
MethodsX 10 (2023) 102072

Contents lists available at ScienceDirect

MethodsX

journal homepage: www.elsevier.com/locate/mex

Method Article

Automating mosquito taxonomy by compressing and enhancing a

feature fused EfficientNet with knowledge distillation and a novel
residual skip block

Francis Jesmar P. Montalbo

College of Informatics and Computing Sciences, Batangas State University, Batangas City, Batangas, Philippines

a r t i c l e i n f o

Method name:

Compression and Enhancement of an
Automated Deep Learning model for Mosquito
Taxonomy

Keywords:

Deep learning
Convolutional Neural Networks
Transfer Learning
Fine-Tuning
Feature Fusion
Residual Learning
Efficientnet
Entomology

a b s t r a c t

Identifying lethal vector and non-vector mosquitoes can become difficult for a layperson and
sometimes even for experts, considering their visual similarities. Recently, deep learning (DL)
became a solution to assist in differentiating the two mosquito types to reduce infections and
enhance actions against them. However, the existing methods employed to develop a DL model
for such a task tend to require massive amounts of computing resources and steps, making them

impractical. Based on existing methods, most researchers rely on training pre-trained state-of-the-
art (SOTA) deep convolutional neural networks (DCNN), which usually require about a million
parameters to train. Hence, this method proposes an approach to craft a model with a far lower
computing cost while attaining similar or even significantly better performance than pre-existing
models in automating the taxonomy of several mosquitoes. This method combines the approach
of layer-wise compression and feature fusion with enhanced residual learning that consists of a
self-normalizing activation and depthwise convolutions.

• The proposed method yielded a model that outperformed the most recent and classic state-
of-the-art deep convolutional neural network models.

• With the help of the modified residual block and knowledge distillation, the proposed method
significantly reduced a fused model’s cost while maintaining competitive performance.

• Unlike other methods, the proposed method had the best performance-to-cost ratio.
Specifications table

Subject Area Computer Science

More specific subject area: Deep Convolutional Neural Networks and Entomology

Method name: Compression and Enhancement of an Automated Deep Learning model for Mosquito Taxonomy
Name and reference of
original method:

This proposed method has several techniques combined, cited accordingly within the method article.

Resource availability: The resources needed to reproduce this article can be found on the link below. The link provides all source codes and the
dataset.
https://github.com/francismontalbo/mosquito _ kd _ 2021
DOI of original article: 10.1016/j.asoc.2022.109913
E-mail addresses: francismontalbo@ieee.org , francisjesmar.montalbo@g.batstate-u.edu.ph

https://doi.org/10.1016/j.mex.2023.102072
Received 9 January 2023; Accepted 8 February 2023
Available online 10 February 2023
2215-0161/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.mex.2023.102072
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mex
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mex.2023.102072&domain=pdf
https://github.com/francismontalbo/mosquito_kd_2021
https://doi.org/10.1016/j.asoc.2022.109913
mailto:francismontalbo@ieee.org
mailto:francisjesmar.montalbo@g.batstate-u.edu.ph
https://doi.org/10.1016/j.mex.2023.102072
http://creativecommons.org/licenses/by/4.0/

F.J.P. Montalbo MethodsX 10 (2023) 102072

Method details

In our advancing world, various disciplines deem Deep Convolutional Neural Network (DCNN) models as one of the leading
solutions to solve problems automatically. Based on most research, DCNN models have shown tremendous performance in doing
classifications across various image data [1] . However, such benefits come with a price, as most DCNN models performing non-trivial
tasks with limited data tend to rely on large and complex architectures. These traits made DCNNs challenging to produce and deploy
in some areas with inadequate computing power [2] . The reason for DCNNs’ lengthy and broad network architecture lies in their
goal of classifying thousands of classes with millions of images [3] . However, based on recent research papers, most researchers only
use DCNN models to classify samples below the said numbers, with only a few classes of < 100. In some cases, they even use them for
binary classifications with only a few samples of < 10 K per class. Hence, making them considerably costly for such tasks [4–8] .

Currently, one of the most used methods to reduce the cost of DCNNs and make them operate with custom datasets is via transfer
learning (TF) and fine-tuning (FT) [9] . TL transfers specific pre-trained weights from the ImageNet dataset to a specific DCNN. In
common practice, DCNNs that receive pre-trained weights require FT to make them accustomed to the dataset of choice. As observed
in most recent studies, DCNN models that acquired TL and FT specifically for the identified task usually show better performance
even with fewer parameters. The reduction occurs due to the irrelevant upper layers or head and neural network layers extracted
that contain the previously labeled weights from ImageNet [10] . Though TL and FT solved the problem of training DCNN models for
a specific task with less cost, most still tend to consist of millions of parameters [11] . Due to DCNNs’ recent popularity and ability
to perform automated classifications, research studies began to utilize them to decipher challenging tasks correlated to mosquito
taxonomy. In one study, Park et al. used a DL model to mechanize the taxonomy of six classes of mosquito species [12] . Their study
trained a state-of-the-art (SOTA) DCNN model called VGG16 using a portion of their mosquito dataset of ≈3600 images. According
to their results, their VGG16 model attained an accuracy of 97.74%. Though they achieved such a feat, their model required about
138 M parameters to train, making it relatively inefficient for low-end devices. On the other hand, though they considered cheaper
models like ResNet50 with 25 M and SqueezeNet with 1.23 M parameters, they had lower accuracies, as they only attained 96.86%
and 90.71%, respectively. Fortunately, other researchers set out to study how they can further decrease the cost of DCNN models
without sacrificing a substantial fraction of their performance toward a particular task.

In a distinguished study by Das et al., aside from TL and FT, they further reduced the cost of their DCNN model by trimming
some of its layers. Upon evaluation, they observed that their selected DCNN model, InceptionV3, which had lesser parameters and
layers after truncation, still performed satisfactorily side-by-side with a typical FT InceptionV3. In conclusion, they discovered that
vast and complex DCNN models do not wholly need all their layers when training with smaller datasets than ImageNet [13] . In the
following study, Montalbo, F. J. P., also had a model condensed but at the same time fused to supply additional features that can
boost performance despite the reduced feature-generating layers. The study revealed that a layer-wise fusion of features effectively
increases the number of features without extending the number of parameters in the DCNN model [14] . Though the mentioned studies
shrank the length and expense of DCNNs, they did not employ other possible compound advances to expand a DCNN’s performance
further.

With the identified problems and existing methods mentioned regarding cost reduction, this method proposes to craft a less costly
DCNN model that can run radically better than most existing solutions. Like Park et al.’s study, this method aims to automate the
taxonomy of mosquitoes, including lethal vectors and non-vector. This method can assist laypersons and even experts in identifying
mosquitoes correctly without needing a cumbersome model. Offering such can flourish awareness, avert unwanted infections, and
better actions toward protection and extermination. Aside from usual TL, FT, feature fusion, and model compression, it is worth men-
tioning that this method invokes Knowledge Distillation (KD), self-normalization, and Depthwise Convolutions (DWConv), expounded
in subsequent sections of this article.

Improving cost-efficiency

The first step of the proposed method focuses on building a compact model that will receive the distilled knowledge from a more
cumbersome teacher model about various mosquito classes. However, due to the vast possibilities and undefined approach to finding
the best teacher model, this method reviewed well-known state-of-the-art (SOTA) DCNN models that suit this method’s needs. Upon
review, it shows that EfficienNet embodies the most relevant characteristics of the proposed method.

According to the specification of EfficientNet, its structure focuses on employing lighter convolutions (Conv) in the form of an
inverted bottleneck residual block or MBConv, equipped with a squeeze-and-excitation block (SEBlock) [15–16] . Fig. 1 illustrates
the said MBConv with two versions used by the EfficientNetB0. Based on the figure, it contains a series of layers that produces the x
features using a specific k × k kernel that convolves over a H × H sized image, divided by a specific stride value of /2. The following
includes a 3 × 3/2 Conv, Batch Normalization (BN), Swish activation function, and 3 × 3/1 DWConv, arranged in the given order.
The upper layers of an MBConv-A have a connection pattern of a 3 × 3/2 Conv → BN → Swish → 3 × 3/1 DWConv → BN → Swish
that connects to the SEBlock. The SEBlock uses a skip connection composed of Global Average Pooling (GAP) [17] , a 1 × 1/1 Conv,
or a Pointwise Conv (PWConv) activated by Swish [18] and another PWConv with sigmoid [19] . These last layers then enter an
element-wise multiplication ⊗ together with a Swish activation function.

The base EfficientNetB0 model, or the lightest in the family of EfficientNets, roughly consists of 5 M parameters. As stated,
it can effortlessly scale based on its feature depth and spatial dimensions, shifted by incrementing its composite coefficient [20] .
However, considering its cost-efficiency, the given parameters can still become costly at certain times. Therefore, this method proposes
2

F.J.P. Montalbo MethodsX 10 (2023) 102072

Fig. 1. Inverted bottleneck residual block or MBConv of EfficientNet.

Fig. 2. The Compressed EfficientNet (CEN) architecture.

employing a layer reconstruction method to remove most of its layers and produce a compressed version. It is worth mentioning that
other sections of this proposed method will provide the handling of certain drawbacks caused by this truncation method.

As illustrated in Fig. 2 , the compressed EfficientNet (CEN) architecture takes only the core entry block of the original Efficient-
NetB0, making it far lighter and shorter than its original form but still retains its initial core feature generating layers, the MBConvs.
After the layer compression, the initial parameters of the EfficientNetB0 went down from 5 M to only 20 K, showing a drastic change
in complexity and cost.

Expanding features

Considering the reduced number of layers, CEN can experience an adverse effect of reduced performance. Hence, the second
step of this method follows with a feature fusion to re-increase the depth of features without re-elongating the end-to-end network
architecture, as illustrated in Fig. 3 .

Based on the illustration, a CEN m

model takes an input x from an image with a H × H spatial dimension to produce its F m

u features.
As mentioned, these features can become insufficient after compression due to the fewer layers that handle them. In this method,
feature fusion became a way to alleviate this problem. The proposed method had a mirror CEN m

model that stochastically generates
another set of F m

u from the same x input, yielding F 1 model and F 2 model . In Eq. (1) , feature fusion occurs by having an element-wise
addition function

⨁
, which adds both feature sets to produce a new set of x fused inputs from the fused CEN (FCEN) for the next layer

[21] .

𝑥 𝑓𝑢𝑠𝑒𝑑 = 𝐹 1
𝑚𝑜𝑑𝑒𝑙

(𝐻 ×𝐻) ⊕ 𝐹 2
𝑚𝑜𝑑𝑒𝑙

(𝐻 ×𝐻) (1)

Implementing skip connections

The inadequacy of data and the robustness of fused features can potentially lead to overfitting [22] . Therefore, the proposed
method also considered residual learning to handle the fused features x fused from the FCEN model to alleviate the problem and
3

F.J.P. Montalbo MethodsX 10 (2023) 102072

Fig. 3. The fused Compressed EfficientNet (FCEN) architecture.

Fig. 4. The modified residual skip block (MRSB) compared with the ResNet blocks.

simultaneously produce better performance [23] . Fig. 4 illustrates the modified residual skip block (MRSB) of the proposed method
side-by-side with the original ResNet and ResNetV2 blocks for differentiation. Unlike ResNets, which uses the standard rectified
linear units (ReLU) as activations within its residual mechanisms, this proposed method utilizes SeLU to integrate self-normalizing
properties into the fused network [24] . In addition, due to the expense of multi-stacked Conv layers. This method relied on a lighter
1 × 1 DWConv layer with a depth of 1 or Ψ, defined in the following equations. The altered arrangement also aims to provide better
gradient flow while being more cost-efficient.

Based on the presented adaptation of an MRSB, the following explains additional details about its purpose and how it can deliver
better performance with less costly production. Eq. (2) indicates how the residual map R map gets produced. As denoted, the { 𝜔 j }
weighted r layers within the MRSB produce the R map using a residual function  [25] .

𝑅 𝑚𝑎𝑝 = 

(
𝑟,
{
𝜔 𝑗

})
+ 𝑟 (2)

Adding self-activating layers

In (3), the  function activates the weighted 𝜔 j r layers with SeLU, visualized in Fig. 5 (a), to produce the desired R map , where the
proposed method used the SeLU activation as its core activation function.

 = 𝜔 𝑗 𝑆𝑒𝐿𝑈
(
𝜔 1 𝑟

)
(3)

For better reasoning as to why this method used SeLU, (4) defines the ReLU activation function based on a simple function
ReLU = max(0, x). According to the piecewise function, ReLU bases its actions on a feature’s value, whether it gets maxed out to a
non-zero value or reduced to a zero value, which can sometimes lead to a loss of information [26] .

𝑅𝑒𝐿𝑈 (𝑥) =

{

𝑥 = 𝑥, 𝑖𝑓 𝑥 > 0
𝑥 = 0 , 𝑖𝑓 𝑥 ≤ 0 (4)
4

F.J.P. Montalbo MethodsX 10 (2023) 102072

Fig. 5. Difference between SeLU (a) and ReLU (b) activation plots.

ReLU, as shown in Fig. 5 (b), recently built its credibility in DL due to its performance against the “vanishing and exploding ” gradient
problem. However, ReLU does not include self-normalization properties and regularization, making it prone to the mentioned problem

if the model does not receive enough feature values due to the lack of data. Therefore, SeLU became the choice for this method, as
it tends to accommodate a small dataset with < 10 K samples and has a shorter set of processes to produce more features. In (5),
SeLU uses constant parameters 𝛽=≈1.6732 and 𝜆=≈1.0507 that handle the self-normalization of features and preserve their variance
to a [0, 1] range [27] . Such an approach strongly regularizes the flowing gradients compared to a ReLU function while preventing
information loss.

𝑆𝑒𝐿𝑈 (𝑥) = λ
{

𝑥 = 𝑥, 𝑖𝑓 𝑥 > 0
𝑥 = 𝛽𝑒𝑥𝑝 𝑥 − 𝛽, 𝑖𝑓 𝑥 ≤ 0 (5)

Reducing parameters

This section exemplifies the difference between conventional Conv layers and DWConv layers. Considering that the proposed
method incorporated an MRSB, its composition is one of its cost-reducing factors. As previously shown, the MRSB does not rely on a
typical Conv layer. Instead, it generates the R map with DWConv and a PWConv in its r layers.

Eq. (6) presents how a Conv layer produces feature maps within a model F u model . Having an x input with an equal spatial dimension
of H F

2 and C takes in a k × k kernel K that convolves with a specific stride value of ≥ 1. After completing the Conv process over the
entire network, a Conv feature H K × H K × C × C

’ gets produced as Conv out , where C’ represents the output channel [28] .

𝐶 𝑜𝑛𝑣 𝑜𝑢𝑡 =

∑
𝐾

(
𝐶 , 𝐶 ′

)
× 𝐹 𝑢

𝑚𝑜𝑑𝑒𝑙
(6)

Considering the previous equation, (7) presents how complex and costly Conv layers could become [28] .

𝐻

2
𝐾
× 𝐶 × 𝐶 ′ ×𝐻

2
𝐹

(7)

Based on how the Conv operation produces a feature map, the DWConv splits the operation into two sections. First, the DWConv
performs its channel-wise extraction with a PWConv that uses Pw , which serves as its K with an equal spatial dimension of 1. The
channel-wise features then get stacked in as a 3D tensor. Secondly, the DWConv summates all the extracted channel-wise features
(8). This approach permits the DWConv to capture pointwise features with fewer calculations when producing feature inputs but
requires additional processing time.

𝐷𝑊 𝐶 𝑜𝑛𝑣 𝐶=
∑
𝐾 (𝑃 𝑤, 𝐶) × 𝐹 𝑢

𝑚𝑜𝑑𝑒𝑙
(8)

Due to the reduced calculations from the DWConv, (9) shows how it simplified and lessened the cost of producing feature maps.
Based on a study, the DWConv can reduce a Conv layer’s cost by ≈ × 9 [28–29] .

(
𝐻

2
𝐾
× 𝐶 ×𝐻

2
𝐹

)
+

(
𝐶 × 𝐶 ′ ×𝐻

2
𝐹

)
𝐻

2
𝐾
× 𝐶 × 𝐶 ′ ×𝐻

2
𝐹

=

1
𝐶 ′

+

1
𝐻

2
𝐹

(9)

From a more visual standpoint, Fig. 6 presents the differences between a Conv, DWConv, and PWConv layer. Observably, the Conv
layer focuses on extracting features from the entire image dimension and its depth, while DWConv only focuses on depth or filter.
On the other hand, the PWConv only uses a 1 × 1 K to go over the entire spatial dimension of the image, conserving parameters but
may take more extended periods to finish.
5

F.J.P. Montalbo MethodsX 10 (2023) 102072

Fig. 6. Differences between standard, depthwise, and pointwise convolutions.

Fig. 7. Transferring ImageNet weights and fine-tuning the network to learn the mosquito classes.

Transfer learning and fine-tuning

Due to the core architecture of this method being EfficientNet, TL became possible. As mentioned, TL provides the model an added
leverage to learn pre-trained features from the ImageNet database. However, learning those features can delineate the model away
from the target mosquito classes. Therefore, FT became a vital factor in taking advantage of the pre-trained weights to become of
use.

As illustrated in Fig. 7 , this proposed method had both CEN 1 and CEN 2 receive the pre-trained weights separately from ImageNet
via TF. Together with FT, both models had additional layers, including a GAP, dense neurons of 6 representing the classes of interest,
and a softmax activation to extract the initial logits needed for KD. On the other hand, the teacher model also received the same
treatment when it had its logits extracted for KD.

Distilling knowledge

In this proposed method, the FCEN with an MRSB did not solely undergo the conventional training approach. Instead, it received
distilled knowledge via KD from a SOTA teacher model with the highest overall accuracy in identifying the mosquito species from
the source dataset.

During KD, the process utilizes a modified softmax Q shown in (10). As denoted, the function incorporates a temperature parameter
𝜏, where if a student uses the modified softmax with a value > 1, it generates the student’s logits L s . On the other hand, setting the 𝜏
value to 1 returns the softmax function to its original state that generates the teacher’s logits L t [30–31] . This proposed method used
a value of 𝜏 > 1 when conducting KD and a value of 1 during FT.

𝑄 (𝜏) =

𝑒𝑥𝑝
(
𝐿 𝑡 ∕ 𝜏

)
∑
𝑠 𝑒𝑥𝑝

(
𝐿 𝑠 ∕ 𝜏

) (10)

After both models had produced their logits, they also generated their respective predictions. The teacher model used L t to produce
its predictions, referred to as soft labels 𝜃i . At the same time, the student used L s to generate its soft predictions 𝛿i . Due to the student
training with a standard softmax 𝜏= 1, using G samples and labels from the prepared mosquito dataset, the proposed method produces
the hard predictions P .
6

F.J.P. Montalbo MethodsX 10 (2023) 102072

Fig. 8. The knowledge distillation approach.

However, for the KD model to produce its final predictions, it requires the total loss Total loss from both the teacher and student.
Therefore, the teacher and student must first produce their respective loss scores using specific loss functions to produce the final
predictions. KD refers to these losses as soft loss Soft Loss and hard loss Hard Loss [32] .

In (11), the teacher model uses the Kullback-Leibler loss function (KL Loss) [33] to define the difference between the predictions
from the teacher’s 𝜃i and the student’s 𝛿i to produce Soft Loss . The N denotes the number of classes, and i denotes the first label instance
of the mosquito dataset.

𝑆𝑜𝑓𝑡 𝐿𝑜𝑠𝑠 =

𝑁 ∑
𝑖 =1
𝐾𝐿 𝐿𝑜𝑠𝑠

(
𝜃𝑖 , 𝛿𝑖

)
(11)

To produce the Hard Loss in (12), the student model takes the predictions P and maps it with ground truth labels G produced
from the modified softmax 𝜏> 1. The Hard Loss uses a standard categorical-cross entropy loss CCE Loss [34] with labels set to > 2, as the
proposed method has six classes.

𝐻𝑎𝑟𝑑 𝐿𝑜𝑠𝑠 =

𝑁 ∑
𝑖 =1
𝐶 𝐶 𝐸 𝐿𝑜𝑠𝑠

(
𝑃 𝑖 , 𝐺 𝑖

)
(12)

With both losses produced, the KD model computes the Total loss, generating the final predictions. The Total loss utilizes a specific
balancing parameter 𝛼 to adjust the weights between the teacher and student, reducing the superiority of one model over the other.
In (13), it shows that the Total Loss is the sum of the weighted Soft Loss × (1- 𝛼) and the Hard Loss × 𝛼.

𝑇 𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 = 𝑆𝑜𝑓𝑡 𝐿𝑜𝑠𝑠 × (1 − 𝛼) + 𝐻𝑎𝑟𝑑 𝐿𝑜𝑠𝑠 × 𝛼 (13)

For a better overview, this method illustrates the KD process in Fig. 8 . The process begins by training the teacher model with the
prepared mosquito dataset using a standard softmax function to produce the soft labels. On the other hand, the student trains with
the modified softmax function with a 𝜏> 1 and a standard softmax with 𝜏= 1, producing soft and hard predictions, respectively . Both
models then calculated the losses between their ground truth labels and predictions using the defined loss functions, producing the
Total Loss or the final predictions of the KD model.

Method validation

As mentioned, the proposed method aims to deliver a better solution by having a lightweight model that can accurately classify
specific mosquito species. However, the method must present validatable results to justify whether it achieved such a feat. Therefore,
in Table 1 , using commonly used metrics like accuracy, precision, recall, and f1-score, this method calculates and compares the
performance of the produced model against well-known SOTA models [35] .

In addition, this article also presents the calculated Floating-Point Operations per second (FLOPs) to highlight the cost-efficiency
of the model produced by this method. Eq. (14) presents the FLOPs calculation for the upper feature extraction layers of the model
[36] .

𝐹 𝐿𝑂𝑃 𝑠 = 𝐻

2 (𝐶 ×𝐾 + 1) 𝐶 ′ (14)
7

F.J.P. Montalbo MethodsX 10 (2023) 102072

Table 1

Evaluation metrics.

Metric Equation Description

Accuracy (Acc) (𝑇 𝑃 + 𝑇 𝑁)∕(𝐴𝑙 𝑙 𝑠𝑎𝑚𝑝𝑙 𝑒𝑠) Calculates the ratio of all positive and negative predictions over all samples to
identify a model’s overall performance.

Precision (Pr) 𝑇 𝑃∕(𝐹𝑃 + 𝑇 𝑃) Measures a model’s ability to count TP genuinely
Recall (Rc) 𝑇 𝑃∕(𝐹𝑁 + 𝑇 𝑃) Identifies a model’s capacity to justify between positives from actual positives.
F1-Score (F1) 2 × (𝑃𝑟 × 𝑅𝑐)∕(𝑃𝑟 + 𝑅𝑐) Combines the scores of Pr and Rc to calculate the harmonized mean.

Table 2

Specification of the mosquito dataset used by the proposed method.

Class Train Qty. (80%) Validation Qty. (20%) Total Qty (100%)

Non-Vector 480 120 600
Aedes albopictus 480 120 600
Aedes vexans 473 118 591
Anopheles sinensis 485 108 593
Culex pipiens 420 180 600
Culex tritaeniorhynchus 475 119 594
Total 2813 765 3578

Table 3

Hyper-parameters settings for training the teacher candi-
dates and a non-KD student.

Hyper-parameter Value

Batch Size 16
Optimizer Adam

Epochs 30
Learning Rate 0.0001

Table 4

Knowledge distillation hyper-parameters.

KD Hyper-parameter Value

𝜏 2
𝛼 0.3
Learning Rate 0.001

On the other hand, (15) presents the remaining dense connections and classifier, where I denote the calculated upper input layers
up to the output layers O [36] .

𝐹 𝐿𝑂𝑃 𝑠 = (2 𝐼 − 1) 𝑂 (15)

For measuring the model’s performance validity, this method used an open-sourced dataset by Park et al. that contains about 3600
images of mosquitoes classified into five classes [12] . As specified in Table 2 , this method followed the Pareto principle of having
80% of the entire dataset for training, whereas 20% for validating its performance.

For ease of reproduction, Table 3 presents the following hyper-parameters used in this method. Since KD requires a teacher model,
this method trained a list of teacher candidates beforehand. In addition, the student model trained with a standard softmax also used
the presented hyper-parameters. It is worth mentioning that the values can differ depending on the machine. Though arbitrary, the
main factors considered for the selected hyper-parameters lie in the current machine specification of this method that had an RTX
3060 12GB and their commonality with most studies [37] .

Apart from the given hyper-parameters, this method also had additional hyper-parameters specifically for KD, as shown in Table 4 .
During KD, the model performs another training or a distillation stage using the previously presented hyper-parameters but with a
different learning rate. Unlike the teacher model, due to the student model having a lesser end-to-end architecture and complexity,
it used a lower learning rate to prevent inadequate learning within 30 epochs.

As mentioned, several teacher candidates underwent training to become the teacher model. Therefore, this method trained numer-
ous SOTA models utilizing the previously introduced hyper-parameters with the prepared mosquito dataset. Fig. 9 reveals that the
EfficientNetB7 became the predominant model that accomplished the automated taxonomy of the six mosquito species. Considering
the number of recent and classical SOTA models involved, the EfficientNetB7, with an overall Acc of 93.86%, made it the ideal teacher
model for the task.

Using standard metrics for measuring a DL model’s performance, Table 5 presents the performance of the KD model that received
the distilled knowledge from the EfficientNetB7 model during KD. Based on the calculated results, the model trained with this method
8

F.J.P. Montalbo MethodsX 10 (2023) 102072

Fig. 9. The overall performance of each teacher candidate trained on the mosquito dataset.

Fig. 10. Comparison of various models’ performance to the cost ratio trained with the mosquito dataset.

Table 5

Overall performance of the model trained using the proposed method.

Class Validation Samples Acc Pr Rc F1

Non-Vector 120 100% 100% 100% 100%

Aedes albopictus 120 99.74% 100% 98.33% 99.16%

Aedes vexans 118 99.61% 97.52% 100% 98.74%

Anopheles sinensis 108 99.61% 100% 97.22% 98.59%

Culex pipiens 180 99.87% 100% 99.44% 99.72%

Culex tritaeniorhynchus 119 99.61% 97.54% 100% 98.76%

Overall 765 99.22% 99.24% 99.22% 99.22%

9

F.J.P. Montalbo MethodsX 10 (2023) 102072

performed best with a 100% Acc on the non-vector class while having the lowest performance of 99.61% on the Aedes vexans, Anopheles

sinensis, Culex tritaeniorhynchus classes .
After presenting this method’s performance in automating mosquito species taxonomy, it is worth comparing it to a comprehensive

list of SOTA models based on overall Acc , FLOPs, and disk size consumption [38] . As visualized in Fig. 10 , the model trained with
the proposed method achieved the highest overall Acc of 99.22%. Though it did not attain the lowest FLOPs, it still presents the
best cost-to-performance efficiency based on its overall Acc and disk consumption of only 437 KB. Though LeNet5 had the lowest
0.11 GFLOPs, it only had an overall Acc of 86.14% and still consumes about 63 MB of disk space. On the other hand, the model
produced from this method without KD also had a remarkable performance. The non-KD model’s performance attained a 93.73%
Acc , outperforming all the SOTA models except for the teacher model, EfficientNetB7, which had 93.86% Acc .

Conclusion

Putting more awareness on the deployment and cost-efficiency of DL models can make them more adaptable and accessible even
in the least fortunate areas. In this article, a proposed method of performing model compression on a SOTA model like EfficientNet
highly reduced its overall cost. Though it had adverse effects, this method alleviated the lost feature generators by duplicating the
compressed model and performing a layer-wise feature fusion. With the sense of potential overfitting from the shorter network and
robust flowing features, this method also incorporated residual learning and self-normalization in the form of the MRSB activated by
SeLU for added regularization. Based on the results, the model generated from this method trained with six mosquito species attained
an overall performance of 99.22% Acc . In addition, it only consumes 437 KB of disk space and has a remarkable efficiency, as it only
operates with 0.33 GFLOPs.

In conclusion, it shows that the proposed method has better potential to solve the difficulty in mosquito taxonomy better than
most SOTA models that had FT and TL due to its less reliance on massive computing requirements. In addition, this article also
exemplifies the proposed method’s simplicity in yielding a lightweight and rich KD model. Future research can use and evaluate the
method for other computer vision problems.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data Availability

The codes and dataset are included in the article.

Acknowledgements

Francis Jesmar P. Montalbo acknowledges Batangas State University ’s support of this research. Without its support, this work
would not have become possible and achievable.

References

[1] W. Rawat, Z. Wang, Deep Convolutional Neural Networks for Image Classification: a Comprehensive Review, Neural Comput 29 (9) (Sept. 2017) 2352–2449,
doi: 10.1162/neco_a_00990 .

[2] P. Maji, R. Mullins, On the Reduction of Computational Complexity of Deep Convolutional Neural Networks, Entropy 20 (4) (2018) 305, doi: 10.3390/e20040305 .
[3] H.-C. Shin, et al., Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning, IEEE

Trans Med Imaging 35 (5) (May 2016) 1285–1298, doi: 10.1109/TMI.2016.2528162 .
[4] P. Pawara, E. Okafor, M. Groefsema, S. He, L. Schomaker, M. Wiering, One-vs-One classification for deep neural networks, Pattern Recognit 108 (2020) 107528,

doi: 10.1016/j.patcog.2020.107528 .
[5] G. Adhane, M.M. Dehshibi, D. Masip, A Deep Convolutional Neural Network for Classification of Aedes Albopictus Mosquitoes, IEEE Access 9 (2021) 72681–

72690, doi: 10.1109/ACCESS.2021.3079700 .
[6] R. Yamashita, M. Nishio, R. Do, K. Togashi, Convolutional neural networks: an overview and application in radiology, Insights Imaging 9 (4) (2018) 611–629,

doi: 10.1007/s13244-018-0639-9 .
[7] T. Brinker, et al., Skin Cancer Classification Using Convolutional Neural Networks: systematic Review, J. Med. Internet Res. 20 (10) (2018) e11936,

doi: 10.2196/11936 .
[8] J. Barbedo, Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification, Computers and Electronics

in Agriculture 153 (2018) 46–53, doi: 10.1016/j.compag.2018.08.013 .
[9] A. Shabbir, et al., Satellite and Scene Image Classification Based on Transfer Learning and Fine Tuning of ResNet50, Mathematical Problems in Engineering 2021

(2021) 1–18, doi: 10.1155/2021/5843816 .
[10] E. Cetinic, T. Lipic, S. Grgic, Fine-tuning Convolutional Neural Networks for fine art classification, Expert Syst Appl 114 (2018) 107–118,

doi: 10.1016/j.eswa.2018.07.026 .
[11] S. Marrone, C. Papa, C. Sansone, Effects of hidden layer sizing on CNN fine-tuning, Future Generation Computer Systems 118 (2021) 48–55,

doi: 10.1016/j.future.2020.12.020 .
[12] J. Park, D. Kim, B. Choi, W. Kang, H. Kwon, Classification and Morphological Analysis of Vector Mosquitoes using Deep Convolutional Neural Networks, Sci Rep

10 (1) (2020), doi: 10.1038/s41598-020-57875-1 .
[13] D. Das, K. Santosh, U. Pal, Truncated inception net: COVID-19 outbreak screening using chest X-rays, Physical and Engineering Sciences in Medicine 43 (3)

(2020) 915–925, doi: 10.1007/s13246-020-00888-x .
[14] F. Montalbo, Diagnosing Covid-19 chest x-rays with a lightweight truncated DenseNet with partial layer freezing and feature fusion, Biomed Signal Process

Control 68 (2021) 102583, doi: 10.1016/j.bspc.2021.102583 .
10

https://doi.org/10.1162/neco_a_00990
https://doi.org/10.3390/e20040305
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1016/j.patcog.2020.107528
https://doi.org/10.1109/ACCESS.2021.3079700
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.2196/11936
https://doi.org/10.1016/j.compag.2018.08.013
https://doi.org/10.1155/2021/5843816
https://doi.org/10.1016/j.eswa.2018.07.026
https://doi.org/10.1016/j.future.2020.12.020
https://doi.org/10.1038/s41598-020-57875-1
https://doi.org/10.1007/s13246-020-00888-x
https://doi.org/10.1016/j.bspc.2021.102583

F.J.P. Montalbo MethodsX 10 (2023) 102072

[15] X. Jin, Y. Xie, X. Wei, B. Zhao, Z. Chen, X. Tan, Delving deep into spatial pooling for squeeze-and-excitation networks, Pattern Recognit 121 (2022) 108159,
doi: 10.1016/j.patcog.2021.108159 .

[16] F.J. Montalbo, Truncating fined-tuned vision-based models to lightweight deployable diagnostic tools for SARS-COV-2 infected chest x-rays and CT-scans,
Multimed Tools Appl 81 (12) (2022) 16411–16439, doi: 10.1007/s11042-022-12484-0 .

[17] F. Zhu, C. Liu, J. Yang, S. Wang, An Improved MobileNet Network with Wavelet Energy and Global Average Pooling for Rotating Machinery Fault Diagnosis,
Sensors 22 (12) (2022) 4427, doi: 10.3390/s22124427 .

[18] H. Yang, H. Jang, T. Kim, B. Lee, Non-Temporal Lightweight Fire Detection Network for Intelligent Surveillance Systems, IEEE Access 7 (2019) 169257–169266,
doi: 10.1109/ACCESS.2019.2953558 .

[19] P. Wang, X. Zhang, Y. Hao, A Method Combining CNN and ELM for Feature Extraction and Classification of SAR Image, Journal of Sensors 2019 (2019) 1–8,
doi: 10.1155/2019/6134610 .

[20] B. Koonce, EfficientNet, Convol. Neural Netw. Swift Tensorflow (2021) 109–123, doi: 10.1007/978-1-4842-6168-2_10 .
[21] Y. Que, H.J. Lee, Densely Connected Convolutional Networks for Multi-Exposure Fusion, in: 2018 International Conference on Computational Science and Compu-

tational Intelligence (CSCI) , 2018, pp. 417–420, doi: 10.1109/CSCI46756.2018.00084 .
[22] R. Feng, J. Gu, Y. Qiao, C. Dong, Suppressing Model Overfitting for Image Super-Resolution Networks, in: 2019 IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW), 2019, pp. 1964–1973, doi: 10.1109/CVPRW.2019.00248 .
[23] F. Montalbo, Diagnosing gastrointestinal diseases from endoscopy images through a multi-fused CNN with auxiliary layers, alpha dropouts, and a fusion residual

block, Biomed. Signal Process Control 76 (2022) 103683, doi: 10.1016/j.bspc.2022.103683 .
[24] S. Aldhaheri, D. Alghazzawi, L. Cheng, B. Alzahrani, A. Al-Barakati, DeepDCA: novel Network-Based Detection of IoT Attacks Using Artificial Immune System,

Appl. Sci. 10 (6) (2020) 1909, doi: 10.3390/app10061909 .
[25] L. Zhang, D. Li, Q. Guo, Deep Learning From Spatio-Temporal Data Using Orthogonal Regularizaion Residual CNN for Air Prediction, IEEE Access 8 (2020)

66037–66047, doi: 10.1109/ACCESS.2020.2985657 .
[26] G. Lin, W. Shen, Research on convolutional neural network based on improved Relu piecewise activation function, Procedia Comput. Sci. 131 (2018) 977–984,

doi: 10.1016/j.procs.2018.04.239 .
[27] D. Kim, J. Kim, J. Kim, Elastic exponential linear units for convolutional neural networks, Neurocomputing 406 (2020) 253–266,

doi: 10.1016/j.neucom.2020.03.051 .
[28] Y. Li, Z. Han, H. Xu, L. Liu, X. Li, K. Zhang, YOLOv3-Lite: a Lightweight Crack Detection Network for Aircraft Structure Based on Depthwise Separable Convolu-

tions, Appl. Sci. 9 (18) (2019) 3781, doi: 10.3390/app9183781 .
[29] T. Zhang, X. Zhang, J. Shi, S. Wei, Depthwise separable convolution neural network for high-speed SAR ship detection, Remote Sens. (Basel) 11 (21) (2019)

2483, doi: 10.3390/rs11212483 .
[30] G. Hinton, O. Vinyals, and J. Dean. (2015). ‘‘Distilling the knowledge in a neural network,’’ Available: https://arxiv.org/abs/1503.02531 .
[31] A. Alkhulaifi, F. Alsahli, I. Ahmad, Knowledge distillation in deep learning and its applications, PeerJ Comput. Sci. 7 (2021) e474, doi: 10.7717/peerj-cs.474 .
[32] J.H. Cho, B. Hariharan, On the Efficacy of Knowledge Distillation, in: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 4793–4801,

doi: 10.1109/ICCV.2019.00489 .
[33] L. Yuan, F.E. Tay, G. Li, T. Wang, J. Feng, Revisiting Knowledge Distillation via Label Smoothing Regularization, in: 2020 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2020, pp. 3902–3910, doi: 10.1109/CVPR42600.2020.00396 .
[34] W. Kwon, Y. Jin, S. Lee, Uncertainty-Aware Knowledge Distillation for Collision Identification of Collaborative Robots, Sensors 21 (19) (2021) 6674,

doi: 10.3390/s21196674 .
[35] A. Taner, Y. Öztekin, H. Duran, Performance Analysis of Deep Learning CNN Models for Variety Classification in Hazelnut, Sustainability 13 (12) (2021) 6527,

doi: 10.3390/su13126527 .
[36] Y. Bi, A. Chadha, A. Abbas, E. Bourtsoulatze, Y. Andreopoulos, Graph-Based Object Classification for Neuromorphic Vision Sensing, in: 2019 IEEE/CVF Interna-

tional Conference on Computer Vision (ICCV), 2019, pp. 491–501, doi: 10.1109/ICCV.2019.00058 .
[37] T. Mok, A. Chung, Conditional Deformable Image Registration with Convolutional Neural Network, Med. Image Comput. Comput. Assist. Intervention – MICCAI

2021 (2021) 35–45, doi: 10.1007/978-3-030-87202-1_4 .
[38] F.J.P. Montalbo, “Machine-based Mosquito Taxonomy with a Lightweight Network-fused Efficient Dual ConvNet with Residual Learning and Knowledge Distil-

lation, ” Appl. Soft Comput. , In-press, doi: 10.1016/j.asoc.2022.109913 .
11

https://doi.org/10.1016/j.patcog.2021.108159
https://doi.org/10.1007/s11042-022-12484-0
https://doi.org/10.3390/s22124427
https://doi.org/10.1109/ACCESS.2019.2953558
https://doi.org/10.1155/2019/6134610
https://doi.org/10.1007/978-1-4842-6168-2_10
https://doi.org/10.1109/CSCI46756.2018.00084
https://doi.org/10.1109/CVPRW.2019.00248
https://doi.org/10.1016/j.bspc.2022.103683
https://doi.org/10.3390/app10061909
https://doi.org/10.1109/ACCESS.2020.2985657
https://doi.org/10.1016/j.procs.2018.04.239
https://doi.org/10.1016/j.neucom.2020.03.051
https://doi.org/10.3390/app9183781
https://doi.org/10.3390/rs11212483
https://arxiv.org/abs/1503.02531
https://doi.org/10.7717/peerj-cs.474
https://doi.org/10.1109/ICCV.2019.00489
https://doi.org/10.1109/CVPR42600.2020.00396
https://doi.org/10.3390/s21196674
https://doi.org/10.3390/su13126527
https://doi.org/10.1109/ICCV.2019.00058
https://doi.org/10.1007/978-3-030-87202-1_4
https://doi.dx.org/10.1016/j.asoc.2022.109913

	Automating mosquito taxonomy by compressing and enhancing a feature fused EfficientNet with knowledge distillation and a novel residual skip block
	Method details
	Improving cost-efficiency
	Expanding features
	Implementing skip connections
	Adding self-activating layers
	Reducing parameters
	Transfer learning and fine-tuning
	Distilling knowledge
	Method validation
	Conclusion
	Declaration of competing interests
	Acknowledgements
	References

