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Abstract

Background: MicroRNAs (miRNAs) are post-transcriptional regulators with potential as biomarkers for cancer management. Data-
driven competing endogenous RNA (ceRNA) network modeling is an effective way to decipher the complex interplay between miRNAs
and spongers. However, there are currently no general rules for ceRNA network-based biomarker prioritization.

Methods and results: In this study, a novel bioinformatics model was developed by integrating gene expression with multivariate
miRNA-target data for ceRNA network-based biomarker discovery. Compared with traditional methods, the structural vulnerability
in the human long non-coding RNA (lncRNA)–miRNA–messenger RNAs (mRNA) network was comprehensively analyzed, and the
single-line regulatory or competing mode among miRNAs, lncRNAs, and mRNAs was characterized and quantified as statistical ev-
idence for miRNA biomarker identification. The application of this model to prostate cancer (PCa) metastasis identified a total of
12 miRNAs as putative biomarkers from the metastatic PCa-specific lncRNA–miRNA–mRNA network and nine of them have been
previously reported as biomarkers for PCa metastasis. The receiver operating characteristic curve and cell line qRT-PCR experiments
demonstrated the power of miR-26b-5p, miR-130a-3p, and miR-363-3p as novel candidates for predicting PCa metastasis. Moreover,
PCa-associated pathways such as prostate cancer signaling, ERK/MAPK signaling, and TGF-β signaling were significantly enriched by
targets of identified miRNAs, indicating the underlying mechanisms of miRNAs in PCa carcinogenesis.

Conclusions: A novel ceRNA-based bioinformatics model was proposed and applied to screen candidate miRNA biomarkers for PCa
metastasis. Functional validations using human samples and clinical data will be performed for future translational studies on the
identified miRNAs.

Keywords: miRNA biomarker, competing endogenous RNA, network characterization, single-line regulation, prostate cancer metas-
tasis

Introduction
The development of high-throughput sequencing and transla-
tional informatics offers a new frontier in integrating multi-
omics data for computer-aided biomarker discovery.1,2 It is
widely acknowledged that cancer is a multiple-gene disease,
and the interplay between genetic components contributes to
the diversity and complexity of cancer phenotypes. Hence de-
ciphering multivariate regulatory patterns in a network man-
ner promotes systematic understanding of cancer genesis and
progression.

MicroRNAs (miRNAs) are known to be a class of small non-
coding RNAs with the potential to regulate gene expression at the
post-transcriptional level. Accumulating studies indicated that
long non-coding RNAs (lncRNAs) could act as competing endoge-
nous RNAs (ceRNAs) to regulate miRNA targets through com-
peting interactions with messenger RNAs (mRNAs).3 Based on

the construction and characterization of miRNA-mediated ceRNA
networks, functional genes and modules could be computation-
ally identified and validated for cancer application.4 For example,
Wang et al. integrated miRNA-target relationships and cancer ex-
pression profiles to quantify the crosstalk among miRNAs, lncR-
NAs, and mRNAs in the lncRNA–miRNA–mRNA network. They de-
fined a competitive activity score and extracted lncRNA–miRNA–
mRNA triplets associated with global patterns of cancers as the
prognostic biomarker.5 Liu et al. compared ceRNA networks for
different ages of women with breast cancer and found prognostic
biomarkers specific to each age group.6 Li et al. extracted survival-
related lncRNA–miRNA–mRNA networks for immune infiltration
in colorectal cancer by evaluating the expression and prognostic
power of dysregulated miRNAs for model training.7 Zhang et al.
constructed a p53-mediated ceRNA network and identified sev-
eral master miRNAs regulating p53 signaling and the mechanism
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of hepatocellular carcinoma therapeutics.8 Kang et al. analyzed
ceRNA networks specific to diffuse large B-cell lymphoma and
Hodgkin’s lymphoma to screen pivotal lncRNAs for understand-
ing the heterogeneity between lymphoma subtypes.9 In terms of
prostate cancer (PCa), key players and mechanisms in PCa occur-
rence and immune infiltrates were screened via integrated gene
expression and ceRNA network analyses.10,11

The existing findings indicate the significance of ceRNAs in can-
cer biology, and the modeling of deregulated ceRNA networks pro-
motes a novel understanding of miRNA-mediated pathogenesis in
cancers. However, few of the methods focus on the hidden struc-
tures in the network, e.g. vulnerable regulatory sites, etc., and
there are no general rules for biomarker discovery. In our previ-
ous work, an evidence-based bioinformatics model was proposed
and applied to identify miRNA biomarkers for PCa metastasis by
measuring the number of single-line regulations (NSR) between
miRNAs and mRNAs in the miRNA–mRNA network.12,13 In the
model, miRNAs with strong single-line regulatory power, i.e. num-
ber of genes independently regulated by a single miRNA, were sta-
tistically important and could serve as candidate biomarkers. In
this study, we improved the computational framework by compre-
hensively characterizing the regulatory role of miRNAs competed
by lncRNAs and mRNAs, and extracted novel topological feature
parameters as prior evidence for miRNA biomarker discovery in
the lncRNA–miRNA–mRNA ceRNA network. Then the model was
applied to identify novel miRNA biomarkers for predicting PCa
metastasis. The schematic pipeline is shown in Fig. 1.

Materials and methods
Data collection and integration
The literature-reported cancer miRNA biomarkers were manually
collected from published papers in PubMed using search crite-
ria “(miRNA∗[tiab] OR microRNA∗[tiab]) AND (biomarker∗[tiab] OR
marker∗[tiab] OR indicator∗[tiab] OR predict∗[tiab])”. The miRNA
symbols were normalized based on the records in miRBase.14

The miRNA-targets regulatory data were integrated from pub-
lic databases and software tools. Among them, miRNA–mRNA
were derived from our previous study,12 where experimentally val-
idated and computationally predicted miRNA–mRNA interactions
were merged and analyzed. The miRNA–lncRNA pairs were down-
loaded from miRSponge,15 LncACTdb,5 and starBase.16 Here hu-
man miRNA–lncRNA regulations and genome data were selected
and the number of supporting experiments in starBase was set
as ≥1. In addition, functional genes including transcription fac-
tor (TF) genes,17 essential genes,18 house-keeping genes,19,20 and
tumor-associated genes (i.e. oncogenes, tumor suppressor genes,
and marker genes)21,22 were extracted from public databases and
the literature, respectively, to evaluate the biological functions of
different miRNAs in gene regulation.

To better compare the predictive performance of bioinformat-
ics models constructed in this study and our previous work,13

the same publicly available datasets from the GEO (Gene Expres-
sion Omnibus) database were selected for gene expression analy-
sis.23 Here GSE21036 contained a total of 142 prostate tissue sam-
ples, and 99 primary prostate cancer (pPCa) and 14 metastatic
prostate cancer (mPCa) samples were chosen for further study.24

GSE3325 includes two types of sample data, i.e. individual sam-
ples and pooled samples. In this study 5 and 4 individual sam-
ples for pPCa and mPCa respectively were analyzed.25 The differ-
entially expressed (DE) miRNAs and mRNAs were screened using
the empirical Bayes method in the R package of Linear Models for
Microarray Data Analysis,26 and the raw P-values were adjusted

based on the Benjamini–Hochberg false discovery rate method.
The threshold for DE-RNA extraction was set as adjusted P-value
(adj.P-value) < 0.05 and |log2FC| > 1.

Construction of condition-specific
lncRNA–miRNA–mRNA network
Based on the “ceRNA hypothesis”, a three-step approach was
applied to construct the mPCa-specific lncRNA–miRNA–mRNA
network. First, the miRNA–mRNA and miRNA–lncRNA pairs
were identified respectively, based on the collected miRNA reg-
ulatory data on mRNAs and lncRNAs. Then, a human global
lncRNA–miRNA–mRNA network was constructed as the reference
if miRNA–mRNA and miRNA–lncRNA pairs significantly shared
common miRNAs. The statistical significance was calculated us-
ing a hypergeometric test, followed by Benjamini–Hochberg cor-
rection for raw P-value adjustment. All of the triplets with adj.P-
value < 0.01 were selected and integrated. Finally, DE-miRNAs and
DE-mRNAs between pPCa and mPCa samples were mapped onto
the reference network and the mPCa-specific lncRNA–miRNA–
mRNA network together with functional lncRNAs were extracted
and inferred for computational modelling.

Novel evidence-based bioinformatics model for
miRNA biomarker discovery
The single-line regulatory ability of miRNAs was characterized
and measured in our previous work based on miRNA–mRNA net-
work analyses since single-line regulation is the vulnerable site in
the network compared with the traditional “multiple-to-multiple”
pattern between miRNAs and mRNAs.12 According to statisti-
cal evidence, miRNAs with stronger single-line regulatory power
(quantified as higher NSR values) are more likely to be biomark-
ers for disease prediction. Based on this principle, as shown in
Fig. 1, single-line regulation is also evaluated in the constructed
lncRNA–miRNA–mRNA network. Hence in this study the net-
work characterization was improved by reasonably weighting the
single-line regulatory and competing mechanisms among miR-
NAs, lncRNAs, and mRNAs. Three parameters, i.e. NSR-mRNA,
NSR-lncRNA, and NSR-sponge, were defined to describe the num-
ber of single-line regulations of miRNAs on mRNAs, lncRNAs, and
sponges, respectively. Herein, NSR-sponge = NSR-mRNA + NSR-
lncRNA. Finally, miRNAs with significantly high NSR-mRNA, NSR-
lncRNA, and NSR-sponge values (P-value < 0.05, Wilcoxon signed-
rank test) were identified as candidate biomarkers.

Computational validation and functional survey
Receiver operating characteristic (ROC) analysis was conducted
based on the expression data of identified miRNAs to evaluate
their abilities in differentiating mPCa samples from pPCa us-
ing the R package “epicalc”. Functional analyses, including GO
(Gene Ontology) annotation (i.e. biological process, BP; cellular
component, CC; molecular function, MF), KEGG (Kyoto Encyclope-
dia of Genes and Genomes) pathway enrichment and integrated
IPA (Ingenuity Pathway Analysis) analysis, were performed on
the targets of identified miRNAs using the online tools DAVID
(Database for Annotation, Visualization and Integrated Discovery)
and IPA.27–29 Here the targets of identified miRNAs were derived
from human miRNA–mRNA pairs and the plug-in EnrichmentMap
in the Cytoscape program was applied for functional clustering of
significantly enriched BP terms.
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Figure 1. The schematic pipeline of this study. pPCa: primary prostate cancer; mPCa: metastatic prostate cancer; FC: fold change; DE: differentially
expressed; NSR: number of single-line regulations; SL: single-line; GO: gene ontology; ROC: receiver operating characteristic curve; KEGG: Kyoto
Encyclopedia of Genes and Genomes.

Cell lines and culture conditions
The human PCa cell lines 22RV1, LNCaP, PC3, and DU145 as well as
human non-tumor prostatic cell line WPMY-1 were obtained from
the Cell Bank of Chinese Academy of Sciences (Shanghai, China).
Among them, 22RV1 and LNCaP cells were cultured in RPMI-1640
medium (Thermo Fisher Scientific, USA) supplemented with 10%
fetal bovine serum (FBS) (Thermo Fisher Scientific, USA), 1% gluta-
max (Thermo Fisher Scientific, USA), and 1 mM sodium pyruvate
(Thermo Fisher Scientific, USA); PC-3 cells were cultured in Ham’s
F-12K (Kaighn’s) medium (Thermo Fisher Scientific, USA) supple-
mented with 10% FBS (Thermo Fisher Scientific, USA); DU145 cells
were cultured in MEM medium (Thermo Fisher Scientific, USA)
supplemented with 10% FBS (Thermo Fisher Scientific, USA), 1%
glutamax (Thermo Fisher Scientific, USA), 1% non-essential amino
acids (Thermo Fisher Scientific, USA) and 1 mM sodium pyruvate
(Thermo Fisher Scientific, USA); WPMY-1 cells were cultured in
DMEM medium (Thermo Fisher Scientific, USA) containing 10%
FBS (Thermo Fisher Scientific, USA). To inhibit the growth of bacte-
ria, the medium was also supplemented with 100 U/mL penicillin
and 100 μg/mL streptomycin (Thermo Fisher Scientific, USA), re-
spectively. All cell lines were incubated at 37◦C in a 5% CO2 atmo-
sphere.

qRT-PCR experiment and statistical analysis
In the experiment, total RNA from the cultured cells was isolated
using an miRNeasy MiniKit (Qiagen, USA) and then reverse tran-
scribed to complementary DNA (cDNA) utilizing an miScript II RT
Kit (Qiagen, USA). To determine the expression level of miRNAs of

interest, qRT-PCR assay was performed on the Roche LightCycler
480 Real-Time PCR system (Roche, USA) using a miScript SYBR
Green PCR Kit (Qiagen, USA) according to the manufacturers’ pro-
tocols. The primer sequences used in qRT-PCR are summarized in
Table S1, see online supplementary material. Each qRT-PCR exper-
iment was conducted in triplicate. The relative miRNA expression
level was quantified by the 2−��Ct method using snRNA U6 as the
reference.

Results
Comparison of miRNA regulation on mRNAs and
lncRNAs
In this study miRNA–mRNA and miRNA–lncRNA networks were
constructed respectively. The miRNA–mRNA network included a
total of 48 868 interactions among 618 miRNAs and 9 526 mRNAs,
whereas there were 11 893 regulatory pairs among 307 miRNAs
and 1 296 lncRNAs in the miRNA–lncRNA network. The regula-
tory roles of miRNAs on mRNAs and lncRNAs were analyzed and
compared based on the constructed binary networks. As shown in
Fig. S1, see online supplementary material, in the miRNA–mRNA
network miRNA with more mRNA targets (>200) were few in num-
ber, however, all of these miRNAs were able to regulate lncR-
NAs. There was a significantly positive correlation between the
number of mRNAs and lncRNAs targeted by miRNAs (r = 0.62, P-
value < 2.2e−16, Spearman correlation test). Furthermore, only a
few miRNAs in the miRNA–mRNA network had stronger single-
line regulatory power (≥10), and most of these miRNAs tended
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Figure 2. Comparison of miRNA regulation on mRNAs and lncRNAs. (A) A total of 267 miRNAs shared by the miRNA–mRNA and miRNA–lncRNA
networks were defined as LMC-miRNAs. (B) Schematic workflow for miRNA classification. First, all miRNAs were partitioned into LMC-miRNAs and
other miRNAs. Then, reported biomarker miRNAs were extracted from LMC-miRNAs for further analysis. (C) In the miRNA–mRNA network,
LMC-miRNAs had stronger regulatory power on mRNAs (P-value < 2.2e−16). (D) In the miRNA–mRNA network, LMC-miRNAs had stronger single-line
regulatory power on mRNAs (P-value < 2.2e−16). (E) In the miRNA–lncRNA network, there was no significant difference in the number of lncRNA
targets between LMC-miRNAs and other miRNAs (P-value = 0.13). (F) In the miRNA–lncRNA network, LMC-miRNAs had stronger single-line regulatory
power on lncRNAs (P-value = 1.54e−02). The statistical significance was calculated using Kolmogorov-Smirnov test. LMC-miRNAs:
lncRNA/mRNA-competed miRNAs.

to have lncRNA targets. The number of lncRNA targets was also
positively correlated with the single-line regulatory power of miR-
NAs on mRNAs (r = 0.43, P-value < 2.2e−16, Spearman correlation
test).

As shown in Fig. 2, a total of 267 miRNAs shared by the two
network systems were classified and extracted, which indicated
that they could be potentially competed by mRNAs and lncR-
NAs. These miRNAs were defined as lncRNA/mRNA-competed
miRNAs (LMC-miRNAs). Compared with other miRNAs, LMC-
miRNAs could regulate more mRNAs, and they also had signifi-
cantly stronger single-line regulatory power (P-value < 2.2e−16,
Kolmogorov–Smirnov test) in the miRNA–mRNA network. In
the miRNA–lncRNA network, there was no significant differ-
ence in the number of lncRNA targets between LMC-miRNAs
and other miRNAs. However, the single-line regulatory power of
LMC-miRNAs on lncRNAs was significantly higher than other
miRNAs. In terms of biological functions, a total of 1 834 TF
genes, 2 570 essential genes, 575 house-keeping genes and 1 764
tumor-associated genes were respectively collected from pub-
lic databases and the literature. As shown in Fig. S2, see online
supplementary material, the percentage of these genes in LMC-
miRNA targets was significantly higher than that of other miRNAs,
indicating the functional importance of LMC-miRNAs in cancer-
related biological pathogenesis.

In conclusion, there was a positive correlation between miRNA
regulation on mRNAs and lncRNAs. Compared with other miR-

NAs, LMC-miRNAs had stronger (single-line) regulatory power,
and they could regulate more functional genes. Thus, it is of signif-
icance to integrate the multivariate regulatory data and construct
a lncRNA–miRNA–mRNA network for cancer miRNA biomarker
discovery.

Feature characterization of reported biomarkers
in miRNA-mediated network systems
As described in Table S2, see online supplementary material, a
total of 160 literature-reported miRNA biomarkers were manu-
ally collected from 789 published papers in PubMed. According to
“miRNA-cancer” associations, as shown in Figs. 3A and 3B, all of
the biomarker miRNAs were classified into two groups, i.e. miR-
NAs related to more than one cancer type (universal biomark-
ers, U-biomarkers) and miRNAs specific to only one cancer type
(specific biomarkers, S-biomarkers).

As analyzed above, miRNAs competed by lncRNAs and mR-
NAs (LMC-miRNAs) were both structurally and functionally im-
portant in the network. Based on this finding, the regulatory
power of biomarker miRNAs and other miRNAs were compared
in the miRNA–mRNA, miRNA–lncRNA, and integrated lncRNA–
miRNA–mRNA networks, respectively. As shown in Figs. 3C and 3D,
compared with other miRNAs, biomarker miRNAs tended to
have stronger single-line regulatory power on mRNAs. However,
there was no significant difference in the number of single-line
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Figure 3. Topological characterization of reported miRNA biomarkers in the networks. (A, B) Distribution of literature-reported biomarkers in the set of
LMC-miRNAs. (C, D) Comparison of the single-line regulatory power of different miRNAs on mRNAs and lncRNAs. (E) Proportion of biomarker miRNAs
in three groups. Here “10/31” represents that there were 31 miRNAs in this group, and 10 of them were reported biomarkers. The statistical significance
was calculated using Pearson’s chi-squared test. Group I: miRNAs with no single-line regulatory power. Group II: miRNAs with single-line regulatory
power solely on mRNAs or lncRNAs. Group III: miRNAs with single-line regulatory power on both mRNAs and lncRNAs. (F) miRNAs with more sponges
(mRNAs and lncRNAs) in the lncRNA–miRNA–mRNA network were fewer in number. (G) Biomarker miRNAs tended to have more sponges. Here “28/93”
represents that there were 93 miRNAs with 1–100 sponges in the network, and 28 of them were biomarkers. (H) Comparison of the number of miRNA
sponges between biomarker miRNAs and other miRNAs. (I) Comparison of the number of completing triplets between biomarker miRNAs and other
miRNAs. The number was log-2 base transformed. Here the number of completing triplets associated with a certain miRNA was positively correlated
with its sponge number (r = 0.94, P-value < 2.2e−16, Spearman correlation test). (J) Comparison of the number of single-line sponges between
biomarker miRNAs and other miRNAs. The statistical significance was calculated using the Kolmogorov–Smirnov test. S-biomarkers: specific
biomarkers; U-biomarkers: universal biomarkers.
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Table 1. Candidate miRNA biomarkers identified for PCa metastasis.

miRNA ID
adj.P-value (pPCa

vs. mPCa) log2 (FC)
NSR-mRNA

(P-value)
NSR-lncRNA

(P-value)
NSR-sponge

(P-value) AUC

miR-23b-3p 2.76e-16 − 1.9452 9 (4.02e-16) 21 (8.52e-13) 30 (1.43e-14) 0.9567
miR-204-5p 3.43e-08 − 2.0896 13 (1.39e-17) 12 (4.25e-08) 25 (2.14e-12) 0.8506
miR-26b-5p 2.75e-07 − 1.6402 10 (1.25e-16) 15 (1.91e-11) 25 (2.14e-12) 0.7489
miR-27b-3p 1.22e-14 − 1.7558 12 (2.78e-17) 12 (4.25e-08) 24 (2.19e-12) 0.9574
miR-145-5p 8.00e-25 − 3.2157 4 (5.89e-06) 16 (7.45e-12) 20 (7.79e-11) 0.9928
miR-29b-3p 4.49e-06 − 1.0465 4 (5.89e-06) 14 (1.60e-10) 18 (1.44e-09) 0.7468
miR-143-3p 9.38e-29 − 4.0419 3 (4.25e-04) 14 (1.60e-10) 17 (1.21e-08) 0.9942
miR-130a-3p 2.43e-17 − 1.9649 3 (4.25e-04) 12 (4.25e-08) 15 (1.41e-06) 0.9365
miR-363-3p 4.45e-08 − 2.0687 4 (5.89e-06) 11 (9.37e-07) 15 (1.41e-06) 0.7792
miR-218-5p 7.87e-11 − 1.6984 4 (5.89e-06) 9 (1.14e-03) 13 (1.92e-04) 0.8709
miR-30c-5p 2.16e-07 − 1.0445 4 (5.89e-06) 9 (1.14e-03) 13 (1.92e-04) 0.8225
miR-101-3p 1.26e-08 − 1.0684 3 (4.25e-04) 8 (2.07e-02) 11 (1.16e-02) 0.7915

adj.P-value: adjusted P-value; pPCa: primary prostate cancer; mPCa: metastatic prostate cancer; FC: fold change; NSR: number of single-line regulation; AUC: area
under the curve.

regulated lncRNAs between biomarker miRNAs and others. Based
on the characterization of single-line regulation, as shown in
Fig. 3E, miRNAs were further divided into three groups, i.e. miR-
NAs with no single-line regulatory power (Group I), miRNAs with
single-line regulatory power solely on mRNAs or lncRNAs (Group
II), and miRNAs with single-line regulatory power on both mRNAs
and lncRNAs (Group III). The result indicated that miRNAs with
stronger single-line regulatory power were likely to be biomark-
ers (Group III > Group II > Group I).

As shown in Figs. 3F and 3G, there were several miRNAs com-
peted by a large number of lncRNAs and mRNAs (termed miRNA
sponges) in the lncRNA–miRNA–mRNA network. Although the
number of these miRNAs was relatively small, most of them were
literature-reported biomarkers. As illustrated in Figs. 3H and 3I,
biomarker miRNAs tended to have a high degree of centrality
in the network, and they could mediate more competing triplets
compared with other miRNAs. In particular, as shown in Fig. 3J,
biomarker miRNAs also had significantly strong single-line reg-
ulatory power in the lncRNA–miRNA–mRNA network and they
could be independently competed by lncRNAs and mRNAs, which
provided the theoretical evidence for ceRNA-based biomarker dis-
covery.

Bioinformatics model for miRNA biomarker
discovery: a case study of PCa metastasis
The human global lncRNA–miRNA–mRNA network contained
1 381 492 triplets among 267 miRNAs, 1 280 lncRNAs and 8 392 mR-
NAs. By mapping miRNAs and mRNAs differentially expressed be-
tween pPCa and mPCa groups, an mPCa-specific lncRNA–miRNA–
mRNA network with 12 167 deregulated triplets among 57 DE-
miRNAs, 247 DE-mRNAs, and 808 functional lncRNAs was ex-
tracted. As listed in Table S3, see online supplementary mate-
rial, a total of 12 miRNAs with significantly high NSR-mRNA, NSR-
lncRNA, and NSR-sponge value (P-value < 0.05, Wilcoxon signed-
rank test) were identified as candidate biomarkers for PCa metas-
tasis based on the defined filters.

As illustrated in Table 1, the identified miRNAs were all down-
regulated in mPCa groups compared with pPCa. The ROC analy-
sis indicated the potential of identified miRNAs for differentiating
pPCa and mPCa samples with an average area under the curve
(AUC) value of 0.8707 (ranging from 0.7489 to 0.9928). Among
them, three miRNAs, i.e. miR-204-5p, miR-145-5p, and miR-101-3p,
were consistent with the result of our previous model solely using
miRNA–mRNA data for network characterization.13

Based on literature validation, all 12 miRNAs were associated
with PCa carcinogenesis, and 9 of them (75%, 9/12, i.e. miR-23b-3p,
miR-204-5p, miR-27b-3p, miR-145-5p, miR-29b-3p, miR-143-3p, miR-
218-5p, miR-30c-5p, and miR-101-3p) had been already reported as
biomarkers for PCa metastasis, demonstrating the overall pre-
diction precision and the outperformance of the proposed model
compared with our previous approach (40%).13 For example, Rice
et al. found that the cluster of miR-23b/-27b could suppress PCa
metastasis by decreasing the level of HIP1R in PCa pre-clinical
models.30 Compared with PCa samples without bone metastasis,
Wa et al. identified that miR-204-5p was down-regulated in PCa
groups with bone metastasis, and it could inactivate NF-κB
signaling to inhibit the process of PCa metastasis.31 miR-145-5p
and miR-143-3p are two well-studied miRNAs in PCa progression.
The former is an important tumor suppressor miRNA that plays
functional roles in controlling oncogenes such as MYC and RAS
in PCa development. Iscaife et al. reported that miR-145 was a
promising biomarker for the treatment of metastatic castration-
resistant PCa.32 Moreover, the panel of miR-143 and miR-145 was
a significant signature for discriminating different stages of PCa
and indicating bone metastasis.33 Ru et al. suggested that miR-29b
was an antimetastatic miRNA for PCa cells, and it could suppress
PCa metastasis by targeting epithelial–mesenchymal transition
signaling.34 Leite et al. reported that the alteration in expression
of miR-218 was associated with the progression of PCa from
high-grade localized PCa to metastasis status.35 Ren et al. per-
formed comprehensive miRNA microarray analysis and miR-30c
was found to be significantly down-regulated in the metastatic
stage of PCa.36 The reduced level of miR-101 could suppress the
expression of the master regulators in PCa metastasis, i.e. FOXM1
and CENPF, which confirmed its contribution in the cascade
responses in PCa development. Although the remaining three
miRNAs (i.e. miR-26b-5p, miR-130a-3p, and miR-363-3p) have not
been reported as biomarkers for mPCa, they were shown to be
functional in PCa genesis.37–39 Thus, the predictive power of these
miRNAs in PCa metastasis needs to be further validated and
explored.

Functional enrichment analyses and cell line
experimental validation
The GO and pathway enrichment analyses were performed based
on the targets of identified miRNA biomarkers. As shown in Table
S4 and Fig. S3 (see online supplementary material), the miRNAs
were involved in PCa-related GO terms, and significantly enriched
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Figure 4. Significantly enriched PCa-related pathways. (A) Prostate cancer signaling. (B) TGF-β signaling. The figures were extracted from the IPA
program. Objects with purple circles or triangles were acting loci by mapped genes.
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Figure 5. qRT-PCR validation of identified miRNA biomarkers using cell line samples (2–��Ct method). Here 22RV1 was a pPCa-related cell line, whereas
LNCaP, PC3, and DU145 were cell lines for mPCa. In addition, WPMY-1 was a normal prostate cell line. ∗: P-value < 0.05; ∗∗: P-value < 0.01; ∗∗∗:
P-value < 0.001 (compared with 22RV1).

BP terms were clustered as cell migration, cell cycle, molecular
transport, and cell development, which highlighted the underly-
ing mechanisms of identified miRNAs in PCa pathogenesis.40

For pathway enrichment, as shown in Table S5 (see online
supplementary material), the targets of identified miRNAs were
closely enriched in pathways associated with PCa evolution,41–43

e.g. prostate cancer, cell cycle, p53 signaling, ERK/MAPK signaling,
PI3K/AKT signaling, etc. As illustrated in Fig. 4, taking prostate can-
cer signaling and TGF-β signaling as examples, most of the miRNA
targetswere located in the hub sites of these pathways, e.g. PI3K,
AKT, ERK1/2, SMAD4, SMAD family, etc. Among them, in prostate

cancer signaling, the genes regulated by identified miRNAs were
functional in mediating cell proliferation, apoptosis, survival, and
cell cycle arrest during PCa progression. In TGF-β signaling, the
Type I/II receptors and Type I/II BMPR with essential roles in trans-
ferring TGF-β signal from the extracellular space to the cytoplasm
were potentially targeted by identified miRNAs, which inferred the
latent pathogenesis of these miRNAs in TGF-β-related processes
of PCa metastasis.44,45

The qRT-PCR experiment was conducted using PCa cell line
samples to evaluate the expression alternation of identified
miRNAs between pPCa and mPCa cell line groups. As shown
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in Fig. 5, most of the miRNAs were significantly deregulated
in mPCa cell lines including LNCaP, PC3, and DU145 compared
with pPCa cell line 22RV1. Among them, the expression of seven
miRNAs, i.e. miR-204-5p, miR-26b-5p, miR-145-5p, miR-143-3p, miR-
363-3p, miR-30c-5p, and miR-101-3p, was significantly decreased
(P-value < 0.01 or P-value < 0.001) in all the three mPCa cell lines,
which indicated the suppressing role of these miRNAs in PCa
metastasis. In addition, miR-27b-3p, miR-29b-3p, miR-130a-3p, and
miR-218-5p were found to be differentially expressed in mPCa
groups (P-value < 0.01 or P-value < 0.001), however, their expres-
sion pattens in different cell lines tended to be heterogeneous.
The expression level of miR-23b-3p in LNCaP and PC3 cells was
decreased, but the significance of this was not observed in the
DU145 cell line. Most of the identified miRNAs were also shown
to be significantly deregulated between 22RV1 and the normal
prostate cell line WPMY-1, suggesting the functional importance
of these miRNAs in PCa occurrence.

Overall, the experimental result was highly consistent with
that in bioinformatics analysis, which demonstrated the
biomarker potential of identified miRNAs in PCa carcinogen-
esis. In particular, three miRNAs, i.e. miR-26b-5p, miR-130a-3p,
and miR-363-3p, were confirmed to be novel candidates for mPCa,
which highlighted the predictive power of the proposed model in
translational PCa study.

Discussion
The metastasis of PCa is life-threatening and leads to poor prog-
nosis and short overall survival of patients. The identification and
prioritization of biomarkers with high sensitivity for precise detec-
tion of PCa metastatic signatures are therefore of clinical signif-
icance. In addition to experiment-guided approaches, computer-
aided biomarker discovery based on multi-omics data integration
and network modeling is becoming the current frontier in bioin-
formatics and medical systems biology, which contributes to sys-
tematic understanding of cancer carcinogenesis in the era of big
biomedical data and translational informatics.

In this study a novel bioinformatics model was constructed
based on the “ceRNA hypothesis” and topological characterization
of the miRNA-mediated lncRNA–miRNA–mRNA network. Com-
pared with traditional methods solely focusing on hub property
in the network,46,47 in this model single-line regulation and com-
petition among miRNAs, lncRNAs, and mRNAs were measured
for biomarker discovery, since the single-line mode is vulnera-
ble in the network and deregulation in such sites would cause
disorder at the systems level. Based on our previous findings,
miRNAs with stronger single-line regulatory power on mRNAs
in the miRNA–mRNA network were likely to be biomarkers.12

Hence this special structural feature was analyzed in the lncRNA–
miRNA–mRNA network to highlight potential clues for ceRNA-
based screening of miRNA biomarkers for cancer management.
According to statistical evidence, miRNAs competed by lncRNAs
and mRNAs had stronger regulatory power than other miRNAs,
and those with a large number of single-line targets, i.e. significant
NSR-mRNA/lncRNA/sponge value, tended to have a high possibil-
ity of serving as cancer biomarkers.

The application of the proposed bioinformatics model identi-
fied a total of 12 miRNAs as candidate biomarkers for PCa metas-
tasis, i.e. miR-23b-3p, miR-204-5p, miR-26b-5p, miR-27b-3p, miR-145-
5p, miR-29b-3p, miR-143-3p, miR-130a-3p, miR-363-3p, miR-218-5p,
miR-30c-5p, and miR-101-3p. Among them, 9 miRNAs (75%, 9/12)
were reported as mPCa biomarkers based on PubMed literature
mining. Overall, the predictive precision outperformed our previ-

ous approach and ROC analysis confirmed the power of identi-
fied miRNAs for classifying pPCa and mPCa samples. Moreover, a
low-throughput experiment using a prostate cell line and qRT-PCR
method indicated the potential of miR-26b-5p, miR-130a-3p, and
miR-363-3p as novel biomarkers for prediction of PCa metastasis.
Functional analyses demonstrated underlying carcinogenesis of
identified miRNAs as well as competing interactions in mediating
PCa-associated pathways such as prostate cancer signaling, p53
signaling, ERK/MAPK signaling, and TGF-β signaling.

It should be noted that shortcomings and limitations in this
study still need to be carefully considered and addressed. First,
the structural features of different types of RNA nodes were char-
acterized in the ceRNA-based network, and with the accumula-
tion of biological data the analytical strategy should be improved
by reasonably adding new parameters associated with the func-
tional importance of RNAs during PCa progression and metas-
tasis. Second, in the current model only lncRNAs and mRNAs
were considered as ceRNA components for network character-
ization, however, according to the “ceRNA hypothesis” circular
RNAs (circRNAs) and pseudogenes also contributed to the com-
petition on miRNAs for down-stream gene regulation, hence the
network system needs to be expanded for multivariate detection
of biomarkers at multi-RNA levels, e.g. lncRNAs, circRNAs, mRNAs
as well as their combined or module signatures. Last but most im-
portant, functional validation and a pathogenic survey using hu-
man samples and clinical data will be conducted in our next-step
work for further translational research of the findings.
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