest is susceptible.

(38)θ = f αoI1 + (1− f )I0.

(39)J =

(

−1+ �Kf αiαo �K(1− f )αi
�Kf αo �K(1− f )

)

,

(40)�c =
1

K

1

f αiαo + 1− f
,

(41)I1 =
�Kαiθ

1+ �Kαiθ
,

(42)I0 =
�Kθ

1+ �Kθ
.

(43)θ =
�Kf αiαoθ

1+ �Kαiθ
+

�K(1− f )θ

1+ �Kθ
.

(44)θ ≃
�

�3cK
2

1

f αoα
2
i + 1− f

.

(45)I ≃
�

�2cK

f αi + 1− f

f αoα
2
i + 1− f

,

(46)I(t) ≃
�cK

N

[

f αi + 1− f
][

f αo + 1− f
]

et/τ .
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The datasets used and/or analysed during the current study are available from the corresponding author on 
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