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A B S T R A C T

Photoacoustic tomography (PAT) is an innovative biomedical imaging technology, which has the capacity to
obtain high-resolution images of biological tissue. In the extremely limited-view cases, traditional reconstruction
methods for photoacoustic tomography frequently result in severe artifacts and distortion. Therefore, multiple
diffusion models-enhanced reconstruction strategy for PAT is proposed in this study. Boosted by the multi-scale
priors of the sinograms obtained in the full view and the limited-view case of 240◦, the alternating iteration
method is adopted to generate data for missing views in the sinogram domain. The strategy refines the image
information from global to local, which improves the stability of the reconstruction process and promotes high-
quality PAT reconstruction. The blood vessel simulation dataset and the in vivo experimental dataset were uti-
lized to assess the performance of the proposed method. When applied to the in vivo experimental dataset in the
limited-view case of 60◦, the proposed method demonstrates a significant enhancement in peak signal-to-noise
ratio and structural similarity by 23.08% and 7.14%, respectively, concurrently reducing mean squared error
by 108.91% compared to the traditional method. The results indicate that the proposed approach achieves
superior reconstruction quality in extremely limited-view cases, when compared to other methods. This inno-
vative approach offers a promising pathway for extremely limited-view PAT reconstruction, with potential im-
plications for expanding its utility in clinical diagnostics.

1. Introduction

Photoacoustic tomography (PAT) is a non-invasive imaging tech-
nique used for imaging biological tissue structure, characterized by high
contrast, high resolution, and deep penetration [1–3]. It has been widely
applied in the biomedical field, such as cardiovascular detection [4,5],
functional brain mapping [6,7], tumor diagnosis [8–10] and tissue im-
aging [11,12]. It maximizes the efficiency of converting absorbed
photon energy into heat by selecting lasers of appropriate wavelengths
as the excitation source. The absorbed light energy is converted into heat
energy, generating pressure waves, namely photoacoustic signals. Pho-
toacoustic signals are received and converted into electrical signals by
ultrasonic transducers. After appropriate processing of the collected
signals, images are obtained using specific image reconstruction

algorithms [13,14]. However, traditional imaging methods such as
universal back-projection (UBP) [15], delay-and-sum (DAS) [16] and
filtered back-projection (FBP) [17], often result in poor image quality
under limited views. In practical scenarios, due to constraints such as
bandwidth and the quantity of ultrasonic transducers, ultrasonic trans-
ducers often can only scan within a limited angle in enclosed cavities. It
is difficult to obtain complete photoacoustic signals. Thus, the recon-
struction of images may be plagued by significant artifacts and distor-
tion. The presence of blind spots, blurring and artifacts can diminish
image contrast, obscure image structures and omit crucial information,
posing significant impediments to practical diagnosis. Therefore, it is of
paramount significance to address the challenges of distortion and ar-
tifacts in the limited-view PAT reconstruction.

Many studies have proposed hardware solutions to address the
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challenges. For example, Lawrence et al. developed a nearly full-view
closed spherical system and achieved stereoscopic coverage of imaged
objects by rotating and translating a circular transducer array [18]. The
degree of match between the transducer response and the spectrum of
the photoacoustic signal significantly impacts imaging quality [19]. Ku
et al. developed a multi-transducer imaging system with varying center
frequencies to enhance imaging accuracy in a broad spectrum range
[20]. Huang et al. proposed improved transducer structures by adding a
negative lens on the transducer surface or adding a 45◦ sound reflector
array to achieve a larger signal reception angle [21,22]. In addition,
researchers from different teams, such as Yeh et al., improved the shape
of the array, proposing spherical, cylindrical and other different shapes
of detection arrays [18,23]. However, due to the high cost of hardware
improvements, it is difficult to promote in practical applications.
Hardware improvements still have significant shortcomings in
limited-angle reconstruction in PAT.

In recent years, an increasing number of studies have chosen to
initiate from an algorithmic standpoint, aiming to enhance the quality of
reconstructed images during the information processing phase. Tao et al.
proposed a two-loop iteration (TLI) method, which involves approxi-
mating the physical model of PAT to reconstruct the photoacoustic
source from measured photoacoustic signals, addressing the limited-
view problem in PAT [24]. With the improvement of neural network
training methods, deep learning techniques have been gradually applied
to PAT reconstruction. A deep neural network based on amodel iterative
scheme was proposed, employing the network as a learnable regulari-
zation term for the PAT optimization model, achieving enhanced
robustness [25]. Guan et al. introduced a pixel-wise deep learning
(Pixel-DL) approach, employing pixel-wise interpolation and utilizing
the convolutional neural network (CNN) to reconstruct images [26].
Tong et al. proposed a feature projection network (FPnet), establishing a
domain transformation network to process collected photoacoustic sig-
nals [27]. Susmelj et al. introduced a signal domain adaptation network
(SDAN), which extends the domain adaptation network (DAN) by
incorporating a sides prediction network to compensate for limited an-
gles and missing signals [28]. In recent years, generative models have
become increasingly popular in imaging applications. Ho et al. proposed
a denoising diffusion probabilistic model (DDPM), linking diffusion
models and Langevin dynamics matching [29]. After that, diffusion
models have made important contributions to image restoration
[30–38], such as the inverse reconstruction of PAT [32–34], magnetic
resonance imaging [35], computed tomography [36] and lensless im-
aging [37,38]. Fei et al. proposed the generative diffusion prior for
unified image restoration, using an unsupervised sampling method to
model the posterior distribution to generate high-resolution images
[30]. Xia et al. proposed the efficient diffusion model for image resto-
ration (DiffIR) [31], leveraging the powerful mapping capabilities of the
diffusion model to estimate a compact image prior representation for
guiding image restoration. For PAT reconstruction, in 2023, Song et al.
integrated model iteration with diffusion model and employed the
gradient descent (GD) method for data consistency to tackle the chal-
lenge of PAT reconstruction under extremely sparse-view conditions
[32]. Guo et al. (2024), from the same team, extended this method to
further assess its effectiveness in limited-view PAT reconstruction [33].
Additionally, in 2024, Dey and his team proposed a
measure-conditioning formula to address linear inverse problems and
applied it to PAT reconstruction, demonstrating the effectiveness of the
formula [34]. These approaches enhance the efficiency and stability of
the diffusion model in image restoration by incorporating a structured
prior representation.

Inspired by this, the paper proposes a multi-scale reconstruction
strategy for PAT in the extremely limited view cases. The method driven
by multi-scale priors employs two score-based diffusion models to learn
the data distribution of sinograms in the full-view case and the limited-
view case of 240◦, respectively. Two sets of contrast experiments were
conducted, one using the blood vessel simulation dataset to generate

missing data on the sinogram in limited-view cases of 105◦, 80◦, 60◦ and
45◦, respectively. and the other using the in vivo experimental dataset to
generate missing data on the sinogram in limited-view cases of 120◦,
105◦, 80◦ and 60◦, respectively. The experimental results show that this
method can still achieve high-quality reconstruction for PAT in
extremely limited-view cases.

2. Principles and methods

2.1. Optimization model of photoacoustic tomography

According to Green’s function method, the photoacoustic signal that
collected by ultrasonic transducers can be obtained [39] as Eq. (1):
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The spatiotemporal representation for the photoacoustic signal de-
lineates the forward process inherent in photoacoustic imaging. This
equation can be streamlined into the linear process illustrated in Eq. (2)
[40]:

x = Аp0, (2)

where x represents the photoacoustic signal detected by the ultrasonic
transducer, A denotes the linear operator for the forward process, which
can be simulated using the k-Wave toolbox [41], and p0 signifies the
initial sound pressure.

The conversion of PAT fully-sampled sinograms to limited-view
sinograms can be expressed as a linear process in Eq. (3):

y = P(Λ)x, (3)

where x represents the full-view sinogram data, y denotes the under-
sampled sinogram data, P(Λ) represents the subsampling mask for
limited views.

When the DAS algorithm is used to directly solve the problem of
limited-view PAT reconstruction, the resulting image often suffers from
issues such as limited spatial resolution, severe artifacts and inconsistent
brightness compared to the original image. Therefore, restoring full-
view sinograms from limited-view sinograms can enhance the quality
of the reconstructed image. To achieve this, the limited-view PAT
reconstruction problem is formulated as an optimization problem, as
shown in Eq. (4):

x∗ = arg min
x

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒P(Λ)x − y

⃒
⃒
⃒
⃒|
2
2 + τR(x), (4)

where ‖P(Λ)x − y‖22 is the data fidelity term, R(x) is the regularization
term containing prior information, and τ is the balance factor between
the two terms. The data fidelity term ensures that the limited-view
sinograms is consistent with the estimated measured values obtained
through the subsampling mask P(Λ). The regularization term enhances
the generalization ability of the model and improves the stability of the
reconstruction process [42]. Common regularization methods include
Tikhonov regularization [43], TV regularization [44], and l1 regulari-
zation [45].

2.2. Principle of alternating iterative reconstruction for PAT enhanced by
multi-scale diffusion models

2.2.1. Diffusion model
Mainstream generative models are typically categorized into two

types. One category is the implicit generative model, with the generative
adversarial network (GAN) serving as a prominent example. GAN em-
ploys adversarial training, alternately optimizing the generator and
discriminator to produce high-quality reconstructed images. However, if
the real data exhibits multiple modes, the generator loss function be-
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comes non-convex, making it susceptible to mode collapse. This phe-
nomenon can lead to training failures [46]. The other class is the explicit
generative model that directly fits the data distribution. Examples
include variational autoencoders (VAE) [47], normalizing flow models
[48], and deep Boltzmann machines [49]. In a generative model, each
datum in the dataset is regarded as an independent and identically
distributed random sample, whose distribution is treated as a proba-
bility distribution pdata(x). This distribution is typically represented by a
score function, where the score function corresponds to the gradient of
the log-probability density function. The generative model employs the
denoising score matching method to estimate the approximate score
network Sθ(x(t), t) of the data distribution pdata(x). Subsequently, it
utilizes the annealed Langevin Dynamics to randomly sample the image
approximating data distribution pdata(x).

The diffusion model consists of forward diffusion process and reverse
diffusion process. Forward diffusion process is a stochastic differential
equation (SDE). As shown in Fig. 1, over successive time series t ∈ [0,T],
the forward diffusion process can be described by {x(t)}Tt=0. x(0) ∼ pdata,
pdata represents the original data distribution. x(T) ∼ pT, pT represents
the data distribution pdata after noise perturbation elapsed T time,
referred to as the prior distribution. Typically, during a forward process,
by gradually introducing noise perturbations, the original data distri-
bution pdata transitions to an unstructured prior distribution pT. pT is
independent of the original distribution. The forward diffusion process
of the original image x(0) from t = 0 to t = T is illustrated in Eq. (5):

dx = f(x, t)dt+ g(t)dw, (5)

where f(x, t) ∈ ℝn is the drift coefficient, g(t) ∈ ℝ is the diffusion coef-
ficient, and w ∈ ℝn represents standard Brownian motion. Reverse SDE
is a sampling process where the target distribution pdata is derived by
gradually sampling the noise-perturbed distribution pT through Lange-
vin Dynamics [50]. The reverse diffusion process of the noise-perturbed
image x(T) from t = T to t = 0 is illustrated in Eq. (6):

dx =
[
f
(
x, t
)
− g(t)2∇x log pt(x)

]
dt+ g(t)dw, (6)

where ∇x log pt(x) represents the score function of pt(x), and w is the
inverse Brownian motion. The specific structure of SDE is defined by f(x,
t) and g(t). However, obtaining∇x log pt(x) is challenging in practice, so
the gradient is estimated by training a score-based network Sθ(x(t), t)
that is time-variant. Subsequently, x(0)can be sampled from the original
distribution pdata.

To generate high-quality images, VE-SDE [51] is adopted in this
paper, and the drift coefficient and diffusion coefficient are set as shown
in Eq. (7):
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)

= 0, g(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d[σ2(t)]
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where σ(t) > 0 is a monotone increasing function of the noise scale.
In order to maximize the performance of the model, the training

objective of the score model is illustrated in Eq. (8):

θ∗ = arg min
θ

Et

{
λ(t)Ex(0)Ex(t)|x(0)

[
‖Sθ(x(t), t) − ∇x(t) log pt(x(t)|x(0))‖22

]}
,

(8)

where λ is the positive weight function regulating the loss,∇x log pt(x(t)|
x(0)) is the gradient centered on x(0) Gaussian perturbation kernel, and
∇x log pt(x) is replaced by ∇x(t) log pt(x(t)|x(0)) [52]. When condition
Sθ(x(t), t) ≃ ∇x log pt(x) is satisfied, it indicates that the score network
has acquired ample prior information, and for all instances of t,
∇x log pt(x) can be replaced by Sθ(x(t), t). The reverse diffusion process
can then be reformulated as Eq. (9):

dx =
d[σ2(t)]

dt
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)

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d[σ2(t)]

dt

√

dw. (9)

As shown in Fig. 2, the score network Sθ(x(t), t) is implemented using
the deformed U-Net architecture, which comprises two main compo-
nents: the encoder and the decoder [53]. These components are inter-
connected by residual connections or self-attention modules. The
residual connections are employed to reintroduce detailed features,
while the self-attention modules are used to capture long-distance
structural information within the image [54]. Notably, the incorpora-
tion of the self-attention mechanism helps the score network focus more
effectively on important features, thereby improving the overall quality
of the samples [55].

2.2.2. Alternating iterative PAT reconstruction enhanced by multi-scale
diffusion models

In this study, a novel multi-scale diffusion model strategy is pro-
posed. Specifically, two different diffusion models are employed. As
shown in Fig. 3, the full-view single diffusion model (FS-DM) can
effectively learn global information, and the limited-view single diffu-
sion model (LS-DM) uses masks to focus on learning specific local in-
formation. By integrating the strengths of both diffusion models,
detailed information can be effectively refined while constructing the
overall structure, enhancing the reconstruction efficacy of a single
diffusion model and bolstering the stability of PAT reconstruction.

Prior learning: As shown in the training section of Fig. 4, the FS-DM
and LS-DM models utilize fully-sampled sinogram data x1 and under-
sampled sinogram data x2 in the limited-view case of 240◦ as inputs,
respectively. To acquire data distribution information at specific loca-
tions, masks are introduced to separate training data. The specific mask
matrix operator is defined in Eq. (10):
{
x1 = x, x1 is a 360

◦ full − view sinogram
x2 = P(Λ)1x, x2 is a 240

◦ limited − view sinogram (10)

Fig. 1. The forward diffusion and reverse diffusion processes.
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where x represents the fully-sampled sinogram, as illustrated in the
training section of Fig. 4. P(Λ)1 is a binary matrix of size 512 × 512. The
black rectangular region in the middle signifies that the data distribution
of 120◦ within this region is disregarded. The information of 240◦ in the
white region in the figure is extracted.

During training, the data distribution of the input sample is obtained
through a gradual transformation from the structured raw data distri-
bution to the unstructured prior distribution by slowly introducing noise
perturbations. Through simulating the forward diffusion process, the
target data distributions of FS-DM and LS-DM are estimated, respec-
tively, leading to the achievement of the score networks for FS-DM and
LS-DM.

Alternating iterative reconstruction: As shown in the reconstruc-
tion section of Fig. 4, two numerical inverse SDE solvers and data con-
sistency operations are integrated into the reconstruction process to
update the reconstructed image. The comprehensive framework of
iterative reconstruction is presented in Eq. (11):
⎧
⎪⎪⎨

⎪⎪⎩

xi
1 = GM1

(
xi+1
1
)
, x1 is a 360

◦ full − view sample
xi− 1
2 = GM2

(
xi
1P(Λ)1

)
, x2 is a 240

◦ limited − view sample
xi− 1
1 = xi− 1

2 + xi
1P(Λ)2

(11)

where GM1 represents the reconstruction process of the global infor-
mation of the image, and GM2 represents the reconstruction process for
the specific area of the image. x1 and x2 represent the output results of
the network using different prior information corresponding to FS-DM
and LS-DM, respectively. The variable i denotes the number of reverse
iterations. In the reconstruction segment of Fig. 4, both P(Λ)1 and P(Λ)2

represent 512 × 512 binary matrices. The black rectangular area in the
P(Λ)1 indicates that the data distribution of 120◦ in this area is ignored.
The information of 240◦ in the white part of the diagram is extracted.
The expression for P(Λ)2 is analogous. Then, the extracted information is
used to fill the sample xi− 12 reconstructed by the undersampled model.

Predictor-corrector (PC): During the reversal of SDE, the PC
sampler is introduced. By removing the predicted noise, the predictor is
utilized to generate the new sinogram data. Subsequently, the corrector
calibrates the marginal distribution of the corresponding reconstructed
sinograms using the annealed Langevin Dynamics. Both operations
contribute to generating samples that adhere to the target distribution.
The predictor can be expressed as Eq. (12):

x̃i
= xi +

(

σ2
i+1 − σ2

i

)

Sθ

(

xi, σi+1

)

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
i+1 − σ2

i

√

z, (12)

where σi is the noise level, i = N − 1,…, 1,0 is the number of dis-
cretization steps (i.e., the number of iterations) of the reverse SDE, z ∼
ℕ(0, 1) is the Gaussian disturbance of zero mean. Based on the
discrepancy between output of the predictor and the target distribution,
the corrector adjusts the output of predictor by using the Langevin Dy-
namics Markov chain Monte Carlo method [51,56] to correct the
gradient ascent direction. The correction process is shown in Eq. (13):

xi− 1 = x̃i
+ εiSθ

(
x̃i
, σi+1

)
+

̅̅̅̅̅̅
2εi

√
z, (13)

where εi > 0 is the noise iteration step. For i = N − 1,…,1,0, repeating
the above equation, Langevin Dynamics guarantees that when εi→0, xi

samples from pt(x) under specified conditions.

Fig. 2. Structure of the score network. The number below the block represents the image size.

Fig. 3. The multi-scale diffusion model strategy achieves the synthesis of global and local information. (a) FS-DM reconstructs images to capture global features,
while (b) LS-DM focuses on reconstructing images for specific regions.
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Data consistency (DC): The limited-view reconstruction for PAT
can be converted into solving an optimization problem. The optimiza-
tion problem can be described as Eq. (14):

x = arg min
x

{
‖P(Λ)x − y‖22 + λ

⃦
⃦x − xgen

⃦
⃦2
2

}
, (14)

where x represents the sinogram to be reconstructed, and xgen represents
the sinogram generated by score-based networks. Under the condition of
first-order optimality, the solution of x∗ is realized, as shown in Eq. (15):

x∗(κ) =
{
xgen(κ), κ ∕∈ Ω
y(κ), κ ∈ Ω (15)

where xgen(κ) represents the entries at the position κ in the data gener-
ated by the network, and Ω represents the corresponding sampled po-
sitions when the sinograms in different limited-view cases are used as

the inputs for reconstruction.
In summary, a limited-view PAT reconstruction algorithm based on

multi-scale diffusion models is proposed, as shown in Algorithm 1. In the
training stage, two diffusion models are trained by inputting different
data samples to obtain sufficient prior information. The multiple prior
information can impose stronger constraints on the solutions of opti-
mization problems to mitigate ill-posedness during the iterative process,
as regularization terms. In the reconstruction stage, through the alter-
nating iteration operation, the multi-scale priors from two types of data
distribution obtained during training are utilized. This achieves the
transmission of information from the global to the local, thereby
reconstructing more accurate details. At the same time, to ensure that
the reconstructed sinogram data is generated in the correct direction,
the fidelity method, as shown in Eq. (15), is adopted in each iteration
after PC sampling. The data at sampled positions in the input sinogram is
used to replace the data at corresponding positions of the sinogram

Fig. 4. The pipeline for the training and iterative reconstruction processes. During the training process, P(Λ)1 is employed to extract the limited-sampled information
of 240◦ indicated by the white part, while disregarding the information of the black. The reconstruction process comprises two reverse SDEs, involving the predictor-
corrector (PC) and data consistency (DC). Similarly, P(Λ)1 is utilized to extract the limited-sampled information of 240◦ indicated by the white part, while ignoring
the information of 120◦ indicated by the black part. Conversely, P(Λ)2 is used to extract the limited-sampled information of 120◦ indicated by the white part,
disregarding the information of 240◦ indicated by the black part.
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matrix in the iteration process. In this way, high-quality reconstruction
for PAT in extremely limited-view cases can be achieved by performing
the alternating iteration operations.

Algorithm 1. Training for prior learning

2.3. Dataset acquisition and network parameter setting

Dataset: This method utilized the blood vessel simulation dataset
and the in vivo experimental dataset to assess the reconstruction effec-
tiveness. (1) The blood vessel simulation dataset: To simulate the sino-
gram formed by forward propagation in photoacoustic imaging, this
study constructed a virtual PAT platform using the k-Wave toolbox. The
platform employs water as the medium, with a density of 1000 kg/m3.
As shown in Fig. 5, the simulation area of the platform is set at 50.1 mm
× 50.1 mm and divided into a grid of 556 × 556 pixels, thereby dis-
cretizing the medium. Around the platform, the imaging object is posi-
tioned at the center with a radius of 18.5 mm, and the ultrasonic
transducers used to receive ultrasonic signals are uniformly placed.

Sinograms in different limited-view cases are obtained by varying the
detection angles of ultrasonic transducers. The sinograms collected
under the detection angle of 360◦ are used as the ground truths. The
center frequency of the ultrasonic transducers is 2.25 MHz. The band-
width is 100 %, and the sound speed is set to 1500 m/s. Publicly
available retinal vessel datasets RAVIR and DRIVE [57], which are uti-

lized in the experiment, are augmented through operations such as
rotation and cropping. The training dataset comprises 1500 images. (2)
The in vivo experimental dataset: This dataset is sourced from [58],
which comprises reconstructed images from the full view of the mouse
abdomen. These images are imported into the virtual PAT to obtain the
sinograms. The simulation area of the platform is set at 50 mm× 50 mm
and divided into a grid of 440 × 440 pixels. The ultrasonic transducers
are positioned at a distance of 21.6 mm from the imaging object. Other
parameters of the platform remain consistent with those of the vessel
simulation experiment.

Parameter setting: The size of input sinogram is 512×512. Adaptive
moment estimation (Adam) is utilized as the optimizer to minimize the
training loss (optimize the network), and the learning rate is set to

Fig. 5. Process of simulated blood vessels reconstruction using virtual PAT.
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2×10− 4. In the training phase, the noise range is from σmin = 0.01 to
σmax = 300, and the batch size is set to 1. The training process spans
200,000 iterations from the start of the training to its completion, while
the reconstruction of a sinogram requires 999 iterations.

The experiment is conducted using the PyTorch framework and
performed on an Ubuntu system equipped with two NVIDIA GeForce
RTX 3060Ti GPUs.

2.4. Baseline methods

The comparison experiments include DAS, U-Net, GAN and FS-DM
methods. Obtained from [59], the employed U-Net, which is an
end-to-end network, uses an encoder and decoder to sample the input
image and generate the target output from the extracted characteristics
[60]. Similar to the traditional U-Net architecture, the encoder contains
convolutional blocks and max pooling blocks, and the decoder contains
upsampling blocks, convolutional blocks and concatenate blocks. As a
variant of the GAN, CycleGAN is an unsupervised generative model that
can map a source domain to a target domain without requiring a
one-to-one correspondence between training datasets [61]. The FS-DM

method signifies the iterative reconstruction method employing a
diffusion model trained with fully-sampled sinograms.

3. Results

3.1. Reconstruction results of the blood vessel simulation dataset

As shown in Fig. 5, the augmented dataset is input into the virtual
PAT platform for imaging. Corresponding photoacoustic signals are
obtained by adjusting the detection angle of ultrasonic transducers,
resulting in sinograms in different limited-view cases. Then, the limited-
view sinograms are restored to full-view sinograms using the recon-
struction algorithm. Finally, they are ultimately transitioned into the
image domain.

Fig. 6(a1)-(c5) show the iterative process of the proposed method,
the FS-DM method and the LS-DM method in the limited-view case of
80◦, respectively. The LS-DM method denotes the iterative reconstruc-
tion using a diffusion model trained with the sinograms in the limited-
view case of 240◦. The limited-view PAT reconstruction involves itera-
tively restoring undersampled photoacoustic data to fully-sampled

Fig. 6. Reconstruction of simulated blood vessels in the limited-view case of 80◦ using the proposed method. (a1)-(a5) depict the reconstruction results over it-
erations using the method proposed in this study, respectively. (b1)-(b5) represent the reconstruction results over iterations using FS-DM, respectively. (c1)-(c5) show
the reconstruction results over iterations using LS-DM, respectively. (a6)-(c6) are the same ground truths. (d)-(e) represent the close-up images indicated by red
rectangles 1 and 2 over iterations, respectively. (f)-(g) illustrate the changes of PSNR and SSIM over iterations, respectively. Ours, the approach utilizing multi-scale
diffusion models; FS-DM, a diffusion model trained using the fully-sampled sinogram dataset; LS-DM, a diffusion model trained using the sinogram dataset in the
limited-view case of 240◦; GT, ground truth.
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photoacoustic data. In this process, the sinogram obtained in a limit-
view case is taken as an input, and the unsampled signal distribution
is ignored. With the increase in the number of iterations, the noise in-
tensity gradually weakens, and the sinogram information close to the
ground truth is gradually generated. Compared with the 10th iteration,
the quality of the reconstructed sinogram improves significantly at the
100th iteration. At the 999th iteration, the peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) of the reconstructed sinogram
based on the proposed method reach 31.38 dB and 0.85, respectively.
Compared to FS-DM reconstruction, they are 0.37 dB and 0.01 higher,
respectively. Additionally, they surpass those of the LS-DM reconstruc-
tion by 14.7 dB and 0.12.

Fig. 6(d) and Fig. 6(e) represent close-up images indicated by red
rectangles 1 and 2, respectively. It is evident that among the three
methods, the LS-DM method reconstructs the least information. Addi-
tionally, at the position indicated by the red and white arrows, although
the FS-DM method can reconstruct more information, it is evidently
inconsistent with the information distribution of the corresponding
position of the ground truth, which affects the quality of the recon-
structed sinogram. However, the results of the proposed method not
only ensure the generation of information but also conform to the data
distribution of the corresponding position of the ground truth. There-
fore, the method proposed in this study demonstrates excellent recon-
struction effectiveness. Fig. 6(f) and Fig. 6(g) illustrate the changes in
PSNR and SSIM over iterations. During the iterative process, both the

PSNR and SSIM of the three methods exhibit a steady increase and
eventually stabilize. In particular, the line resulting from the proposed
method reaches a higher position precisely at the inflection point
denoted by the black arrow. This observation suggests that the metric
associated with the proposed method achieves stability more rapidly.
Additionally, at the 500th iteration, the proposed method achieves
PSNR and SSIM values of 31.05 dB and 0.81, respectively. Finally,
during the iterative process, as indicated by the dashed line, the metrics
of results obtained by the proposed method gradually tend to 31.38 dB
and 0.85 from around the 600th iteration, respectively. Moreover, it can
be observed from the lines enlarged in Fig. 6(f) and Fig. 6(g) that the
PSNR and SSIM indices of the proposed method in this study are higher
than those of the LS-DM and FS-DM methods. This indicates the effec-
tiveness of the proposed method.

Fig. 7 illustrates the reconstruction results achieved by different
methods on the blood vessel simulation dataset in limited-view cases of
105◦, 80◦, 60◦ and 45◦, respectively. The white numbers in the figures
represent PSNR, while the yellow numbers represent SSIM. Fig. 7(a5)-
(e5) are the same ground truths. Fig. 7(a1)-(a4) exhibit the results ob-
tained through the DAS method in limited-view cases of 105◦, 80◦, 60◦
and 45◦, respectively. Fig. 7(b1)-(b4) show the reconstruction results
achieved by the U-Net method in limited-view cases of 105◦, 80◦, 60◦
and 45◦, respectively. It is worth noting that the U-Net method evidently
exhibits significant limitations in the restoration of sinogram informa-
tion. It is difficult to generate information corresponding to missing

Fig. 7. The reconstruction results of the blood vessel simulation dataset on the sinogram domain under different limited imaging conditions. (a1)-(a4) depict the
reconstructed sinograms using the DAS method in limited-view cases of 105◦, 80◦, 60◦ and 45◦, respectively. (b1)-(b4) show the reconstructed sinograms using the U-
Net method in limited-view cases of 105◦, 80◦, 60◦ and 45◦, respectively. (c1)-(c4) show the reconstructed sinograms using the GAN method in limited-view cases of
105◦, 80◦, 60◦ and 45◦, respectively. (d1)-(d4) show the reconstructed sinograms using the FS-DM method in limited-view cases of 105◦, 80◦, 60◦ and 45◦,
respectively. (e1)-(e4) represent the reconstructed sinograms using the method proposed in this study in limited-view cases of 105◦, 80◦, 60◦ and 45◦, respectively.
(a5)-(e5) are the same ground truths. Ours, the approach utilizing multi-scale diffusion models; FS-DM, a diffusion model trained using the fully-sampled sinogram
dataset; GT, ground truth.
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angles. Fig. 7(c1)-(c4) show the reconstruction results of the sinogram
domain utilizing the GANmethod in limited-view cases of 105◦, 80◦, 60◦
and 45◦, respectively. The reconstruction results of the GAN method
essentially do not generate new data, and the reconstructed image
shown in Fig. 7(c3) exhibits notable artifacts. Fig. 7(d1)-(d4) show the
reconstruction results of the sinogram domain utilizing the FS-DM
method in limited-view cases of 105◦, 80◦, 60◦ and 45◦, respectively.
The disparity in recovery effectiveness becomes apparent when
comparing it with the first two methods. As indicated by the white ar-
rows, although the results obtained by applying this method produce
new sinogram data. However, it is noticeable to generate several arti-
facts in the results as the angles decrease. These artifacts deviate from
the sinogram information distribution of the ground truth, potentially
compromising the quality of the reconstruction. Fig. 7(e1)-(e4) show the
reconstruction results of the sinogram domain utilizing the proposed
method in limited-view cases of 105◦, 80◦, 60◦ and 45◦, respectively. It is
noteworthy that the brightness of the reconstruction results from this
method aligns closely with the ground truth. Notably, there is no con-
spicuous generation of artifacts, indicating a high-quality reconstruc-
tion. Specifically, in the limited-view case of 105◦, the proposed method
exhibits significant enhancements in PSNR and SSIM by 32.50 % and
1.15 %, respectively, compared to the U-Net method. Additionally, the
proposed method outperforms the GANmethod, achieving the increases
in PSNR and SSIM of 35.37 % and 3.53 %, respectively. Furthermore,
the PSNR attains 30.66 dB in the limited-view case of 45◦, achieving
improvements of 15.35 dB over the U-Net method and 0.36 dB over the
FS-DM method. Similarly, the SSIM attains 0.85, with enhancements of
0.06 over the U-Net method and 0.01 over the FS-DM method, respec-
tively. Overall, compared to other methods, the method proposed in this
study demonstrates clear advantages, particularly in extremely limited-
view cases (e.g., 45◦-view). Additionally, the image quality surpasses
that of other methods in each limited-view case, indicating the effec-
tiveness of the proposed method in limited-view reconstruction for PAT.

Fig. 8 depicts the reconstruction results of the blood vessel simula-
tion dataset using different methods on the image domain in limited-
view cases of 105◦, 80◦, 60◦ and 45◦, respectively. Fig. 8(a5)-(e5) pre-
sent the ground truths, which are the simulated blood vessel images
reconstructed by the DAS method in the full-view case. The position
indicated by the dotted circle approximates the location of the ultrasonic
transducers. Less information is gleaned from positions farther away
from the transducers. Therefore, as the detection angle decreases, the
reconstructed area away from the transducers gradually becomes blur-
red. Fig. 8(a1)-(a4) depict the reconstruction results of the DAS method
in limited-view cases of 105◦, 80◦, 60◦ and 45◦. It is evident that
numerous artifacts are present in the imaging in different limited-view
cases. And the artifacts become increasingly pronounced as the angles
decrease. Fig. 8(b1)-(b4) illustrate the reconstruction results of the U-
Net method in limited-view cases of 105◦, 80◦, 60◦ and 45◦, respectively.
It is observable that, in each limited-view case, the results of the U-Net
method still exhibit numerous artifacts. However, the structure infor-
mation of reconstructed images is marginally improved compared to
that of the DASmethod. Fig. 8(c1)-(c4) exhibit the reconstruction results
of the GAN method in limited-view cases of 105◦, 80◦, 60◦ and 45◦,
respectively. The reconstruction results of the GAN method exhibit a
significant number of evident artifacts, and in extremely limited-view
cases (e.g., 45◦-view and 60◦-view), new image information almost
can not be reconstructed. Fig. 8(d1)-(d4) exhibit the reconstruction re-
sults of the FS-DM method in limited-view cases of 105◦, 80◦, 60◦ and

45◦, respectively. The reconstruction results of this method appear
relatively favorable, with fewer artifacts observed in the overall image.
However, noticeable artifacts persist in certain areas. And the quality of
reconstruction significantly diminishes when the detection angle is less
than or equal to 80◦. Fig. 8(e1)-(e4) depict the reconstruction results of
the proposed method in limited-view cases of 105◦, 80◦, 60◦ and 45◦,
respectively. Notably, the brightness of the reconstructed images using
this method is largely consistent with the ground truth. Moreover, the
presence of artifacts in the reconstructed images is markedly reduced
compared to other methods in each limited-view case.

As shown in Fig. 8, from a quantitative standpoint, in the limited-
view case of 60◦, the reconstructed PSNR and SSIM using the pro-
posed method reach 22.10 dB and 0.81, respectively. This represents a
9.14 % increase in PSNR and a 5.19 % increase in SSIM compared to the
DAS method, while a 6.76 % increase in PSNR and a 10.96 % increase in
SSIM compared to the GAN method. In the extremely limited-view case
of 45◦, the reconstructed PSNR and SSIM using the method proposed in
this paper reach 21.72 dB and 0.78, respectively. This shows a 4.02 %
increase in PSNR and a 2.62 % increase in SSIM compared to the U-Net
method, and a substantial improvement of 24.83 % in PSNR and 6.85 %
in SSIM compared to the FS-DM method. Fig. 8(f) and Fig. 8(g) show
close-up images indicated by the red rectangles 1 and 2, respectively. It
can be seen that in the limited-view case of 60◦ in Fig. 8(f), the close-up
images of DAS, U-Net, GAN and FS-DM methods have obvious artifacts
at the position indicated by the white arrows. These artifacts will affect
the quality of the reconstructed image. In Fig. 8(g), in the limited-view
case of 45◦, the close-up images of DAS, U-Net, GAN and FS-DMmethods
also have obvious artifacts at the locations indicated by the red arrows.
However, the reconstruction results of this method based on this study
show no obvious artifacts in the positions indicated by these arrows, and
the imaging quality is excellent. Fig. 8(h) and Fig. 8(i) depict the signal
distribution along the dashed line. It can be found that the signal dis-
tribution of the proposed method is the closest to that of the ground
truth. In general, compared with other methods, the method proposed in
this study shows obvious advantages in extremely limited-view cases (e.
g., 45◦-view). The image quality of the proposed method is higher than
other methods in different limited-view cases, demonstrating superior
performance.

Fig. 9 shows the error maps obtained from the reconstruction results
of the blood vessel simulation dataset. The error maps depicted in Fig. 9
(a1)-(a4), Fig. 9(b1)-(b4) and Fig. 9(c1)-(c4) represent the performances
of the DAS, U-Net and GAN methods, respectively, in limited-view cases
of 105◦, 80◦, 60◦ and 45◦. The artifacts are evident in regions marked by
white arrows, resulting in increased deviation from the ground truth.
Furthermore, Fig. 9(d1)-(d4) illustrate the error maps corresponding to
the reconstruction results of the FS-DM method in limited-view cases of
105◦, 80◦, 60◦ and 45◦, respectively. Prominent local artifacts are
observed at the arrow-indicated positions, along with substantial dis-
crepancies in brightness of the background compared to the ground
truth. Fig. 9(e1)-(e4) present the error maps of the proposed method in
limited-view cases of 105◦, 80◦, 60◦ and 45◦, respectively. Fig. 9(a5)-
(e5) are the same error maps corresponding to the same ground truths.
There are no discernible artifacts at the positions indicated by the ar-
rows, and the brightness corresponds closely to that of the ground truth.
It is evident that the error between the method proposed in this study
and the ground truth is minimal. Table 1 displays the mean values of
PSNR, SSIM and mean square error (MSE) for the reconstruction results.
In the limited-view case of 60◦, the proposed method outperforms the

Fig. 8. The reconstruction results of the blood vessel simulation dataset in different limited-view cases. (a1)-(a4) exhibit the reconstruction results of the DAS method
in limited-view cases of 105◦, 80◦, 60◦ and 45◦, respectively. (b1)-(b4) represent the reconstruction results of the U-Net method in limited-view cases of 105◦, 80◦,
60◦ and 45◦, respectively. (c1)-(c4) show the reconstruction results of the GAN method in limited-view cases of 105◦, 80◦, 60◦ and 45◦, respectively. (d1)-(d4) show
the reconstruction results of the FS-DM method in limited-view cases of 105◦, 80◦, 60◦ and 45◦, respectively. (e1)-(e4) depict the reconstruction results of the method
proposed in this study in limited-view cases of 105◦, 80◦, 60◦ and 45◦, respectively. (a5)-(e5) are the ground truths. (f) and (g) represent close-up images indicated by
the red rectangles 1 and 2, respectively. (h) and (i) exhibit the intensity distribution along the dashed lines in (f) and (g), respectively. Ours, the approach utilizing
multi-scale diffusion models; FS-DM, a diffusion model trained using the fully-sampled sinogram dataset; GT, ground truth.
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FS-DM method with improvements of 7.47 % and 2.5 % in PSNR and
SSIM, respectively, while reducing MSE by 63.95 %. Additionally, the
proposed method demonstrates enhancements of 3.76 % and 9.33 % in
PSNR and SSIM, alongside a decrease of 18.42 % in MSE, compared to
the GAN method. Similarly, in the limited-view case of 45◦, the mean
PSNR, SSIM and MSE of the reconstruction results using the proposed
method are 21.59 dB, 0.79 and 0.0067, respectively. The proposed
method demonstrates enhancements of 5.01 % and 2.60 % in PSNR and
SSIM, alongside a decrease of 17.28 % in MSE, compared to the U-Net
method. Moreover, compared to the DAS method, the proposed method
achieves increases of 8.82 % and 5.33 % in PSNR and SSIM, respec-
tively, while decreasing MSE by 30.21 %. These findings further un-
derscore the superiority and effectiveness of the proposed method for
PAT reconstruction in limited-view cases.

3.2. Reconstruction results of the in vivo experimental dataset

Fig. 10 presents the reconstruction results of the in vivo experimental
dataset using different methods in limited-view cases of 120◦, 105◦, 80◦

and 60◦, respectively. The dotted circle indicates the approximate po-
sition of the ultrasonic transducers. Fig. 10(a5)-(d5) represent the same
ground truths. Fig. 10(a1)-(a4) depict the reconstruction results of the
DAS method and the U-Net method in limited-view cases of 120◦, 105◦,
80◦ and 60◦, respectively. For DAS and U-Net methods, it is evident that

Fig. 9. The error maps derived from the reconstruction results of the blood vessel simulation dataset. (a1)-(a4) depict the error maps corresponding to the
reconstruction results of the DAS method in limited-view cases of 105◦, 80◦, 60◦ and 45◦, respectively. (b1)-(b4) show the error maps corresponding to the
reconstruction results of the U-Net method in limited-view cases of 105◦, 80◦, 60◦ and 45◦, respectively. (c1)-(c4) show the error maps corresponding to the
reconstruction results of the GAN method in limited-view cases of 105◦, 80◦, 60◦ and 45◦, respectively. (d1)-(d4) represent the error maps corresponding to the
reconstruction results of the FS-DM method in limited-view cases of 105◦, 80◦, 60◦ and 45◦, respectively. (e1)-(e4) show the error maps corresponding to the
reconstruction results of the proposed method in this study in limited-view cases of 105◦, 80◦, 60◦ and 45◦, respectively. (a5)-(e5) represent the error maps cor-
responding to the same ground truths. Ours, the approach utilizing multi-scale diffusion models; FS-DM, a diffusion model trained using the fully-sampled sinogram
dataset; GT, ground truth.

Table 1
Average values of quantitative metrics PSNR/SSIM/MSE of the blood vessel
simulated dataset.

Limited -view Method PSNR(dB) SSIM MSE

DAS 19.84 0.75 0.0096
U-Net 20.56 0.77 0.0081

45◦ GAN 20.65 0.73 0.0087
FS-DM 20.47 0.78 0.0181
Ours 21.59 0.79 0.0067
DAS 20.56 0.78 0.0094
U-Net 20.69 0.79 0.0074

60◦ GAN 21.23 0.75 0.0076
FS-DM 20.48 0.80 0.0172
Ours 22.01 0.82 0.0062
DAS 21.15 0.81 0.0078
U-Net 21.28 0.82 0.0094

80◦ GAN 21.93 0.79 0.0064
FS-DM 21.22 0.83 0.0137
Ours 22.48 0.85 0.0054
DAS 22.55 0.85 0.0052
U-Net 21.65 0.86 0.0088

105◦ GAN 22.92 0.82 0.0052
FS-DM 23.45 0.87 0.0044
Ours 23.67 0.88 0.0040
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Fig. 10. The reconstruction results of in vivo experimental dataset under different limited imaging conditions. (a1)-(a4) are the reconstruction results of the DAS
method in limited-view cases of 120◦, 105◦, 80◦ and 60◦, respectively. (b1)-(b4) represent the reconstruction results of the U-Net method in limited-view cases of
120◦, 105◦, 80◦ and 60◦, respectively. (c1)-(c4) are the reconstruction results of the FS-DM method in limited-view cases of 120◦, 105◦, 80◦ and 60◦, respectively.
(d1)-(d4) show the reconstruction results of the proposed method in this study in limited-view cases of 120◦, 105◦, 80◦ and 60◦, respectively. (a5)-(d5) represent the
ground truths. (e) and (f) show error maps of close-up images indicated by the green rectangles 1 and 2, respectively. Ours, the approach utilizing multi-scale
diffusion models; FS-DM, a diffusion model trained using the fully-sampled sinogram dataset; GT, ground truth.
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distortion is present in the reconstruction results, leading to poor
reconstruction quality. Uneven brightness and significant artifacts are
observed in the results, particularly in limited-view cases of 80◦ and 60◦,
which adversely affect the reconstruction quality. Fig. 10(c1)-(c4)
illustrate the reconstruction results of the FS-DMmethod in limited-view
cases of 120◦, 105◦, 80◦ and 60◦, respectively. While the FS-DM method
demonstrates commendable reconstruction performance with fewer
artifacts, there remains a significant disparity in imaging brightness
compared to the ground truth. Fig. 10(d1)-(d4) present the reconstruc-
tion results of the proposed method in limited-view cases of 120◦, 105◦,
80◦ and 60◦, respectively. It is evident that, in comparison with other
methods, the quality of the reconstructed images using this method is
significantly superior in each limited-view case, even at 60◦. In terms of
quantitative comparison, in the limited-view case of 80◦, the recon-
struction results of the proposed method achieve PSNR and SSIM values
of 23.82 dB and 0.84, respectively, which are 50.85 % and 21.74 %
higher than those of the FS-DM method. Additionally, in the limited-
view case of 60◦, the reconstruction results of the proposed method
achieve a PSNR of 22.33 dB and a SSIM of 0.82. These values represent a
substantial improvement over the DAS method, with a 36.00 % increase
in PSNR and a 10.81 % increase in SSIM. Likewise, compared to the U-
Net method, there is a significant advancement, with a 30.58 % increase
in PSNR and a 10.81 % increase in SSIM. Fig. 10(e) and Fig. 10(f) show
error maps of close-up images indicated by the green rectangles. It can
be observed that in the limited-view case of 60◦, at positions indicated
by the red and white arrows, the reconstruction results of the proposed
method are closest to the ground truth and exhibit the fewest errors
compared to other methods. This indicates that the proposed method
shows outstanding performance.

Fig. 11 illustrates the error maps of the in vivo experimental dataset
when different methods are applied in limited-view cases of 120◦, 105◦,
80◦ and 60◦, respectively. Fig. 11(a1)-(a4) and Fig. 11(b1)-(b4) show the

error maps of the results reconstructed by DAS and U-Net methods in
limited-view cases of 120◦, 105◦, 80◦ and 60◦, respectively. The posi-
tions indicated by the red arrows indicate that the brightness distribu-
tion of the error maps is notably uneven, with obvious artifacts in the
image background, leading to increased discrepancies with the ground
truth. Fig. 11(c1)-(c4) show the error maps corresponding to the
reconstruction results of the FS-DM method in limited-view cases of
120◦, 105◦, 80◦ and 60◦, respectively. The positions indicated by the
white arrows reveal imperfections in recovering information at a
detailed level, with inconsistent brightness of the background compared
to the ground truth. Fig. 11(d1)-(d4) depict the error maps corre-
sponding to the reconstruction results of the proposed method in
limited-view cases of 120◦, 105◦, 80◦ and 60◦, respectively. In the
limited-view case of 60◦, the reconstruction results of this method
exhibit a uniform brightness distribution at the position indicated by the
red arrows, which closely matches the ground truth. Additionally, at the
position indicated by the white arrows, the local reconstruction result of
this method is most consistent with the ground truth. The difference
between the ground truth and the reconstruction result is minimal,
indicating excellent reconstruction performance.

Fig. 12 illustrates the Fourier spectra of the in vivo experimental
dataset through the Fourier transform when different methods are
applied in limited-view cases of 120◦, 105◦, 80◦ and 60◦, respectively.
White dashed lines are used to indicate the distribution of information
sampled in the Fourier spectra in different limited-view cases. Fig. 12
(a5)-(d5) represent the ground truth in the frequency domain. Fig. 12
(a1)-(a4) show the intensity maps on the frequency domain corre-
sponding to the reconstruction results of the DAS method in limited-
view cases of 120◦, 105◦, 80◦ and 60◦, respectively. As indicated by
the white arrows, the information deficiency of the results of the DAS
method from the unsampled angle is obvious. Fig. 12(b1)-(b4) depict the
intensity maps on the frequency domain corresponding to the

Fig. 11. Error maps of the reconstruction results of in vivo experimental dataset. (a1)-(a4) represent the error maps corresponding to the reconstruction results of the
DAS method in limited-view cases of 120◦, 105◦, 80◦ and 60◦, respectively. (b1)-(b4) are the error maps corresponding to the reconstruction results of the U-Net
method in limited-view cases of 120◦, 105◦, 80◦ and 60◦, respectively. (c1)-(c4) show the error maps corresponding to the reconstruction results of the FS-DMmethod
in limited-view cases of 120◦, 105◦, 80◦ and 60◦, respectively. (d1)-(d4) are the error maps corresponding to the reconstruction results of the proposed method in
limited-view cases of 120◦, 105◦, 80◦ and 60◦, respectively. (a5)-(d5) represent the error maps corresponding to the ground truth. Ours, the approach utilizing multi-
scale diffusion models; FS-DM, a diffusion model trained using the fully-sampled sinogram dataset; GT, ground truth.
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reconstruction results of the U-Net method in limited-view cases of 120◦,
105◦, 80◦ and 60◦, respectively. It can be observed that in the limited-
view case of 60◦, the reconstructed images contain little information
outside the sampled view. Fig. 12(c1)-(c4) represent the intensity maps
on the frequency domain corresponding to the reconstruction results of
the FS-DM method in limited-view cases of 120◦, 105◦, 80◦ and 60◦,
respectively. As indicated by the white arrows, the information outside
of the sampled view can be efficiently recovered using this method.
However, the overall intensity distribution of FS-DM at high-frequency
information is far from the ground truth. Fig. 12(d1)-(d4) depict the
intensity maps corresponding to the reconstruction results of the pro-
posed method in limited-view cases of 120◦, 105◦, 80◦ and 60◦,
respectively. As indicated by the white arrows, while recovering low-
frequency information, the distribution of high-frequency information
is also the closest to the ground truth. It can be observed that compared
with other methods, the proposed method achieves the closest approx-
imation to the ground truth in terms of overall and local information

recovery, demonstrating excellent reconstruction performance. The
Table 2 presents the mean values of PSNR, SSIM and MSE of the
reconstruction results. Quantitative comparison further validates the
superiority of the proposed method. In the limited-view case of 80◦, the
average PSNR, average SSIM and MSE of this method are 27.00 dB, 0.84
and 0.0021, respectively, which are 22.87 % and 14.49 % higher and
63.04 % lower than those of the FS-DMmethod. In the limited-view case
of 80◦, the average PSNR and SSIM of the reconstruction results of the
proposed method reach 20.64 dB and 0.75, respectively, with the MSE
being 0.0101. Compared with the U-Net method, the PSNR and SSIM are
increased by 18.96 % and 7.14 %, respectively, and the MSE is
decreased by 45.11 %. The experimental results demonstrate that the
proposed method excel in uniformizing brightness and eliminating
artifacts.

4. Conclusion and discussion

Currently, significant advancements have been made in PAT recon-
struction. However, the challenge persists in reconstructing photo-
acoustic images in extremely limited-view cases. To address this issue,
this study introduces multiple diffusion models-enhanced extremely
limited-view reconstruction strategy for PAT boosted by multi-scale
priors. The method trains two score-based diffusion models using both
fully-sampled sinograms and sinograms in limited-view case of 240◦,
facilitating the capture of prior information. Then, the alternating iter-
ation strategy is used to generate new sinogram data, aided by PC
sampling and the fidelity term. Finally, while the overall distribution of
the generated image remains aligned with the ground truth, local details
are further refined. In this study, the blood vessel simulation dataset and
the in vivo experimental dataset were utilized to assess the performance
of the proposed method. Successively, comparisons were made with the

Fig. 12. Frequency domain intensity maps of the reconstruction results of in vivo experimental dataset through Fourier transform. (a1)-(a4) are the frequency domain
intensity maps corresponding to the reconstruction results of the DAS method in limited-view cases of 120◦, 105◦, 80◦ and 60◦, respectively. (b1)-(b4) represent the
frequency domain intensity maps corresponding to the reconstruction results of the U-Net method in limited-view cases of 120◦, 105◦, 80◦ and 60◦, respectively. (c1)-
(c4) show the frequency domain intensity maps corresponding to the reconstruction results of the FS-DM method in limited-view cases of 120◦, 105◦, 80◦ and 60◦,
respectively. (d1)-(d4) are the frequency domain intensity maps corresponding to the reconstruction results of the proposed method in this study in limited-view
cases of 120◦, 105◦, 80◦ and 60◦, respectively. (a5)-(d5) represent the frequency domain intensity maps corresponding to the ground truth. Ours, the approach
utilizing multi-scale diffusion models; FS-DM, a diffusion model trained using the fully-sampled sinogram dataset; GT, ground truth.

Table 2
Average values of quantitative metrics PSNR/SSIM/MSE of the in vivo experi-
mental dataset.

Limited-
view

DAS U-Net FS-DM Ours

60◦ 16.77/0.70/
0.0211

17.35/0.70/
0.0184

16.39/0.63/
0.0235

20.64/0.75/
0.0101

80◦ 16.34/0.71/
0.0232

17.23/0.72/
0.0189

17.75/0.69/
0.0184

21.81/0.79/
0.0068

105◦ 16.32/0.69/
0.0234

17.72/0.72/
0.0169

17.78/0.72/
0.0174

26.61/0.82/
0.0022

120◦ 16.24/0.69/
0.0238

17.07/0.73/
0.0197

18.17/0.75/
0.0161

27.00/0.84/
0.0021
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DAS, U-Net and FS-DM methods. From a quantitative standpoint, in the
case of the in vivo experimental dataset, the proposed method achieves a
SSIM of 0.84 and a PSNR of 23.82 dB in the limited-view case of 80◦.
This represents an increase of 0.15 in SSIM and 8.03 dB in PSNR
compared to the FS-DM method. Furthermore, in the extremely limited-
view case of 60◦, the SSIM and PSNR are 0.78 and 21.72 dB, respec-
tively. These values demonstrate enhancements of 0.08 and 5.23 dB
over the U-Net method, respectively. Similarly, they show improve-
ments of 0.08 and 5.91 dB over the DAS method. From the reconstructed
images, it is evident that the method proposed in this study exhibits
exceptional performance in limited-view PAT reconstruction, compared
to the U-Net, DAS and FS-DM methods.

In this study, each diffusion model does not require pairs of training
samples and can effectively extract prior information from a limited
number of training samples. Additionally, the score-based generative
model focuses on the gradient of the logarithmic probability density
∇x log pt(x) as its primary research object. Compared to previous
models such as GANs, this gradient-based approach offers greater nu-
merical stability and controllability, resulting in a more stable training
process [62]. However, GANs, which are a type of unsupervised net-
works that do not require paired datasets for training, typically demand
large quantities of high-quality and diverse data to effectively support
the training process [63]. Furthermore, in the traditional GAN training
process, the adversarial competition between the generator and the
discriminator can lead to training instability, resulting in issues such as
convergence difficulties [64]. This instability makes it challenging to
ensure that the model can stably and reliably generate high-quality
samples in practical applications.

The method proposed in this study acquires prior information by
gradually introducing Gaussian noise during the training phase. The
training speed is contingent upon factors such as batch size, sinogram
size, and GPU performance, etc. In our experiments, the batch size is set
to 1, the sinogram size is 512×512, and the graphics card type is NVIDIA
GeForce RTX 3060Ti. During the training of the model, one checkpoint
is saved for every 1000 epochs, and each checkpoint requires approxi-
mately 1.2 h for generation. In total, 20 checkpoints are generated,
amounting to approximately 24 h. During the reconstruction, the best
model is firstly selected. The reconstruction process of each sinogram go
through 999 iterations, each iteration takes about 1.8 s, and the total
time is about 30 min. Finally, the sinograms are ultimately transitioned
into the image domain. The DAS method can directly generate recon-
structed images without necessitating training or iteration. U-Net is an
end-to-end network that falls under the category of supervised methods.
When dealing with different limited-view cases, the training of the
network must use pairs of fully-sampled sinograms and undersampled
sinograms. The training process requires 200 epochs and takes about
2.5 h. The reconstruction process of U-Net does not necessitate iteration,
only taking 1 s to 2 s. Similarly, CycleGAN is an unsupervised generative
model, but it still requires two data sets on different domains to train,
and the training process also executes 200 epochs, which takes about
14 h. Its reconstruction process does not require iteration, only 1 s to 2 s.
The reconstruction of the FS-DM method uses only one diffusion model
trained by the dataset of fully-sampled sinogram, with a reconstruction
time of approximately 15 min. During the reconstruction process, the
proposed method requires alternating iteration, whereas other methods
can directly convert from input to output. As a result, compared to these
other methods, the proposed method exhibits a disadvantage in terms of
time consumption during the reconstruction process.

In conclusion, to the best of our knowledge, this is the first imple-
mentation of applying multi-scale diffusion models directly to the
sinogram domain for PAT reconstruction. In addition, this method ad-
dresses the limitation of traditional end-to-end networks that require
paired data for training. The model obtained from one training can be
broadly applied for PAT reconstruction in various limited-view cases
without compromising reconstruction quality. Compared with the pre-
vious work [33], which only utilized a single diffusion model, the

proposed method employs multi-scale priors, which can better constrain
the erroneous generation of the model during the iteration and further
refine the sinogram from global to local. Therefore, our approach
significantly reduces the complexity of the PAT system, which in turn
lowers the economic cost of constructing the physical system. The time
required for model training is also descended. This breakthrough ad-
dresses the limitation of 45◦ imaging in extremely limited-view cases,
offering a viable pathway for limited-view PAT reconstruction. The
application of this technology holds immense potential in the domains of
medical imaging diagnosis [7,65], breast cancer detection [66,67] and
other related fields, thereby making significant contributions to the
advancement of human health.
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