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Abstract: Conjugated polymers generally contain conjugated backbone structures with benzene, hete-
rocycle, double bond, or triple bond, so that they have properties similar to semiconductors and even
conductors. Their energy band gap is very small and can be adjusted via chemical doping, allowing
for excellent photoelectric properties. To obtain prominent conjugated materials, numerous well-
designed polymer backbones have been reported, such as polyphenylenevinylene, polyphenylene
acetylene, polycarbazole, and polyfluorene. 4,4′-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-
based conjugated polymers have also been prepared owing to its conjugated structure and intriguing
optical properties, including high absorption coefficients, excellent thermal/photochemical stability,
and high quantum yield. Most importantly, the properties of BODIPYs can be easily tuned by
chemical modification on the dipyrromethene core, which endows the conjugated polymers with
multiple functionalities. In this paper, BODIPY-based conjugated polymers are reviewed, focusing
on their structures and applications. The forms of BODIPY-based conjugated polymers include linear,
coiled, and porous structures, and their structure–property relationship is explored. Also, typical
applications in optoelectronic materials, sensors, gas/energy storage, biotherapy, and bioimaging are
presented and discussed in detail. Finally, the review provides an insight into the challenges in the
development of BODIPY-based conjugated polymers.

Keywords: BODIPY; conjugated polymers; architecture; structure–property relationship; application

1. Introduction

In the 1970s, Shirakawa et al. accidentally synthesized polyacetylene and then
developed its conductive applications under close cooperation with MacDiarmid and
Heeger [1–4]. Since conductive polymers emerged, conjugated polymers, namely, poly-
mers with conjugated bond structures, have attracted increasing interest owing to their
extremely important roles in optoelectronic devices [5–7] and biological diagnosis and
treatment [8,9]. In general, the energy band gap of conjugated polymers is very small
and can be adjusted via chemical doping to obtain excellent optoelectronic properties.
Furthermore, conjugated polymers offer a unique combination of properties not available
from other materials, such as mechanical flexibility, facile solution processing, scalable
architecture, and low cost. To develop conjugated materials with better performance, a
large number of functional units have been successfully introduced to polymer systems,
including phenylacetylene [10], thiophene [11], carbazole [12], fluorene [13], and 4,4′-
difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) [14]. Among them, BODIPY (Figure 1)
is famous for its versatility as fluorophores and is widely applied in fluorescent sensors,
organic electronics, biotherapy, and imaging [14–18], which provides a possibility for the
multifunctional development of conjugated polymers.
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In 1968, BODIPY was reported for the first time by Treibs and Kreuzer [19], and later, 
Hee and Richard discovered that BODIPY could be used as a fluorescent probe with high 
affinity for D1 and D2 dopaminergic receptors [20]. Since then, BODIPYs have gained in-
creasing attention in most fields. In most cases, BODIPYs have excellent optical properties, 
including large molar extinction, narrow absorption, and high quantum yields. BODIPYs 
are also stable to thermal/photochemical stimulus and possess good solubility to common 
solutions, which is conducive to the processing and use of optoelectronic devices. Most 
importantly, the optical properties and electronic structure of BODIPYs can be easily ad-
justed via systematic structural modifications [21,22]. For instance, modifying the BOD-
IPY core with donor units at 2,3,5,6-positions would cause a bathochromic shift in the 
absorption and fluorescence spectra. All the advantages of BODIPY make it a promising 
candidate for the preparation of conjugated polymers with innovative molecular struc-
tures and unique electronic properties [22]. 

Due to the diverse strategies for the functionalization of the BODIPY, several synthe-
sis methods have been presented to establish BODIPY-based conjugated polymers 
through a wide variety of BODIPY intermediates (Figure 1) with reactive groups (halogen, 
alkynyl). Taking halogenated BODIPYs as an example, halogen atoms can be easily intro-
duced into BODIPY core in α-, β-, or meso-positions via electrophilic substitution reac-
tions or using halogenated dipyrromethene precursors [14]. Subsequently, halogenated 
BODIPYs can homopolymerize by nickel-catalyzed Yamamoto cross-coupling reaction or 
undergo alternating copolymerization by palladium-catalyzed cross-coupling reactions, 
including Suzuki, Heck, Sonogashira, and Stille cross-coupling reactions. Without halo-
gen atom, BODIPY-based conjugated polymers could be obtained by Oxidation and 

Figure 1. Structural representation of the 4,4′-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) core and BODIPY intermedi-
ates suited to polymerization via transition metal–catalyzed polycondensation reactions or electrochemical polymerization.

In 1968, BODIPY was reported for the first time by Treibs and Kreuzer [19], and
later, Hee and Richard discovered that BODIPY could be used as a fluorescent probe
with high affinity for D1 and D2 dopaminergic receptors [20]. Since then, BODIPYs have
gained increasing attention in most fields. In most cases, BODIPYs have excellent optical
properties, including large molar extinction, narrow absorption, and high quantum yields.
BODIPYs are also stable to thermal/photochemical stimulus and possess good solubility
to common solutions, which is conducive to the processing and use of optoelectronic
devices. Most importantly, the optical properties and electronic structure of BODIPYs can
be easily adjusted via systematic structural modifications [21,22]. For instance, modifying
the BODIPY core with donor units at 2,3,5,6-positions would cause a bathochromic shift in
the absorption and fluorescence spectra. All the advantages of BODIPY make it a promising
candidate for the preparation of conjugated polymers with innovative molecular structures
and unique electronic properties [22].

Due to the diverse strategies for the functionalization of the BODIPY, several synthesis
methods have been presented to establish BODIPY-based conjugated polymers through a
wide variety of BODIPY intermediates (Figure 1) with reactive groups (halogen, alkynyl).
Taking halogenated BODIPYs as an example, halogen atoms can be easily introduced
into BODIPY core in α-, β-, or meso-positions via electrophilic substitution reactions or
using halogenated dipyrromethene precursors [14]. Subsequently, halogenated BODIPYs
can homopolymerize by nickel-catalyzed Yamamoto cross-coupling reaction or undergo
alternating copolymerization by palladium-catalyzed cross-coupling reactions, including
Suzuki, Heck, Sonogashira, and Stille cross-coupling reactions. Without halogen atom,
BODIPY-based conjugated polymers could be obtained by Oxidation and Friedel-Crafts
cross-coupling reactions and introducing alkynyl in α- and β-positions of BODIPY cores
to support Sonogashira cross-coupling reactions are also feasible methods. Additionally,
BODIPYs combined with electroactive 3,4-ethylenedioxythiophene (EDOT) or bithiophene
can be prepared via electrochemical polymerization, as reported by Algi, Cihaner, and
Skabara [23–25].

Current studies have found that by incorporating BODIPYs into the constructions of
conjugated polymers, the corresponding polymers inherit the excellent optical properties
of BODIPY due to the increase in conjugated length [14,26–28]. For example, to study the
correlation between the number of BODIPY molecules and the polymer properties, Allen
and coworkers [26] synthesized a monomer, dimer, trimer, and polymer of BODIPYs with
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mesityl groups in the meso-position, and the photophysical, electrochemical, and electro-
generated chemiluminescence of the obtained materials were investigated. The absorption
and fluorescence of the materials showed a gradually red shift from monomer to dimer to
trimer to polymer, accompanied by increasing molar absorption coefficients and decreasing
quantum yields [26].

In this review, we focus on the ample structures of BODIPY-based conjugated polymers
(including linear and porous structures) based on different reaction sites and functionality
degrees of monomers. Special attention is devoted to the applications of conjugated
polymers containing BODIPYs in optoelectronic materials, biotherapy, bioimaging, sensors,
and gas/energy storage, wherein the structure–property relationship exerts tremendous
influence.

2. Structures of BODIPY-Based Conjugated Polymers

According to the functionality degree, structures of BODIPY-based conjugated poly-
mers can be classified into linear/coiled, porous, dendritic, and crosslinked. Thus, in the
following subsections, the synthesis, property, and structure–property relationship of
BODIPY-based conjugated polymers are discussed from a structural perspective. Some
structures and synthetic methods of BODIPY-based conjugated polymers are summarized
in Table 1.

2.1. Linear/Coiled Conjugated Polymers

Generally, the monomers forming a linear/coiled polymer should have two functional
groups, such as halogen atoms and alkynyl. In the constructed conjugation of linear/coiled
polymers, BODIPYs can be incorporated into the polymers as backbone units, pendant
side chains, or end groups.

2.1.1. BODIPY as Backbone Units

When BODIPYs act as the backbone units, the structure and properties of conjugated
polymers are prone to site-selective synthesis; that is, polymerization through either α- or β-
positions. The β-connected copolymers possess linear structures, whereas the α-connected
ones possess coiled structures [29]. Zade and coworkers [30] presented three alternate
copolymers, 1–3 (Figure 2), containing BODIPYs and acetylene with different connectivities
(α-α-connected, α-β-connected, β-β-connected) and examined the effect of site-selective
copolymerization. The decomposition temperatures of polymers 1, 2, and 3 were 266,
312, and 200 ◦C respectively, because of the difference in the compactness of the polymer
melt. In other words, the coiled structures contributed to increasing the decomposition
temperature. In addition, the solid-state optical band gaps of 1, 2, and 3 were 1.28, 1.42,
and 1.67 eV respectively, which demonstrated that the π-conjugation was more efficient in
the case of polymerization through the α-position of BODIPYs than in the polymerization
through the β-position. The site-selective synthesis mainly altered the highest occupied
molecular orbital (HOMO) energy levels of polymers rather than the lowest unoccupied
molecular orbital (LUMO) energy levels. Based on the theoretical calculation results, poly-
mers 1–3 were subjected to charge-carrier mobility measurements in field-effect transistors
devices, in which 1 and 3 acted as n-type semiconductors and 2 as a p-type semiconductor.
However, their transistor property was poor. Nevertheless, this work provided an efficient
approach for tuning the band gaps of BODIPY-based conjugated polymers via site-selective
polymerization. Likewise, Zade and coworkers [31] synthesized polymers 4–6 (Figure 2)
with BODIPYs and 5,5-bis(hexyloxymethyl)-5,6-dihydro-4H-cyclopenta[c]-thiophene (CPT)
as comonomers. The CPT was connected through the α-position or β-position of the BOD-
IPY molecule, and 6 had acetylene as the spacers. Polymer 4 exhibited the highest p-channel
mobility in polymer field-effect transistors, attributed to the efficient conjugation of the
α-connectivity of BODIPYs as well as their planar structure without methyl at β-positions.
Due to the existence of the spacers, 6 with planarity of the backbone showed the second-
highest host mobilities. Except for charge mobility, the BODIPYs with connectivity at
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α-position may produce better photovoltaic properties [29] and more intriguing nonlinear
optical properties [32].
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Apart from site-selective copolymerization, another similar synthesis method is site-
selective modification with polymerizable groups before polymerization. Three polymers,
7–9 (Figure 3), have been constructed through the electropolymerization of BODIPYs
functionalized by EDOT at 3,5-positions or 2,6-positions. Polymer 8 modified through
3,5-positions showed a bathochromic shift of the absorption wavelength and a decrease in
band gaps than those of polymers 7 and 9 modified through 2,6-positions, which further
proved that the connected positions resulted in significant differences in the conjugation
degree. Polymer 8 displayed the lowest band gap of 0.8 eV, with reversible reduction and
oxidation processes [23,25,33].
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The properties of BODIPY-based conjugated polymers also depend on the elaborate
design of BODIPY monomers with functional modification. For instance, the incorporation
of oligo(ethylene glycol)methyl ether residues as polymer side chains into BODIPYs at the
3,5- or meso-positions led to a significant increase in water solubility [34]. In another work,
Liu and coworkers [35] presented a series of near-infrared (NIR) or deep-red emissive poly-
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meric dyes 10–14 (Figure 4) containing extended π-conjugated BODIPY cores. Polymers
10 and 11 were synthesized via the Sonogashira cross-coupling reaction of 2,6-diethynel
BODIPYs with 2,6-diiodo-functionalized BODIPYs bearing aldehyde derivative-modified
mono-styryl or di-styryl groups at the 3,5 positions. For better comparison, 12–14 were
prepared by the same reaction of 2,6-diiodo-functionalized BODIPYs bearing mono-styryl
group, di-styryl group, and dodecyl with 2,5-diethynyl-3-decylthiothene, respectively. The
fluorescence quantum yields of 12–14 were significantly lower than those of their analog
polymers 10 and 11, due to the heavy atom effect of sulfur. In solutions, the absorption
and emission maxima of 11 were centered at 738 and 760 nm respectively, with redshifts
of 41 and 45 nm compared with the spectrum for 10. Similarly, by increasing the num-
ber of conjugated connections at the 3,5-positions of BODIPY cores, the absorption and
emission maxima of 14, 13, and 12 successively redshifted, which allowed the tuning of
BODIPY-based polymers to the NIR region. As for thin films, the absorption and emission
maxima of 10–12 displayed further redshift, attributed to the intermolecular electronic
interaction and/or increasing planarity in the solid state. Remarkably, the extension of
conjugated BODIPYs at 3,5-position resulted in deep-red or NIR emission [36,37], and
such NIR-emissive BODIPY-containing polymers lay a foundation for the development of
NIR-imaging biomedical applications.
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BODIPY-fused aromatic rings such as phenyl [38], furan [39], and thiophene [40]
are promising candidates for performance development of BODIPY-containing polymers.
Chujo and coworkers [40] reported two conjugated homopolymers 15 and 16 (Figure 5)
consisting of thiophene-fused BODIPYs and synthesized via oxidative coupling. With the
suppression of torsions, low-laying HOMO, small band gap, and rigid framework, the
thiophene-fused BODIPYs endowed the polymers with low band gap and high stability in
atmosphere and a broad absorption spectrum. Polymer 16 showed wider absorption and
lower band gaps than the methyl-substituted analog 15 due to the smaller steric hindrance.
Such ring-fused BODIPYs can open new approaches for the construction of low-band-gap
conjugated polymers with broad absorption and good stability.
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ence [40]. Copyright @ 2014, American Chemical Society).

The most common and patterned approach to developing novel polymer materials
containing BODIPYs is selecting the appropriate comonomers to facilitate intra-molecular
charge transfer excitation [41–47]. To precisely predict the performance of alternating
copolymers containing BODIPYs, Thayumanavan and coworkers [48] chose five aromatic
groups with different electron-donating capacity (including fluorene (17), carbazole (18),
bithiophene (19), cyclopentadithiophene (20), and dithienopyrrole (21)) to copolymerize
with BODIPYs and investigated the influence of comonomers on the properties of the ensu-
ing polymers 17–21 (Figure 6), especially the frontier molecular orbital energy levels. The
HOMO energy levels of polymers, assessed by density functional theory (DFT) calculations
or cyclic voltammetry, showed the same tendency as their gas-phase ionization potential
(IP) values. In contrast, the LUMO energy levels were almost invariant, which indicates
that the influence of BODIPY on HOMO energy levels was dominant. The present study
builds up the key link of polymer design with theoretical predictions, which facilitates the
development of BODIPY-based conjugated polymers.
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Samuel and coworkers [49] reported two low-band-gap donor-acceptor (D-A) conju-
gated polymers, 22 and 23, containing BODIPY as electron acceptors and bis(3,4-
ethylenedioxythiophene) (bis-EDOT) and bis(3,4-ethylenedithiathiophene) (bis-EDTT) as
electron donors, respectively (Figure 7). In the ultraviolet-visible (UV-vis) absorption spec-
tra measured in solution, 22 displayed broad absorption from about 300 to 1000 nm with
maxima at 818 nm, while 23 showed a narrower absorption from around 400 to 900 nm
with maxima at 648 nm. This suggested that bis-EDOT possessed stronger donor ability
than bis-EDTT. Calculated from the absorption spectra, the optical band gaps of 22 and 23
were 1.18 and 1.35 eV, respectively. Furthermore, the time-of-flight measurements proved
that 22 allowed for ambipolar charge transport. Two types of devices with the obtained
polymers as electron donors and [6,6]-phenyl-C71-butyric acid methyl ester (PCBM) as
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the electron acceptor were separately fabricated. When the donor-to-acceptor ratio was
1:4, the device made of 22 exhibited the best performance: a circuit current density (Jsc)
of 7.78 mA cm−2, open-circuit voltage (Voc) of 0.31 V, fill factor (FF) of 39%, and power
conversion efficiency (PCE) of 0.95% were observed. Clearly, the BODIPY-based conju-
gated polymer is a promising material for improving the performance of polymer-fullerene
devices by rationally decreasing band gaps.
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2.1.2. BODIPY as Pendants Side Chains

Generally, conjugated polymers with BODIPYs as pendants side chain were synthe-
sized through meso-positions connection of BODIPYs containing reactive groups, such
as alkynyl [50] electrochemical polymer groups [51,52] or other more complex units [53].
Chujo and coworkers [54] tethered BODIPY dyes to the cardo structures of polyfluorenes in
order to achieve advanced light-harvesting antenna (LHA) systems (Figure 8). Polymer 24
was synthesized via the polymerization of mono-BODIPY substituted dibromo cardo fluo-
rene derivates through Yamamoto cross-coupling reaction, while polymers 25 and 26 were
prepared via the combination of 9,9-didodecylfluorene diboronic acid with dibromofluo-
rene containing single or dual BODIPYs at its cardo structures through Suzuki-Miyaura
cross-coupling reaction. By comparing the absorption and photoluminescence spectra of
polymers and simple mixtures of free BODIPY units and polyfluorene, it was found that
the intrinsic optical properties of BODIPYs and polyfluorene main chains were retained.
Moreover, 25 and 26 exhibited significant fluorescence emissions in both solution and film
states, due to the efficient suppression of the concentration quenching of BODIPYs. The
LHA efficiency of 25 was nine times that of the free BODIPY unit, and the energy transfer
efficiencies of 24–26 were up to 99% because of the rigid cardo structures of polyfluorene.
Based on their excellent properties and good processability, these effective LHA systems
with BODIPY-attached cardo polyfluorenes are promising for practical applications.



Polymers 2021, 13, 75 8 of 30

Polymers 2021, 13, x FOR PEER REVIEW 8 of 32 

 

 

Figure 7. Chemical structures of polymers 22 and 23 (Reproduced with permission from Reference 
[49]. Copyright @ 2012, Royal Society of Chemistry). 

2.1.2. BODIPY as Pendants Side Chains 
Generally, conjugated polymers with BODIPYs as pendants side chain were synthe-

sized through meso-positions connection of BODIPYs containing reactive groups, such as 
alkynyl [50] electrochemical polymer groups [51,52] or other more complex units [53]. 
Chujo and coworkers [54] tethered BODIPY dyes to the cardo structures of polyfluorenes 
in order to achieve advanced light-harvesting antenna (LHA) systems (Figure 8). Polymer 
24 was synthesized via the polymerization of mono-BODIPY substituted dibromo cardo 
fluorene derivates through Yamamoto cross-coupling reaction, while polymers 25 and 26 
were prepared via the combination of 9,9-didodecylfluorene diboronic acid with dibro-
mofluorene containing single or dual BODIPYs at its cardo structures through Suzuki-
Miyaura cross-coupling reaction. By comparing the absorption and photoluminescence 
spectra of polymers and simple mixtures of free BODIPY units and polyfluorene, it was 
found that the intrinsic optical properties of BODIPYs and polyfluorene main chains were 
retained. Moreover, 25 and 26 exhibited significant fluorescence emissions in both solu-
tion and film states, due to the efficient suppression of the concentration quenching of 
BODIPYs. The LHA efficiency of 25 was nine times that of the free BODIPY unit, and the 
energy transfer efficiencies of 24–26 were up to 99% because of the rigid cardo structures 
of polyfluorene. Based on their excellent properties and good processability, these effec-
tive LHA systems with BODIPY-attached cardo polyfluorenes are promising for practical 
applications. 

 
Figure 8. Chemical structures of polymers 24–26 (Reproduced with permission from Reference [54]. Copyright @ 2013, 
American Chemical Society). 

Additionally, BODIPYs can be incorporated into conjugated polymers as pendant 
side chains through meso- or α-positions. Yin and coworkers [55] synthesized three poly-
acetylenes 27–29 bearing BODIPYs as pendant side chains through meso- or α-positions 
(Figure 9) and investigated the effect of connective methods on the properties of the ob-
tained polymers. Polymers 28 and 29 displayed poorer thermal stability than 27 because 
the coplanarity of backbone and BODIPY units in polymers 28 and 29 reduced the thermal 
resistance of polymers. Moreover, 28 and 29 had a broader absorption range, along with 
a little redshift, than corresponding monomers, while the absorption spectrum of 27 was 
similar to that of the monomer owing to a vertical arrangement of BODIPY units with 
main backbone. All polymers exhibited better nonlinear optical properties than polyacet-
ylene. Furthermore, the third-order nonlinear optical coefficients of 28 (1.27 × 10−10 esu) 
(esu is abbreviation for electrostatic unit) and 29 (1.37 × 10−10 esu) were ~15 times larger 
than those of 27 (8.5 × 10−12 esu). Accordingly, the connective methods of BODIPYs had a 
significant influence on the properties of the ensuing polyacetylenes, and the desired pho-
toelectric properties could be achieved by the attachment of polymerizable groups to 
BODIPYs at the optimal positions. 

Figure 8. Chemical structures of polymers 24–26 (Reproduced with permission from Reference [54]. Copyright @ 2013,
American Chemical Society).

Additionally, BODIPYs can be incorporated into conjugated polymers as pendant
side chains through meso- or α-positions. Yin and coworkers [55] synthesized three poly-
acetylenes 27–29 bearing BODIPYs as pendant side chains through meso- or α-positions
(Figure 9) and investigated the effect of connective methods on the properties of the ob-
tained polymers. Polymers 28 and 29 displayed poorer thermal stability than 27 because
the coplanarity of backbone and BODIPY units in polymers 28 and 29 reduced the thermal
resistance of polymers. Moreover, 28 and 29 had a broader absorption range, along with
a little redshift, than corresponding monomers, while the absorption spectrum of 27 was
similar to that of the monomer owing to a vertical arrangement of BODIPY units with
main backbone. All polymers exhibited better nonlinear optical properties than polyacety-
lene. Furthermore, the third-order nonlinear optical coefficients of 28 (1.27 × 10−10 esu)
(esu is abbreviation for electrostatic unit) and 29 (1.37 × 10−10 esu) were ~15 times larger
than those of 27 (8.5 × 10−12 esu). Accordingly, the connective methods of BODIPYs had
a significant influence on the properties of the ensuing polyacetylenes, and the desired
photoelectric properties could be achieved by the attachment of polymerizable groups to
BODIPYs at the optimal positions.
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2.1.3. BODIPY as End Groups

To gather the schematic information on the relationship of energy transfer and rigid
chain, Yin and coworkers designed a novel poly(p-phenylene ethynylene) (30–19) [56]
and a group of oligo(p-phenylene ethynylene)s (30-1, 30-3, 30-5, 30-7) [57] with different
conjugated lengths (Figure 10)—they were capped with BODIPYs at their ends. According
to the absorption, excitation, and emission spectra, the synthesized polymer or oligomers
inherited the spectroscopic properties of both BODIPYs and phenylacetylene chain. Both
the absorption and emission maxima assigned to the phenylacetylene main chains red-
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shifted as the number of phenylacetylene units was increased, however, those assigned
to the BODIPY units had almost no change and the relative intensity of the absorption
was decreased. The energy transfer efficiency reduced as the conjugated length increased
because of the decrease in the energy transfer rate and mass of conformational subunits.
Thus, this work showed that the energy transfer efficiency of dye-capped polymers could
be tuned by changing the conjugated chain length.
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2.2. Porous Conjugated Polymers

Porous organic polymers (POPs) with conjugated structures have attracted pro-
nounced attention owing to the high flexibility in their skeleton design and porosity;
consequently, their applications have been extended to gas absorption and separation,
energy storage, catalysis, and optoelectronic materials [58–64]. Especially, with facile modi-
fication, diversity of reaction sites, and intriguing optical properties, BODIPYs have been
widely used as skeleton units of POPs. Algi and coworkers [24] designed two BODIPY
cores, bithiophene and EDOT, with three electroactive function groups, and the ensuing
polymers 31 and 32 (Figure 11) obtained via electrochemical polymerization possessed
cellular structures and multi-electrochromic properties.

Polymers 2021, 13, x FOR PEER REVIEW 10 of 32 

 

 

Porous organic polymers (POPs) with conjugated structures have attracted pro-
nounced attention owing to the high flexibility in their skeleton design and porosity; con-
sequently, their applications have been extended to gas absorption and separation, energy 
storage, catalysis, and optoelectronic materials [58–64]. Especially, with facile modifica-
tion, diversity of reaction sites, and intriguing optical properties, BODIPYs have been 
widely used as skeleton units of POPs. Algi and coworkers [24] designed two BODIPY 
cores, bithiophene and EDOT, with three electroactive function groups, and the ensuing 
polymers 31 and 32 (Figure 11) obtained via electrochemical polymerization possessed 
cellular structures and multi-electrochromic properties. 

 
Figure 11. Chemical structures of polymers 31 and 32 (Reproduced with permission from Reference [24]. Copyright @ 2013 
Elsevier Ltd). 

Kuang and coworkers presented a series of BODIPY-based POPs 33–37 (Figure 12) 
synthesized by Friedel-Crafts cross-coupling reactions to explore the influences of mono-
mer structures on the porous properties and singlet-oxygen generation properties [65,66]. 
In comparison with analogs 33–34, 35, with a long space between two BODIPY units, 
showed higher surface area but worse photocatalytic activity of singlet-oxygen genera-
tion. Although 34 and 36 with or without methyl substituents in the BODIPY cores pos-
sessed good pore characteristics, 34 presented the coexistence of micropores and meso-
pores, and 36 only presented mesoporous architecture. Additionally, the singlet-oxygen 
generation ability of 34 was better than that of 36. Compared with 36, 37 showed poor 
pore properties and singlet-oxygen generation capacities, implying that the monomeric 
isomerization was a crucial parameter for the design of BODIPY-based POPs. This work 
about the relationship between monomeric structures and characteristics can lay a foun-
dation for designing more intriguing BODIPY-based POPs. 

Figure 11. Chemical structures of polymers 31 and 32 (Reproduced with permission from Reference [24]. Copyright @ 2013
Elsevier Ltd.).



Polymers 2021, 13, 75 10 of 30

Kuang and coworkers presented a series of BODIPY-based POPs 33–37 (Figure 12) syn-
thesized by Friedel-Crafts cross-coupling reactions to explore the influences of monomer
structures on the porous properties and singlet-oxygen generation properties [65,66]. In
comparison with analogs 33–35, with a long space between two BODIPY units, showed
higher surface area but worse photocatalytic activity of singlet-oxygen generation. Al-
though 34 and 36 with or without methyl substituents in the BODIPY cores possessed good
pore characteristics, 34 presented the coexistence of micropores and mesopores, and 36 only
presented mesoporous architecture. Additionally, the singlet-oxygen generation ability
of 34 was better than that of 36. Compared with 36, 37 showed poor pore properties and
singlet-oxygen generation capacities, implying that the monomeric isomerization was a
crucial parameter for the design of BODIPY-based POPs. This work about the relationship
between monomeric structures and characteristics can lay a foundation for designing more
intriguing BODIPY-based POPs.
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2.3. Other Structures

Apart from the above-mentioned categories, some BODIPY-based conjugated poly-
mers also contain branched polymers and crosslinked polymers, whose syntheses and
applications are introduced in Section 3.

3. Functional Applications of BODIPY-Based Conjugated Polymers

BODIPY-based conjugated polymers are fascinating in that they present a perfect fu-
sion of π-conjugated backbone and unique BODIPY dyes. Furthermore, the precise control
of structures can be achieved at the molecular level to realize the desired performance. By
virtue of various morphologies and excellent photoelectric properties, conjugated poly-
mers containing BODIPYs have emerged as versatile materials for applications ranging
from optoelectronic materials, biotherapy and imaging, sensor, gas adsorption, and energy
storage. The structures, applications, and synthetic methods of BODIPY-based conjugated
polymers are summarized in Tables 1 and 2.

3.1. Optoelectronic Materials

Conjugated polymers have always been one of the main optoelectronic materials
owing to their fine-tuning optoelectronic properties based on the ample electron-rich and
electron-deficient aromatics. BODIPYs, classical acceptors, possess excellent photophysical
and electrochemical properties, endowing BODIPY-based conjugated polymers with exten-
sive application in optoelectronics, such as solar cells, organic thin-film transistors, and
memory devices.

To endow solar cells with excellent performance, the molecular design of BODIPY-
based conjugated polymers are the following three strategies: (1) the introduction of
electron-rich comonomers during polymerization [67–72], (2) fusing aromatic rings on
the BODIPY units [73], and (3) the extension of the π-conjugation of side chain [73,74].
Donor-acceptor polymers tend to be utilized as donor materials, and fullerene derivatives
such as phenyl-C61-butyric acid methyl ester (PC71BM) as acceptor materials, allowing
for the construction of solution-processed bulk heterojunction (BHJ). In 2015, Chochos
and coworkers [75] reported a novel ultra-low-band-gap and NIR conjugated polymer
38 (Figure 13), which was synthesized by dibromo-BODIPYs and (E)-1,2-bis(3-dodecyl-
5-(trimethylstannyl)thiophen-2-yl)ethane via Stille cross-coupling reaction. The obtained
polymer displayed a panchromatic absorption in the 300–1100 nm range with an optical
band gap of 1.15 eV, promoting the construction of NIR BHJ solar cells based on 38 and
PC71BM. When the weight ratio of 38 to PC71BM was 1:3, the solar cell showed the best
PCE of 1.1% with Jsc of 3.39 mA cm−2, Voc of 0.59 V, and FF of 0.56, while the highest charge
carrier mobility was (1.05 ± 0.2) × 10−5 cm2V−1s−1 for the 1:4 ratio. In 2008, Sharma and
coworkers [74] also presented BJH solar cells based on PC71BM, wherein low-band-gap
conjugated polymers 39 and 40 (Figure 13) served as electron donors. Polymer 39 with
BODIPYs, thiophene unites, and ethynyl linkers displayed an absorption spectrum ranging
from 500 to 800 nm and an optical band gap of 1.74 eV. Polymer 40 with different extended
BODIPY unit was achieved by introducing Zinc(II) porphyrins into BODIPY units of 39 via
Knoevenagel condensation. Owing to the extension of conjugation, 40 exhibited broadened
absorption, ranging from 400 to 800 nm, and decreased optical band gap (1.59 eV). Bulk
heterojunction solar cells with 39/PC71BM and 40/PC71BM ratio of 1:2 showed PCE of
3.03% and 3.86%, respectively. The above two works demonstrated that BODIPYs are
promising building blocks for devising novel polymeric donors for solar cells conjugated
with PC71BM.
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There are also many organic solar cells consisting of BODIPY-based conjugated poly-
mers as donors and non-fullerenes as receptors. Sharma and coworkers [76] developed 41
(Figure 14), which is an analogous BODIPY-based conjugated polymer of 39, with mono-
substituted thiophene units via Sonogashira cross-coupling reaction. The photovoltaic
properties of BHJ solar cell based on 41 as the donor and non-fullerene small molecule
(NFSMA) as the acceptor were compared with that of the BHJ solar cell with PC71BM as the
acceptor. Polymer 41 and NFSMA exhibited complementary absorption favorable to light
harvesting and well-matched frontier energy level favorable to efficient charge transfer and
minimal energy loss. In addition, Li and coworkers [77] fabricated all-polymer solar cells,
in which BODIPY-based conjugated polymers without (42) or with (43) methyl substituent
on the BODIPY cores served as donors, and polymer N2200 consisting of bithiophene and
hexahydropyrene derivative served as acceptors (Figure 14). Notably, the complementary
interaction between acceptor and donor led to the absorption spectrum extension from
300 to 900 nm in solar cells. After experimental analysis, it was found that 43 with two
methyl substituents displayed superior photovoltaic properties compared to polymer 42
without methyl substituent. On account of neat structures, suitable energy levels, and high
hole mobility, the PCE of the 43-based solar cell was 5.8%, higher than that of the 42-based
solar cell (0.32%). Considering the superiority of 43, Li and coworkers [78] further studied
the performances of solar cells composed of electron donor 43 and halogenated fused-ring
electron acceptor ITIC-2Cl or BTP-2Cl (Figure 14). Likewise, a wide absorption spectrum
from 300 to 1100 nm was obtained, and the external quantum efficiencies were above 0.50.
Interestingly, a dramatically high Jsc (21.44 mA cm−2) was obtained from the BTP-2Cl-based
solar cell, and the PCEs increased to 7.56% and 9.86% for ITIC-2Cl- and BTP-2Cl-based solar
cells, respectively. Overall, the rational molecular design of BODIPY-based conjugated
polymers offers advantages in terms of PCE enhancement, and it is also a good idea to
match the polymer acceptor or small-molecule acceptor, replacing fullerene receptors.
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Perovskite solar cells (PSCs) are considered typical representatives of the third gen-
eration of solar cells owing to their high efficiency, low cost, and easy preparation [79,80].
However, their stability could be one of the obstacles limiting their development. Con-
sequently, Hong and coworkers [81] developed a series of dopant-free hole-transport
materials (HTMs) based on BODIPY-containing conjugated polymers 44–49 (Figure 15) to
improve the PSC stability. The selective regulation of HOMO/LUMO value was achieved
by introducing groups at the positions of BODIPY cores and benzo[1,2-b:4,5-b’]bithiophene.
Owing to solubilizing groups and nonplanar structure, hydrophobic HTM polymers could
entirely cover the perovskite layer, allowing it to isolate air and moisture. Because of
different HOMO/LUMO energy levels and electrical properties, 44–49 exhibited different
performances in solar cells, among which 44 displayed the highest PCE of 16.02%, with Jsc
of 19.22 mA cm−2, Voc of 1.06 V, FF of 0.78, and hole mobility of 2.96 × 10−5 cm−2 V−1 s−1.
The device stability test showed that 44-based PSC retained 80% of the original PCE under
ambient condition after 10 days.
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Apart from solar cells, organic thin-film transistors (OTFTs) are another application
of BODIPY-based conjugated polymers in the area of optoelectronic materials [82–86].
Facchetti and coworkers [82] designed a group of D-A copolymers 50–53 consisting of
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alternating tetramethyl-substituted or dimethyl-substituted BODIPYs and thiophene or
3,3′-dialkoxy-2,2′ bithiophene bridged by Stille cross-coupling reaction (Figure 16). The
polymers as thin-films displayed panchromatic absorption spectra up to the NIR region
and 60–90 nm redshift compared with the corresponding solution spectra. According to
experimental estimation, HOMO energies were determined as −5.04 to −5.59 eV for 50–53.
In addition, polymers based on dimethyl-substituted BODIPYs conjugated with thiophene
units possessed better planarity and more efficient π-stacking, leading to more potent intra-
or inter-chain charge transport. Hence, it was not surprising that in the OTFTs, 52 exhibited
p-channel activities with the highest hole mobility of 0.17 cm−2 V−1 s−1 and on/off ratios
of 105–106, and favorable stability. Moreover, recently, Sharapov and coworkers [83]
presented a series of BODIPY-based conjugated polymers 54–56 containing thiophene-
fused BODIPY units and donor groups such as fluorene, BDT, and diketopyrrolopyrrole
(DPP) to develop OTFTs (Figure 16). The absorption range of the polymers widened in
turn with the maximum absorption redshifted. Particularly, 56 possessed a broad and
strong absorption in the range of 500–1600 nm. The cyclic voltammetry results revealed
low LUMO energy levels (<−4.0 eV) of polymers, resulting in favorable electron injection
and transport. The electron mobilities of 54, 55, and 56 were 4.0 × 10−5, 7.8 × 10−4,
and 5.4 × 10−4 cm−2 V−1 s−1, respectively. However, due to inadequate HOMO energy
level, hole mobility was not observed for 54, while 55 and 56 with lower HOMO energy
levels possessed hole mobilities of 1.0 × 10−3 and 7.2 × 10−4 cm−2 V−1 s−1, respectively.
Furthermore, polymer 56 displayed ambipolar charge mobility of 10−3 cm−2 V−1 s−1 in
OTFE devices, which is a good parameter for BODIPY-based conjugated polymers. BODIPY-
based conjugated polymers also presented potential to serve as n-type semiconducting
polymers by the judicious choice of comonomers; for example, the alternating copolymer 57
has been reported by Thayumanavan and coworkers [84] (Figure 16). Thus, BODIPY-based
conjugated polymers could play versatile roles in the design of OTFTs.
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Chen and coworkers [87] combined BODIPY units and 1,4-diethynylbenzene with
reduced graphene oxide (RGO) via one-pot in situ polymerization to produce the two-
dimensional BODIPY-based conjugated polymer 58 (Figure 17). RGO served as an electron
donor and BODIPY-contained polymeric chain served as an electron acceptor. The product
exhibited good storage performance of rewritable memory that can be electrically erased
and reprogrammed, without disturbance by mechanical stress. This may be caused by
the efficient conjugated channel and the favorable charge transfer from RGO to 58. This
work provides an example of a stable high-performance memory device, which not only
extends the applications of BODIPY-based conjugated polymers but also presents a hint for
improving the stability of memory devices.
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3.2. Bioimaging and Biotherapy

A significant amount of effort has been channeled toward the development of specific
imaging and effective therapies, where BODIPY-based conjugated polymers have ample
scope due to their high expansibility of optical properties [64,88–95]. Fluorescence imaging
can help to provide visualized results with simple operation and low cost. Compared with
visible light, NIR has been a research hotspot in the field of fluorescence imaging owing
to the high penetration depth, small biological spontaneous fluorescence interference,
and small light-damage to organisms. Liu and coworkers [92] reported a NIR-emissive
BODIPY-containing polymer 60 bearing cancer-homing cyclic arginine-glycine-aspartic
acid (RGD) peptide residues. The polymer was synthesized via the post-polymerization
functionalization of 59 through click reaction between sulfydryl and halogen (Figure 18).
Driven by the existence of tetra(ethylene glycol), 59 and 60 exhibited good water solubility
and good photostability, conducive to applications in organisms. Moreover, 59 and 60
showed similar absorption and emission spectra, with the absorption maximum at 687
(59) and 689 nm (60) and emission maximum at 711 (59) and 712 nm (60). Polymer 60
displayed enhanced NIR signals at breast cancer cells in the perinuclear region, which
indicated specific recognition with breast cancer cells. Thus, this research not only presents
a NIR-emissive BODIPY-based polymeric dye for specific cell imaging but also provides a
basis for designing specific imaging agents through binding with targeted groups.
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Water solubility is another important favorable factor for the application of polymeric
dye in organisms. In addition to the aforementioned introduction of hydrophilic chains,
ionization is also a feasible strategy. Cao and coworkers [95] designed a water-soluble conju-
gated polyelectrolyte 61 with BODIPYs and quaternary ammonium salt-modified fluorenes
as monomers (Figure 19). Polymer 61 possessed distinct “turn-off” fluorescence character-
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istics to DNA due to the electrostatic interaction of positively charged polyelectrolyte and
negatively charged DNA of 61-DNA complexes, which allowed it to be a detector agent
for DNA. Furthermore, red emission was observed when Hela cells were incubated with
0.1 mg/mL 61, which suggests the potential of 61 for bioimaging applications.
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Conjugated polymer dots (Pdots) are capable candidates for biological applications,
with various advantages such as high brightness, good photostability, flexible luminous
range, and biological compatibility. Chiu and coworkers [91] presented yellow-emission
Pdots containing the BODIPY-based polymer 62 as the acceptor, poly[9,9-dioctylfluorenyl-
2,7-diyl-co-1,4-benzo-(2,1′-3)-thiadiazole] (PFBT) as the donor, and poly(styrene-co-maleic
anhydride) (PSMA) as the crosslinking agent (Figure 20). When the ratio of BODIPY
polymers to PFBT was 0.54, the Pdots exhibited bright yellow emission based on the
efficient Förster resonant energy transfer (FRET) between acceptors and donors. To realize
specific cellular imaging, Pdots were further conjugated with streptavidin to obtain Pdot-SA
fluorescence probe, which specifically bound biotin anti-EpCAM receptor onto the surface
of MCF-7 breast cancer cells. The intensity of the Pdot-SA probe in MCF cells was about
five times higher than that of the commercial Qdot 565-streptavidin bioconjugates under
the same condition. Overall, Pdots based on crosslinked BODIPY-containing conjugated
polymers are qualified for application as bright fluorescent biological probes.

Furthermore, Zhang and coworkers [93] reported two hyperbranched BODIPY-
containing conjugated polymers 63 and 64 with 2,7-bis(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)-9,9-dioctylfluorene, 4,7-dibromobenzothiadiazole, and triiodo-BODIPY
as monomers through Suzuki cross-coupling reaction (Figure 21a). Owing to the different
reactive abilities of iodine and bromide with boric acid/ether, different mixing procedures
were adopted. One was to add all three reactive monomers at once, and in this case, the
“local” concentration of BODIPY units in the resultant hyperbranched polymer 63 was high,
which would limit the fluorescence emission of 63 due to the concentration quenching effect
of BODIPY units. The other was to add triiodo-BODIPYs to the reaction in batches, which
resulted in self-quenching reduction. The mixtures of these polymers and PSMA were
nanoprecipitated to form small and stable Pdots (63-Pdot and 64-Pdot). 64-Pdot showed
a quantum yield of 22%, higher than that of the corresponding linear polymers, whereas
63-Pdot showed a quantum yield of only 11%. The data suggested that hyperbranching
was an alternative approach to restrain fluorescence quenching. Similar to the work of
Chiu’s group [91], the two Pdots further modified with streptavidin could specifically
label MCF-7 cells and exhibited bright fluorescence and good biocompatibility (Figure 21b).
These works highlight the potential of Pdots based on different conjugated structures
in bioimaging and provide an efficient method to increase brightness and decrease the
quenching degree.
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Recently, multifunction dyes have been highlighted for biological applications, espe-
cially the dyes that have both bioimaging and biotherapy capabilities. Zhao and cowork-
ers [94] proposed a new ionized polyfluorene 65 conjugated with BODPIYs and NIR
phosphorescent iridium(III) complexes, and polymers 66 and 67 containing fluorene and
BODIPYs or iridium(III) complexes respectively, as control groups (Figure 22). Conse-
quently, the authors could investigate the FRET process between BODIPYs donor and
iridium(III) complexes acceptor. Because of the existence of ionized monomers, the con-
jugated polymers tended to self-assemble to establish NPs in water, and the conjugated
backbone protected the NPs from photobleaching, which was favorable for enduring bi-
ological applications. Meanwhile, the BODIPYs amplified the light absorption ability of
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NPs, and iridium(III) complexes were responsible for effectively producing singlet oxygen
based on the potent FRET. According to in vitro and in vivo experiments, the outstanding
inhibition of tumor growth was induced by the high photodynamic therapy (PDT) effi-
ciency based on the high singlet-oxygen quantum yield (97%) (Figure 22). Interestingly,
taking advantage of the linear relationship between the phosphorescence lifetime of NPs
or the emission intensity ratio and the O2 content, the authors could realize real-time O2
imaging and provide guidelines for PDT assessment. The rational structural design would
inspire the progress of more prominent photosensitizers with complementary groups for
cancer diagnosis and theranostic.
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Xie and coworkers [90] developed a BODIPY-based conjugated polymer 68 containing
hexadecane, whose structures were similar to those of bioactive fatty acids. The NP for-
mulations of 68 and human serum albumin (HSA), a critical transport protein in the body,
were rationally prepared through ultrasonic emulsification based on the supramolecular
interaction between 68 and HSA (Figure 23). The NPs displayed enhanced water solubility,
improved stability, and similar NIR absorption compared with the conjugated polymer
68. A certain degree of aggregation quenching was conducive to more potent photother-
mal therapy (PTT), which inspired the investigation of the potential phototherapeutic
applications of the polymer. The NPs possessed photothermal effect, as evidenced by
the noticeable rise in the NP solution temperature under 685 nm laser irradiation. The
experiment analysis showed that the photothermal conversion efficiency of NPs could
reach 37.5%, and the photothermal reproducibility was prominent. To investigate the
further application of NPs, a series of in vitro and in vivo experiments were performed.
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The in vitro experiment showed that the NPs were distributed in the cytoplasm by efficient
cytoplasmic endocytosis and displayed significant cytotoxicity under laser radiation. In
addition, the in vivo experiment results showed that PTT via intra-tumoral injection with
irradiation provided the maximum tumor ablation effect, and adverse effects were almost
negligible. Also, owing to their NIR absorption and high photothermal efficacy, NPs have
emerged as multi-mode bioimaging materials with readable fluorescence signals and clear
photoacoustic (PA) signals. Similarly, in another work [89], Xie’s group prepared a series
of conjugated polymers 69–71 (Figure 23) from BODIPY with various numbers of methyl
substituents and DPP. Subsequently, conjugated polymers and F127 were combined to
obtain NPs that exhibited PTT capacity, PA imaging, and infrared thermal imaging. These
studies usher in a new generation of multifunctional biomedical materials and develop
image-guided therapy.
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3.3. Sensor

Owing to the wide range of absorption and emission spectra of BODIPY derivatives
and the characteristics of conjugated chain amplification signal, BODIPY-based conjugated
polymers are applied to anion or organic vapor sensors [96–99]. Cao and coworkers [96]
presented a new conjugated polymer 72, synthesized through Sonogashira cross-coupling
reaction between BODIPY diiodide and alkynyl fluorene, for the detection of F− and CN−

ions (Figure 24). When F− was added to the solution of 72, the solution color changed
from purple to orange by degrees, and the emission color changed from red to yellow by
degrees, which was consistent with the new emission band at 579 nm. However, when
CN− was added to the solution of 72, the solution color gradually changed from purple
to faint yellow, and the emission color gradually changed from red to yellowish green,
which agrees with the new emission bands at 514 and 563 nm. Other ions did not cause
a significant change in the naked color or emission color. Thus, probe 72 could allow the
fast naked-eye detection of F− and CN− ions without interference from other ions, and
the detection limits of 72 toward F− and CN− ions were 5.23 × 10−7 and 2.96 × 10−7 M,
respectively. Nuclear magnetic resonance (NMR) demonstrated that the excellent detection
ability of 72 was derived from the nucleophilic attack of F− and CN− to difluoroboron
bridges. Besides its use as a sensor medium, 72 was also suitable as an imaging agent with
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low cytotoxicity. This work not only replenishes the BODIPY-based conjugated polymer
library but also provides a feasible method to sense ions through the color response caused
by highly responsive structural change.

Table 1. Summary of the structures and synthetic methods of BODIPY-based conjugated polymers.

Structures of BODIPY-Based Conjugated
Polymers Synthetic Methods Compounds References

Linear/Coiled
Conjugated Polymers

BODIPY as Backbone
Units

Stille Cross-coupling Reaction 4, 5, 22, 23 [31,49]
Sonogashira Cross-coupling Reaction 1–3, 6, 10–14, 17–21 [30,31,34]

Oxidation Coupling 15, 16 [40]
Electrochemical Polymerization 7–9 [23,25,33]

BODIPY as Pendants
Side Chains

Suzuki Cross-coupling Reaction 24–26 [54]
Coordination Polymerization 27–29 [55]

BODIPY as End Groups Sonogashira Cross-coupling Reaction 30-n [56,57]

Porous Conjugated Polymers Electrochemical Polymerization 31, 32 [24]
Friedel-Crafts cross-coupling reactions 33–37 [65,66]

Other Structures
Crosslinked Polymers Yamamoto Cross-coupling Reaction 62 [91]

Branched Polymers Suzuki Cross-coupling Reaction 63, 64 [93]
Sonogashira Cross-coupling Reaction 73–75 [98]Polymers 2021, 13, x FOR PEER REVIEW 21 of 32 
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Figure 24. (a) Chemical structures of polymer 72. (b) Visual color changes and emission changes (λex = 365 nm) of 72
(c = 10 µM) in tetrahydrofuran/H2O (98:2, v/v) in the presence of different anions (Reproduced with permission from
Reference [96]. Copyright @ 2015 Elsevier).

Valiyaveettil and coworkers [98] synthesized a series of hyperbranched conjugated
polymers (Figure 25) based on BODIPYs for detecting organic vapors. To study the in-
fluence of polymer conformation on vapor sensing, the authors developed 73 and 74 as
A2B3-type hyperbranched conjugated polymers with benzene and triphenylamine between
BODIPY moieties respectively, with 75 as an A2B4-type hyperbranched conjugated polymer
with pyrene between BODIPY moieties. These hyperbranched conjugated polymers all
displayed solvent effect in different solvents. Polymer 73 possessed a more planar confor-
mation, which resulted in emission quenching at solid state. The twisted conformation of
74 and the higher branching degree of 75 provided the polymers with weaker aggregation,
leading to NIR emission even at the solid state. Compared with 73 and 75, 74 exhibited
higher selectivity toward aromatic solvent, and the high reproducibility. Thus, the system-
atic research developed a new vapor detection utilizing hyperbranched BODIPY-based
conjugated polymers with better performance, enriching the structures and applications of
BODIPY-based conjugated polymers.
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3.4. Gas/Energy Storage

Generally, conjugated porous polymers (CPPs), owing to their favorable structures,
have been extensively applied to gas or energy storage, and BODIPY units are rich in
heteroatoms, amplifying their affinity to gas or other substances [100–103]. Patra and
coworkers [103] prepared four BODIPY-based CPPs 76–78 (Figure 26) with various alkyl
chain lengths at meso-positions via Sonogashira cross-coupling reaction. Polymer 76
possessed mesoporous structures with Brunauer-Emmett-Teller (BET) surface area of 73
(76a) and 322 m2 g−1 (76b), while 77 and 78 were respectively microporous with BET
surface area of 573 m2 g−1 and ultra-microporous with BET surface area of 1010 m2 g−1.
The different pore features were related to alkyl chain substitution; that is, the long alkyl
chain took up more free volume, resulting in the pore blockage effect. On the contrary,
rigid phenyl with nonplanarity led to small pore diameter and high surface area. Owing
to profitable pore features, 78 displayed the highest CO2 uptake of 16.5 wt%, higher than
those of 77 (10.5 wt%) and 76b (6.9 wt%). In addition, 78 showed the highest isosteric heat
of adsorption (30.6 kJ mol−1), due to the rich nitrogen content of BODIPYs, leading to the
good affinity of CO2. Notably, 77 possessed the best selective adsorption to CO2 in the
binary mixtures of CO2 and N2, because the appropriate pore size maintained stronger
electrostatic interaction between POPs and CO2. BODIPY-based POPs have the capability of
producing 1O2, which can catalyze some oxidation reactions with a quite high conversion.
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(Reproduced with permission from Reference [103]. Copyright @ 2016, American Chemical Society).
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Likewise, to exploit superior anode materials of lithium-ion batteries, Kuang and
coworkers [102] prepared a new POP 79 (Figure 27) containing anthracene-substituted
BODIPYs and 1,3,5-triethynylbenzene, and further obtained carbonized POP (79-C) via a
carbonization process. Polymers 79 and 79-C displayed microporous architectures with
pore sizes of 20.5 and 6.9 nm respectively, and their BET surface areas were 505 and
638 m2 g−1, respectively. In addition, the existence of heteroatoms allowed POP 79 to
possess higher specific capacity, better superior rate performance, and long-term cyclic
stability. As for 79-C, heteroatoms doping also made conductivity and the photoelectric
property better. Hence, BODIPY-based POPs pave a way for the fabrication of gas/energy
storage materials based on the porous structure and richness in heteroatoms of BODIPY
units.
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3.5. Other Applications

In addition to the above-mentioned applications, there are other fields involving
BODIPY-based conjugated polymers. Yang and coworkers [104] presented a new linear
conjugated polymer 80 via Suzuki cross-coupling reaction (Figure 28). Polymer 80 with
the conjugated chains displayed better chemical and thermal stability compared with the
monomers. To improve the dispersibility and catalytic efficiency, 80 was combined with
silica powder through the F . . . Si interactive force, and 80-silica was obtained (Figure 28),
which was hardly soluble in common organic solvent, allowing easy recovery from re-
actions. A series of control experiments proved that the yield of benzylamine oxidation
was up to 82% at the reaction temperature of 90 ◦C in the heterogeneous reaction using
80-silica as a catalyst. Such excellent catalytic effect depended on the generation of 1O2
from 80-silica under radiation. The recycling performance of 80-silica was prominent.
After it was used three times, the yield only decreased by 5%. Furthermore, BODIPY-based
POPs with self-porosity could also serve as photocatalysts without hybridization. Liras and
coworkers [105] prepared a new microporous polymer 81 with high surface area (Figure 28).
The polymer could be used as a heterogeneous catalyst to oxidize thioanisole to sulfoxide
with a rate four times higher than that of homogeneous catalysts. However, polymer
81 could only be reused twice. These heterogeneous photocatalysts based on BODIPY-
containing polymers [104–106] represent a new potential class of high-catalytic-efficiency
and recyclable catalysts, resulting in the simplification of handling and purification.
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Table 2. Summary of the applications and synthetic methods of BODIPY-based conjugated polymers.

Functional Applications of BODIPY-Based
Conjugated Polymers Synthetic Methods Compounds References

Optoelectronic
Materials

Solar Cells
Stille Cross-coupling Reaction 38, 42–49 [75,77,78,81]

Sonogashira Cross-coupling Reaction 39–41 [74,76]
Organic Thin-film

Transistors
Stille Cross-coupling Reaction 50–56 [82,83]

Sonogashira Cross-coupling Reaction 57 [84]
Memory Devices Sonogashira Cross-coupling Reaction 58 [87]

Bioimaging and Biotherapy
Suzuki Cross-coupling Reaction 59, 60, 63–66, 69–91 [90,92–94]

Sonogashira Cross-coupling Reaction 61, 68 [90,95]
Yamamoto Cross-coupling Reaction 62 [91]

Sensor Sonogashira Cross-coupling Reaction 72–75 [96,98]
Gas/Energy Storage Sonogashira Cross-coupling Reaction 76–79 [102,103]

Other Applications
Suzuki Cross-coupling Reaction 80 [104]

Sonogashira Cross-coupling Reaction 81–83 [105,107]
Yamamoto Cross-coupling Reaction 84, 85 [108]

Given the fast reaction between the 2,6-positions of BODIPY units and iodine, Kuang
and coworkers [107] synthesized a new POP 82 with 2,6-position-unsubitituted BODIPY
units as monomers via Sonogashira cross-coupling reaction and verified its capability of
capturing iodine compared with 2,6-positions-subitituted BODIPY-based POP 83 and the
reference compound NBDP without BODIPYs (Figure 29). The polymerization process
was accompanied by a side oxidation-reaction, which consumed sectional active sides
but reduced the surface area and porous structure for a higher adsorption capacity. The
comparison of 82, 83, and NBDP showed an increasing iodine absorption capacity from
NBDP to 83 to 82, indicating that not only porous properties but also the presence of affinity
function groups impacted the iodine absorption capacity. Moreover, 82 exhibited higher
adsorption capability and fast inclusion rate in iodine-hexane solution, and its release
rate was also the fastest. Additionally, all POPs showed good regeneration capacity for
recycling. These porous materials not only have potential capacity of iodine absorption but
also provide a feasible strategy to facilitate the development of other volatile compounds.
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Recently, Wu and coworkers [108] designed two BODIPY-based conjugated polymers
84 and 85 (Figure 30), and then further prepared Pdots with uniform small-size distribution
for super-resolution optical fluctuation imaging (SOFI). This imaging technique is based on
the random fluctuation of the fluorescence intensity of mutually fluorescent chromogens to
achieve resolution improvement. Polymers 84 and 85 displayed emission maxima at 565
and 720 nm, and due to the FRET effect between polymer chains, the fluorescence spectra
of these polymer materials were greatly narrow, with ~39 nm of emission bandwidths (full
width at half maximum, FWHM) for 84 and ~50 nm of emission bandwidths (FWHM) for 85.
Compared with commercially available fluorescent dyes Alexa 555 and Alexa 647, 84-Pdot
and 85-Pdot exhibited stronger luminescence, higher signal-to-noise ratio, excellent single-
particle anti-photobleaching properties, and more pronounced fluctuations; thus, they can
be applied for SOFI. Indeed, the single-particle analysis demonstrated that after eight-order
SOFI processing, the resolution of the Pdots SOFI imaging significantly amplified to 57
(84) and 88 nm (85). Furthermore, after surface bio-conjugated with streptavidin, the Pdots
achieved the specific labeling of the mitochondrial membrane structure and microtubule
structure of BS-C-1 without cross-color interference and the eighth-order SOFI imaging.
Consequently, the SOFI imaging system based on BODIPY-containing conjugated polymers
can promote the development of higher-resolution imaging systems in the future.
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4. Conclusions

Significant advances have been achieved in BODIPY-based conjugated polymers due
to the joint effect of conjugate structures and the fluorescent dye BODIPY, which encouraged
us to comprehensively summarize the establishments and applications of BODIPY-based
conjugated polymers. BODIPYs possess the advantages of facile synthesis and chemi-
cal structure modification and can be synthesized through the conventional preparation
methods of conjugated polymers; among the preparation methods, metal-catalyzed cross-
coupling polymerization is most frequently used, especially Suzuki cross-coupling or
Sonogashira cross-coupling reaction. Due to the numerous active sites of the BODIPY core,
the structures of BODIPY-based conjugated polymers are flexible, comprising linear, coiled,
porous, branched, and crosslinked structures; among these, linear and coiled conjugated
polymers polymerized through α-α-connected, α-β-connected, or β-β-connected account
for the largest proportion. In this respect, we summarized design of new polymers that
can be initiated from three aspects: (1) the rational selection of polymerization sites, (2) the
modification of BODIPY building units before polymerization, and (3) the appropriate
selection of comonomers. Furthermore, some significant conclusions are as follows. First,
π-conjugation is more efficient in the case of polymerization through the α-position of
BODIPYs than in the polymerization through the β-position, allowing for low band gap.
Second, the extension of conjugated BODIPYs at the 3,5-position through classical Knoeve-
nagel condensation reaction results in deep-red or NIR emission. Third, D-A structures
promote intramolecular charge transfer, leading to low band gap and broad absorption.
Fourth, the incorporation of BODIPYs as side chains into polymers can effectively inhibit
the concentration fluorescence quenching and even result in FERT. Finally, BODIPY-based
conjugated polymers possess high flexibility in the design of skeletons and porosity. Owing
to flexible design and diverse structures, conjugated polymers containing BODIPYs exhibit
remarkable potential for applications in several fields, including optoelectronic materials,
biotherapy, bioimaging, sensors, gas/energy storage, and photocatalysis. They are most
widely utilized in photoelectric materials, especially solar cells, owing to the excellent
photoelectric properties both of BODIPY dyes and conjugated backbones.

Furthermore, significant achievements have been made in the development of BODIPY-
based conjugated polymers, from structural design to practical applications. However,
there is still much room for further growth. Moreover, water solubility and NIR emission
are imperative for biomedical applications. Despite that some water-soluble polymeric
BODIPYs modified by the introduction of hydrophilic chains or biological molecules have
been obtained, there are limited cases and no certain regulations for designing suitable
polymers; thus, this area is an open proposition. For greater tissue penetration and less
biological damage, NIR region II absorption and emission are the better choice, which
is a challenging direction. In addition, designing new BODIPY-based conjugated POPs
with higher BET surface areas, anti-degradation backbones, and specific binding groups
may afford the BODIPY the capability to adsorb or store more chemical substances and
energy. Furthermore, POPs containing BODIPYs are promising electron donor scaffolds
for electron-accepting compounds, and their exceptional light-absorption properties and
high-dimensional geometry are conducive to amplified charge generation, splitting, and
transport. These advantages indicate that POPs are reasonable candidates for photoelectric
materials, but there are few related examples and linear polymers are in the majority. It
may be that solubility restricts the POP applications; therefore, certain effort should be
channeled toward designing rational POPs and uniform film formation to integrate them
into photoelectric devices. Moreover, BODIPY-containing conjugated polymers have been
applied in photocatalysis, due to the generation of 1O2 with the action of BODIPYs. It
is a question of whether these polymers with energy class levels are allowed to catalyze
reduction reactions, such as hydrogen reduction, when they agree with the oxidation and
reduction potentials required for the reaction. It can be anticipated that BODIPY-based con-
jugated polymers may continually broaden the application range of photoelectric materials,
biological materials, and other smart materials. This review can inspire chemists, material
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scientists, and engineers to jointly develop new BODIPY-based conjugated polymers and
explore their broader practical applications.
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