

) Taylor & Francis Taylor & Francis Group

OPEN ACCESS Check for updates

The role of ArIRS in regulating oxacillin susceptibility in methicillin-resistant *Staphylococcus aureus* indicates it is a potential target for antimicrobial resistance breakers

Jinna Bai^a†, Xiaoyi Zhu^a†, Keqing Zhao^b†, Yingjie Yan^a, Tao Xu^c, Jiaxue Wang^d, Jinxing Zheng^{a,e}, Wei Huang^f, Le Shi^b, Yongpeng Shang^a, Zhihui Lv^a, Xiaofei Wang^a, Yang Wu^a and Di Qu^a

^aKey Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China; ^bDepartment of Otorhinolaryngology-Head and Neck Surgery, Eye & ENT Hospital, Shanghai Key Clinical Disciplines of otorhinolaryngology, Fudan University, Shanghai, People's Republic of China; ^cKey Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China; ^cLey Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China; ^dDepartment of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China; ^eDepartment of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital of Shenzhen University, Shenzhen, People's Republic of China; ^fMedical Clinic, Hangzhou Haiqin Sanatorium, Hangzhou, Zhejiang, People's Republic of China

ABSTRACT

Methicillin-resistant *Staphylococcus aureus* (MRSA), also known as oxacillin-resistant *S. aureus*, is a leading cause of community and hospital associated infections globally. In this work, we found that deletion of the *arlRS* two-component system genes in the USA300 and USA500 strains resulted in increased susceptibilities to oxacillin (8–16-fold decrease in minimal inhibitory concentrations). In USA300 $\Delta arlRS$, transcriptional levels of *mecA* or *blaZ* showed no obvious change, while mRNA levels of *spx* showed a 4-fold decrease at 4 h and a 6.3-fold decrease at 10 h. Overexpression of *spx* in $\Delta arlRS$ restored oxacillin resistance to a similar level in USA300. In addition, gel shift assay showed that the recombinant ArlR bound to *spx* promoter region. Furthermore, silencing of *spx* led to a significant increase of oxacillin susceptibility in multiple MRSA isolates. Our results indicate that ArlRS plays a strong role in regulating oxacillin resistance in MRSA strains, which involves direct modulation of *spx* expression. Moreover, oritavancin showed inhibition to ATPase activity of the recombinant histidine kinase ArlS (IC₅₀ = 5.47 μ M). Oritavancin had synergy effect on oxacillin activity against the MRSA strains in both planktonic and biofilm state. Our data suggest that ArlRS is an attractive target for breaking antimicrobial resistance of MRSA.

ARTICLE HISTORY Received 8 August 2018; Revised 20 December 2018; Accepted 23 January 2019

KEYWORDS Staphylococcus aureus; two-component signal transduction system; ArIRS; spx; oxacillin

Introduction

Staphylococcus aureus is a major pathogen causing both community-acquired and hospital-acquired infections globally [1]. The emergence and prevalence of community-associated methicillin-resistant *S. aureus* (CA-MRSA) and healthcare-associated methicillinresistant *S. aureus* (HA-MRSA), e.g. the predominant clones USA300 [2] and USA500 [3], have attracted attentions because of their virulence and antibiotic resistance, especially their high-level resistance to the β -lactam antibiotics [4].

MRSA, also known as oxacillin-resistant *S. aureus*, is defined as an oxacillin minimum inhibitory concentration (MIC) of greater than or equal to 4 mg/L [5]. Oxacillin is a β -lactam antibiotic targeting penicillinbinding protein 2 (PBP2). Oxacillin resistance involves

multiple factors. Most MRSA strains possess a mecA gene that encodes an alternative form of PBP2 called PBP2a (or PBP2'). PBP2a can take over the transpeptidation function of PBP2, but it has a lower penicillinbinding affinity and is resistant to the action of oxacillin [6]. PBP2a synthesis is modulated by the transcriptional regulator MecI and the signal transduction protein MecR1, which are encoded by mecI and mecR1 genes located adjacent to mecA on the staphylococcal chromosome [7,8]. MecI and MecR1 share high protein sequence similarity with BlaI and BlaR1 [9], respectively, which may also have the function of regulating PBP2a expression. Thus, in many clinical isolates of MRSA, a plasmid carrying blaI and blaR1 genes can encode proteins modulating PBP2a expression [10,11]. Beside the main mechanism

CONTACT Yang Wu 🐼 yangwu@fudan.edu.cn 🗈 131 Dongan Road, Zhidao Building, Room 1103, Shanghai 20032, People's Republic of China ¹These authors contribute equally to this work.

Supplemental data for this article can be accessed at https://doi.org/10.1080/22221751.2019.1595984

^{© 2019} The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

above, oxacillin resistance in *S. aureus* clinical isolates has been reported to involve other factors, including FemAB (peptidoglycan synthesis), Llm (autolytic activity related protein), Sar, Agr, SigB [12–15] (global regulators), etc.

The two-component signal transduction system ArlRS is a global regulator of *S. aureus* virulence, modulating the extracellular proteolytic activity, bacterial autolysis, capsule formation and production of virulence factors [16–21]. Recent studies has found that ArlRS regulates *S. aureus* cell aggregation [22] and is vital for *in vivo* catheter associated biofilm formation by *S. aureus* [23]. However, whether ArlRS is involved in the regulation of oxacillin resistance remains unclear.

Here, we demonstrate for the first time that ArlRS plays an important role in the regulation of oxacillin resistance in MRSA strains, mainly through the direct modulation of *spx* expression. Besides, oritavancin can inhibit ArlS kinase activity and it has synergetic effect on oxacillin activity against MRSA strains.

Materials and methods

Bacterial strains, plasmids, growth media and antibiotics

Bacterial strains and plasmids used in this study are listed in Table 1. The MRSA strains were collected from Zhongshan Hospital of Fudan University and identified by the VITEK 2 system (bioMerieux SA, Lyon, France).

Tryptic soy broth (TSB, Oxoid, Cambridge, UK) were used for *S. aureus* cultivation. Mueller-Hinton Broth and Mueller-Hinton agar were used for antibiotic susceptibility tests. Media were supplemented with erythromycin (10 μ g/ml), ampicillin (100 μ g/ml) or chloramphenicol (10 μ g/ml), when appropriate for purposes of selection. Oritavancin diphosphate (dissolved in DMSO at 10 mM) was purchased from Med-ChemExpress China. Oxacillin was purchased from Sangon BiotechCo., Ltd (Shanghai, China).

Construction of gene knockout mutants and complementation strains

The *arlRS* genes in methicillin-resistant *S. aureus* USA300 TCH1516 strain (locus tag: USA300-HOU_1349 and USA300HOU_1350) and USA500 2395 strain (locus tag: CH51_07425 and CH51_07430) were deleted using the temperature-sensitive vector pKOR-1 [27]. Then the regions flanking *arlRS* gene were amplified by PCR and inserted into pKOR-1. Primers for PCR were designed according to the genomic sequence of *S. aureus* TCH1516 strain, and the sequences are listed in **Supplementary Table 1**.

The recombinant plasmid, designated pKOR-*arlRS*, was transformed to *Escherichia coli* DC10B strain then into *S. aureus* USA300 and USA500 strains by electroporation respectively. A procedure for allelic displacement of the *arlRS* genes was performed as previous described [30,31]. The mutants, designated USA300 $\Delta arlRS$ and USA500 $\Delta arlRS$, were verified by PCR, RT–PCR and direct sequencing. The vector pCN51 [25] and pRB475 were used for *arlRS* genes with their promoter region were amplified by PCR and inserted into the vectors. The resulting plasmids were transformed by electroporation into USA300 $\Delta arlRS$ and USA500 $\Delta arlRS$, forming complementary strains PCN*arlRS* and PRB*arlRS*, respectively.

Construction of the gene silencing strains and the gene overexpressing strains

To silence the arlS, arlR or spx (locus tag: USA300-HOU_0955) gene in S. aureus strains, the shuttle plasmid pMX6 [26] with the paired termini 7 segment (which can form a hairpin structure) was used for constructing asRNA expression vectors. The expression plasmid of asRNA_{arlR} or asRNA_{spx} (named pMX6-arlR or pMX6-spx) was constructed by first amplifying the predicted Shine-Dalgarno (SD) sequence plus ~ 100 nt downstream of the start codon of each gene and then inserting the fragment in the reverse direction between EagI and BglII sites downstream of the anhydrotetracycline (ATc) inducible promoter in pMX6. As for generating the expression plasmid of arlS asRNA (named pMX6arlS), a ~ 120 nt sequence downstream from the start codon of the arlS gene was amplified.

To overexpress *spx* in *S. aureus* strains, the coding sequence of *S. aureus spx* gene were amplified with the primers SA-spx-RBS-F and SA-spx-RBS-R (**Supplementary Table 1**), and was inserted between the BamHI and EcoRI sites downstream of the cadmium chloride (CdCl₂) inducible promoter of the shuttle plasmid pCN51, generating pCN51-*spx*.

The sequences of all the asRNA expression plasmids and gene overexpression plasmids were verified by DNA sequencing. Then each plasmid was transformed into *S. aureus* strains by electroporation.

Detection of bacterial growth curves

The growth curves of the *S. aureus* strains were determined by measuring the optical density at a wavelength of 600 nm using an automated growth curve detector (Bioscreen C, Finland). Briefly, overnight cultures were diluted (1:200) and incubated at 37° C with shaking at 220 rpm. The OD₆₀₀ of the bacterial culture was measured at 1 h intervals for 24 h.

Table 1. Bacterial strains and plasmids used in this study.

Bacterial Strains /		Source or Reference
Plasmid	Description	(s)
Bactorial Strains		
	a MRSA strain (GenBank Accession Number: NC 007703)	[24]
USA300-arls	LISA300 EPR3757 with a transpoon insertion in <i>arl</i> S gene	This study
USA300-arlB	LISA300 FPR3757 with a transposon insertion in <i>arl</i> P gene	This study
USA300 TCH1516	a MRSA strain (GenBank Accession Number: NC 010079)	[2]
USA300 pMX6	USA300 transformed with the plasmid pMX6	This study
USA300-pMX-spx	USA300 transformed with the plasmid pMX6-spx	This study
USA300-PmarA	USA300 transformed with plasmid pCM29-marA	This study
USA300-Pspx	USA300 transformed with plasmid pCM29-spx	This study
USA300AmarA	an <i>marA</i> knockout mutant of USA300 TCH1516	This study
USA300 <i>AarIRS</i>	an <i>arl</i> RS knockout mutant of USA300 TCH1516	This study
PCN	USA300 $\Delta ar/RS$ transformed with plasmid pCN51	This study
PCN <i>arIRS</i>	USA300 $\Delta arlRS$ complemented with plasmid pCN51-arlRS	This study
PCN-mgrA	USA300 $\Delta arlRS$ complemented with plasmid pCN51-marA	This study
PCN-spx	USA300 $\Delta arlRS$ complemented with plasmid pCN51-spx	This study
PCN-trfA	USA300 $\Delta arlRS$ complemented with plasmid pCN51-trfA	This study
∆arlRS-PmgrA	USA300 $\Delta arlRS$ transformed with plasmid pCM29-mgrA	This study
$\Delta arIRS$ -Pspx	USA300 $\Delta arlRS$ transformed with plasmid pCM29-spx	This study
USA500 2395	a MRSA strain (GenBank Accession Number: CP007499)	[3]
USA500∆arlRS	an <i>arIRS</i> knockout mutant of USA500 2395	This study
USA500-pMX-spx	USA500 transformed with the plasmid pMX6- <i>spx</i>	This study
PRB	USA500 $\Delta arl RS$ strain introduced with plasmid pRB475	This study
PRB-arIRS	USA500∆ <i>arlR</i> S strain complemented with plasmid pRB475- <i>arlR</i> S	This study
234	a human clinical MRSA isolate	This study
234-pMX	234 strain introduced with plasmid pMX6	This study
234-pMX- <i>arlR</i>	234 strain complemented with plasmid pMX6-arlR	This study
234-pMX-arlS	234 strain complemented with plasmid pMX6-arlS	This study
234-pMX- <i>spx</i>	234 strain transformed with the plasmid pMX6-spx	This study
15098	a human clinical MRSA isolate	This study
15098-pMX	15098 strain introduced with plasmid pMX6	This study
15098-pMX-arlR	15098 strain complemented with plasmid pMX6- <i>arlR</i>	This study
15098-pMX-arlS	15098 strain complemented with plasmid pMX6-arlS	This study
15098-pMX- <i>spx</i>	15098 strain transformed with the plasmid pMX6-spx	This study
184749	a human clinical MRSA isolate	This study
184749-pMX	184/49 strain transformed with the plasmid pMX6	This study
184749-pMX- <i>arik</i>	184749 strain transformed with the plasmid pMX6- <i>arlR</i>	This study
184749-pMX-aris	184749 strain transformed with the plasmid pMX6-ar/S	This study
184749-pMX-spx	184749 strain transformed with the plasmid pwixe-spx	This study
	a chuttle vector. Amp ^r in E. coli and Em ^r in C. gurgus	[25]
	a shulle vector; Amp in E. coll and Em in S. dureus	[ZD] This study
pCNS1-arras	the mark genes done downstream of the cadmium chloride (CdCL) inducible promotor of pCNE1	This study
pCN51-mgrA	the ray gene cloned downstream of the CdCL inducible promoter of pCN51	This study
pCN51-spX pCN51-trfA	the <i>trfA</i> gape cloned downstream of the CdCl ₂ -inducible promoter of pCN51	This study
pCN31-tinA	an $\Delta T_{c-inducible}$ as $RNA_{expressing}$ nlasmid: Δmp^r in F_{c-oli} and Cm^r in $S_{c-ourgus}$	[26]
pMX6-arlR	nMX6 expressing asRNA of S <i>aurous arl</i> R	This study
pMX6-arlS	pMX6 expressing asRNA of S. aureus arlS	This study
pMX6-spx	pMX6 expressing asRNA of S. aureus and	This study
nKOB1	a temperature-sensitive shuttle plasmid for gene knockout in S <i>gureus</i> : Amp ^r in <i>E coli</i> and Cm ^r in	[27]
piterri	S. aureus	(47)
pKOR1-arIRS	the plasmid for in-frame deletion of <i>S. aureus arIRS</i> genes	This study
pRB475	a derivative of the shuttle vector pRB473. Km ^r in <i>E. coli</i> and Cm ^r in <i>S. aureus</i>	This study
pRB475-arlRS	the <i>arlRS</i> gene and the promoter region in USA300 TCH1516 strain cloned into pRB475	This study
pCM29	a GFP expression shuttle vector; Amp ^r in <i>E. coli</i> and Cm ^r in <i>S. aureus</i>	[28]
pCM29-spx	GFP promoter replaced with P_{spx} in pCM29	This study
pCM29-marA	GFP promoter replaced with PmarA in pCM29	This study
pET28a(+)	An isopropyl-1-thio-b-D-galactopyranoside -inducible protein-expressing plasmid; Km ^r	[29]
pET-arlR	the arlR gene cloned into pET28a(+)	This study
-		

Antimicrobial susceptibility testing

Susceptibility of *S. aureus* strains to various antibiotics was detected by the broth microdilution method and the disk-diffusion method according to the guidelines of American Clinical and Laboratory Standards Institute (CLSI). To determine the minimal inhibitory concentrations (MICs) of the antibiotics for *S. aureus*, two-fold dilutions of antibiotics in 96 wells microplates containing Mueller-Hinton broth were made to concentrations from 256 to 0.125 mg/L. Overnight cultures of the bacteria were adjusted to the 0.5 McFarland

standards and inoculated 1:200 into the MH broth (for oxacillin, MHB + 2% NaCl) and then incubated at 35°C for 24 h. The lowest concentration inhibiting visible growth of the bacteria was recorded as MIC.

Visualization of biofilm formation by confocal laser scanning microscopy

Overnight cultures of *S. aureus* strains were diluted with TSB supplemented with 1% glucose at a ratio of 1:200, then inoculated in cell culture dishes (23 mm

diameter) with glass bottoms (FluoroDish, WPI, Florida, USA) and incubated at 37°C for 24 h. After removal of non-adhered cells, the biofilms were washed with phosphate-buffered saline, stained with a Live/Dead BacLight Viability Kit (Molecular Probes, Eugene, Oregon, USA), and subsequently analyzed with a Leica confocal laser scanning microscope (TCS SP8; Leica, Heidelberg, Germany) detecting the fluorescence intensities of SYTO9 and propidium iodide (PI). A series of images were acquired at 1 μ m intervals in the Z section to measure the biofilm thickness. IMARIS 9.0 software (Bitplane, Zurich, Switzerland) was used to generate three-dimensional view of the biofilms.

To evaluate the effects of the antibacterial agents on 24-h biofilms, three biofilm-forming MRSA strains (strain USA300, strain 234 and strain 15098) were selected and cultured as described above for 24 h. After removal of the suspension cultures, four-fold MIC concentrations of the agents in fresh media were added and incubated at 37°C for an additional 24 h. The biofilms were then stained with the Live/ Dead BacLight Viability Kit (Viable cells in the biofilms exhibited green fluorescence, and dead cells exhibited red fluorescence). The effects of the agents on 24-h biofilms were analyzed by visualizing three-dimensional biofilm structures with CLSM and calculating the ratio of dead/live bacterial cells with ImageJ software (Wayne Rasband, NIH, Bethesda, MD, USA).

Expression and purification of recombinant ArIR and ArIS'

To construct the recombinant S. aureus ArlR and ArlS' (histidine kinase domain of ArlS) expression plasmids (pET-SAarlR and pET-SAarlS), the DNA fragments were amplified from the genomic DNA of USA300 TCH1516 strain by PCR with the primers REarlR-f/ REarlR-r and RarlSHK-f/RarlSHK-r (Supplementary Table 1), digested with XbaI/XhoI and NcoI/XhoI respectively, and inserted into a pET-28a(+) plasmid [29] at the corresponding sites. After transformation into BL21 (DE3), the bacteria were cultured in LB medium at 37°C for 4 h and incubated for another 12 h at 25° C with 0.4 mM isopropyl-1-thio-b-D-galactopyranoside. The cells were harvested, disrupted using sonication in lysis buffer (50 mM Tris-Cl and 300 mM NaCl, pH 8.0), and then centrifuged at 15,000 g for 15 min at 4° C. The recombinant His-tagged ArlR protein (rArlR) and histidine kinase domain of ArlS (ArlS') in the supernatants were purified using affinity chromatography with a Ni-nitrilotriacetic acid column (Qiagen GmbH, Hilden, Germany) according to the manufacturer's protocol.

Inhibition assay for ArIS kinase activity

The inhibitory activity of oritavancin on the ATPase activity of the ArlS' protein was measured using the

Kinase-GloTM Luminescent Kinase Assay (Promega, Madison, WI, USA). The reactions were carried out in solid black, flat-bottomed 96-well plates. Briefly, 3 μ g purified ArlS' protein was pre-incubated with a series of dilutions of oritavancin in reaction buffer [40 mM Tris (pH 7.5), 20 mM MgCl₂ and 0.1 mg/ml BSA] at 4°C for 30 min, then 4 μ M ATP was added and incubated for 30 min at room temperature. Afterwards, an equal volume of the Kinase-GloTM Reagent was added to each well, mixed and kept at room temperature for 10 min before the final recording of the luminescence (RLU) with a Victor X5 Multilabel Plate Reader (PerkinElmer, Boston, Massachusetts, USA). The rate of inhibiting ATPase activity by oritavancin was calculated by the following formula:

 $\frac{\text{RLU}(\text{ArlS}' + \text{oritavancin} + \text{ATP} + \text{Reagent})}{-\text{RLU}(\text{ArlS}' + \text{ATP} + \text{Reagent})}$ $\frac{\text{RLU}(\text{ATP} + \text{Reagent}) - \text{RLU}(\text{ArlS}' + \text{ATP} + \text{Reagent})}{\text{RLU}(\text{ArlP} + \text{Reagent}) - \text{RLU}(\text{ArlS}' + \text{ATP} + \text{Reagent})}$

Checkerboard dilution assay

To detect if oritavancin and oxacillin shows synergism against MRSA strains, a synergism assay was performed using the checkerboard method [32]. Briefly, in order to prepare a range of drug concentrations which allows detection of antagonism, indifference/ additive, and synergism, a series of twofold dilutions of oritavancin and oxacillin in 96-well microplates starting from the concentration of double the MIC were made to obtain combination of varying concentrations of the two antibiotics. Bacteria were prepared according to broth microdilution assay. The microplates were incubated overnight at 35°C and MIC was read as the least dilution without any turbidity. The combinational effect of the two antibiotics was defined according to the fractional inhibitory concentration (FIC) index, whereby FIC = MIC of oritavancin in combination/MIC of oritavancin alone + MIC of oxacillin in combination/MIC of oxacillin alone. The combination is considered synergistic when the FIC index is ≤ 0.5 . Indifference was indicated by a FIC index >0.5 to \leq 4, while antagonism when the FIC index is >4.

RNA extraction and quantitative real-time (qRT)-PCR

For RNA extraction, the *S. aureus* strains were cultured at 37 °C with shaking for 4 or 10 h. The cell pellets were collected and washed with ice-cold normal saline and then homogenized using 0.1-mm Zirconia-silica beads in a Mini-BeadBeater-16 (Biospec, Bartlesville, USA) at a speed of 3,600 rpm for 1 min following cooling on ice for 1 min. This homogenization and cooling cycle were repeated five times, then the samples were centrifuged at 13,000 rpm and the bacterial RNA in the supernatant was purified using a RNeasy Mini kit (Qiagen) and quantified using an ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, USA). RNA samples that had a 260/280 ratio between 2.0 and 2.2 were reverse transcribed using an iScript cDNA synthesis kit (Bio-Rad) following the manufacturer's protocol. The mRNA levels were quantified by using qRT-PCR with SYBR green PCR reagents (Takara, Japan) and the primers listed in Supplementary Table 3, using the housekeeping gene gyrB as an endogenous control. The amplification efficiency of all primer pairs was determined according to the standard curve with four magnitudes of templates. The specificity of primer pairs was determined with melting curve. All the qRT-PCR experiments were carried out in triplicate and the relative gene expression data were analyzed using the $2^{-\triangle \triangle CT}$ method [33].

Promotor-reporter assay

To detect mgrA (locus tag: USA300HOU_0709) and spx expression in S. aureus strains, a green fluorescent protein -reporter assay was performed by using the shuttle vector pCM29 [28]. A fragment containing the putative mgrA promoter or spx promoter region was amplified from the genomic DNA of USA300 TCH1516 strain using corresponding primers listed Supplementary Table 1. The PCR products were digested with NheI and BamHI, and subsequently ligated to upstream of the GFP gene in pCM29 to generate the plasmids pCM29-mgrA and pCM29-spx respectively. Each plasmid was transformed into E. coli DC10B, then into S. aureus USA300 TCH1516 and $\Delta arlRS$ strains by electroporation. To monitor the mgrA and spx expression, S. aureus strains containing pCM29-mgrA or pCM29-spx were cultivated in TSB at 37°C with shaking respectively, and bacterial cultures were collected at different time points. After centrifugation, the pellets were washed three times with normal saline, resuspended and adjusted to $OD_{600} = 1.0$. The bacterial suspension was transferred to a black 96-well microplate and the fluorescence intensity was measured using a Victor X5 multilabel plate reader (PerkinElmer, Inc., USA) with excitation at 480 nm and emission at 515 nm. Values from quadruplicate wells were averaged, and the experiment was repeated at least once.

Electrophoretic mobility shift assay (EMSA)

To analyze binding of the recombinant rArlR and the promoter regions of *spx*, EMSA were performed using the DIG Gel Shift Kit (Roche, Basel, Switzerland) according to the manufacturer's instructions. Briefly, rArlR was phosphorylated prior to gel shift reaction by incubating ArlR with 50 mM acetylphosphate for

1 h. Meanwhile, the DNA fragment upstream spx (Pspx) were amplified with corresponding primers listed in **Supplementary Table 1** and linked with digoxin-labelled dd-UTP respectively. The resulting DNA fragment, DIG-Pspx was used as a probe which was loaded with increasing amounts of rArlR (0, 0.5, 1, 1.5 and 2 µg). The digoxin-labelled DNA fragment upstream *arlR* (ParlR) was used as a control. All samples were incubated at 25°C for 30 min. After electrophoresis on 6% non-denaturing polyacrylamide gel, the DNA fragments were transferred to positively charged nylon membranes (GE Healthcare Life Sciences, Pittsburgh, PA, USA) by electro-blotting and detected by an enzyme immunoassay following the manufacturer's instructions.

Results

Effect of arIRS mutation in MRSA USA300 and USA500 strains on their susceptibility to oxacillin

The methicillin-resistant *S. aureus* USA300 FPR3757 strain (GenBank Accession Number: NC_007793) showed high resistance to oxacillin (MIC = 64 mg/L), while its isogenic mutant with transposon insertion in either *arlS* gene or *arlR* gene showed 4-fold to 8-fold decrease in MIC to oxacillin (MIC = 8 mg/L or 16 mg/L, **Supplementary Table 2**).

To investigate the effect of ArIRS two-component system on oxacillin resistance in MRSA, an arlRS genes knockout mutant strain was constructed by homologous recombination using USA300 TCH1516 (GenBank Accession Number: NC_010079) as a parent strain, designated USA300 $\Delta arlRS$. The arlRS complementation strain PCN-arlRS was constructed by introducing a plasmid-expressing *arlRS* into the mutant. The wild type, mutant and complementation strains showed no obvious difference in bacterial growth in MHB + 2% NaCl at 35°C (Figure 1(a)). However, compared to the wild type strain, USA300 $\Delta arlRS$ showed much higher susceptibility to oxacillin, as detected by disk-diffusion method (zone diameter = 20 mm vs 0 mm, shown in Figure 1(b)) and broth microdilution method (MIC = 64 mg/L vs 4 mg/L, shown in Table 2). Similarly, knocking out arlRS in MRSA USA500 strain 2395 (GenBank Accession Number: CP007499) resulted in much lower MIC to oxacillin (WT: 64 mg/L; USA500∆arlRS: 8 mg/ L). The altered phenotype was restored by *arlRS* gene complementation in both USA300∆arlRS strain and USA500 Δ *arlRS* strain (Table 2).

Effect of arIRS silence in clinical MRSA isolates on their susceptibility to oxacillin

In order to investigate the influence of ArlRS on oxacillin resistance in other clinical MRSA strains, the anti-

Figure 1. Effect of *arlRS* knockout on bacterial growth and oxacillin resistance of *S. aureus* USA300 strain. (a) Growth curves of *S. aureus* USA300 TCH1516 and its isogenic *arlRS* mutants. Bacterial strains were cultured in MHB + 2% NaCl at 35°C with shaking and the OD₆₀₀ values were measured hourly using an automated growth curve detector. The experiments were repeated three times and a representative set of growth curves is shown. $\Delta arlRS$ - the *arlRS* knockout mutant; PCNarlRS $-\Delta arlRS$ complemented with plasmid expressing-*arlRS*; PCN $-\Delta arlRS$ transformed with an empty plasmid. (b) Oxacillin susceptibility of *S. aureus* USA300 TCH1516 and its isogenic *arlRS* mutants, detected by the Disk-diffusion method according to the CLSI guidelines.

sense RNA (asRNA) expression plasmids of *arlR* and *arlS* (pMX-*arlR*, pMX-*arlS*) were constructed and transformed to 6 clinical MRSA isolates, using the empty vector pMX6 as a negative control. The transformation was succeeded in three isolates with high oxacillin resistance (MICs ranging from 64 mg/L to 128 mg/L). With 250 ng/ml ATc induction, the three strains containing pMX-*arlR* or pMX-*arlS* showed in 2–4-fold decrease in MIC to oxacillin, while no obvious change was found in the vector control (**Supplementary Table 3**).

Table 2. The MICs of oxacillin for different S. aureus strains (the broth microdilution method).

	In USA300 Strain MIC (mg/L)	In USA500 Strain MIC (mg/L)
WT	64	64
ΔarIRS	4	8
ΔarlRS:: arlRS(Plasmid)	64	64
ΔarlRS:: PCN-spx	4	ND
$\Delta arlRS:: PCN-spx + CdCl_2$	64	ND
ΔarlRS:: PCN-trfA	4	ND
$\Delta arlRS:: PCN-trfA + CdCl_2$	16	ND
ΔmgrA	32	ND
WT:: pMX	64	64
WT:: pMX-spx	64	64
WT:: pMX + ATc	32	32
WT:: pMX-spx + ATc	<0.25	<0.125

Influence of arIRS knockout on expression of β lactam resistance related genes

To define the arlRS regulon and the role of ArlRS in oxacillin resistance in MRSA, total RNAs from the wild-type USA300 TCH1516 strain and arlRS knockout mutant USA300∆arlRS in mid-log growth phase (4 h) and stationary phase (10 h) were extracted, and transcriptional levels of β -lactam resistance related genes were determined by the RNA-Seq (Table 3). The mRNA levels of two transcriptional regulator genes, spx (locus tag: USA300HOU_0955) and mgrA (locus tag: USA300HOU_0709), and a cell wall antibiotic resistance-related gene, trfA (locus tag: USA300-HOU_0956) in USA300\[LarlRS] were found to be down-regulated 4-fold, 3.7-fold and 1.3-fold respectively at 4 h, and 6.3-fold,5-fold and 1.3 fold respectively at 10 h, while no significant change was detected in transcriptional levels of other genes including mecA and *blaZ*.

To confirm the RNA-Seq results, two different methods were carried out, including quantitative RT–PCR and the promoter-reporter system. The qRT-PCR result showed that in USA300 $\Delta arlRS$ spx, mgrA and trfA transcription decreased 3.1-fold, 2.6-fold and 1.4-fold respectively at 4 h and decreased 6.1-fold, 4.3-fold and 1.4-fold at 10 h, while in the arlRS

Table 3. Comparison of the transcription level of genes related to β -lactam antibiotics resistance in USA300 and Δ arlRS.

ORF		Ratio (Mu/ WT)	
(USA300HOU_)	Annotation	4h	10h
0031	MecA	1.01	0.86
0032	MecR1	0.97	0.79
pUSA300 HOUMR0011	BlaZ	0.99	0.93
pUSA300 HOUMR0012	BlaR1	0.93	1.09
pUSA300 HOUMR0013	Blal	0.74	1.05
1309	FemA	0.86	1.25
1310	FemB	0.84	1.06
1121	penicillin-binding protein 1	1.04	1.02
1388	penicillin binding protein 2	1.09	1.14
1554	penicillin-binding protein 3	1.01	0.88
0662	penicillin-binding protein 4	1.06	1.84
1001	FmtA	1.24	1.02
2150	FmtB	6.36	3.01
2151	GlmM, phosphoglucosamine mutase	1.11	0.93
1294	FmtC	0.95	1.16
0663	AbcA	0.95	0.78
0956	TrfA, Cell Wall Antibiotic Resistance	0.78	0.79
0774	Llm, glycosyl transferase	0.91	1.25
2429	Flp protein, penicillin binding	0.87	1.02
2510	penicillinase repressor family protein	1.68	1.30
1693	metal-dependent hydrolase	1.17	0.83
0955	Spx	0.25	0.16
0709	MgrA	0.27	0.20
2059	SigB	0.95	1.31
2035	AgrA	0.98	0.83

complementation strain those genes expression was restored (Figure 2(a,b)). Besides, by using promoter-GFP reporter assay, the intensity of GFP fluorescence indicating either *spx* or *mgrA* expression, was lower in USA300 $\Delta arlRS$, compared to that in the wild type strain (**Supplementary Figure 1**).

Effect of spx and mgrA on MRSA susceptibility to oxacillin

To investigate the effect of *spx* and *mgrA* on oxacillin resistance in MRSA, a spx silence strain (USA300pMX-*spx*) and an *mgrA* knockout mutant (USA300 $\Delta mgrA$) were constructed, using USA300 TCH1516 as a parent strain. In MHB + 2% NaCl medium, both USA300-pMX-spx and USA300-pMX6 (an empty vector control) strains had an oxacillin MIC of 64 mg/L; when 250 ng/ml ATc was added in the medium, the control strain USA300-pMX6 had an oxacillin MIC of 32 mg/L, while USA300-pMX-spx showed a significant decrease in oxacillin MIC (below 0.25 mg/ L, Table 2). As a control, when 250 ng/ml ATc was present but oxacillin was absent in the medium, the OD_{600} value of USA300-pMX-spx culture was the same as that of USA300-pMX6 culture. Similar results were obtained in the spx silence strain of USA500. Meanwhile, the mgrA knockout mutant USA300 Δ mgrA showed a 2 two-fold decrease in oxacillin MIC, compared to the wild type strain (32 mg/L vs. 64 mg/L).

To further investigate the role of *spx* in oxacillin susceptibility in the *arlRS* mutant, the cadmium chloride

Figure 2. Effect of *arIRS* knockout on transcription of *spx*, *mgrA* and *trfA* (qRT-PCR). The mRNA in the *S. aureus* wild type strain (USA300), *arIRS* knockout mutant ($\Delta arIRS$) and complementation strain (PCNarIRS) was extracted from 4 h (a) and 10 h (b) cultures. The transcription levels of *arIR*, *mgrA*, *spx* and *trfA* were quantified by qRT-PCR with SYBR green PCR reagents and the primers listed in Supplementary Table 3. The mRNA in the *S. aureus* USA300-pMX-*spx* was extracted from 4 and 10 h under no ATc induction and 250 ng/ml ATc induction conditions. The transcription levels of *trfA* was quantified by qRT-PCR (c). The relative expression levels of the genes are represented as mean ± standard deviation.

 $(CdCl_2)$ inducible *spx* gene overexpression plasmid pCN-*spx* was constructed and introduced into USA300 $\Delta arlRS$. The MIC to oxacillin in USA300- $\Delta arlRS$ containing pCN-*spx* was similar to that of the mutant when there was no CdCl₂ in the culture medium, while it was restored to wild strain level by over-expressing *spx* when 2 μ M CdCl₂ was present for induction (Table 2).

Regulation of spx expression by ArIRS

To investigate whether ArlRS regulates *spx* expression directly, EMSA were performed with a digoxin labelled 146-bp DNA fragment upstream of *spx* (P*spx*, 263-bp to 118-bp upstream of the start codon of *spx*) and recombinant the DNA binding protein ArlR (rArlR). As shown in Figure 3, when 0.5 µg to 2 µg rArlR was present, it bound to P*spx* and formed a DNA–protein complex, shifting P*spx* behind (lane 6 to lane 10) in a dose-dependent manner, compared to P*spx* alone (lane 1). However, as a control, up to 2 µg rArlR did not shift a 150-bp DNA fragment upstream of *arlR* (P*arlR*) behind (lane 2 to lane 5).

Inhibition of ArIS' kinase activity

In order to screen for compounds that can block the histidine kinase ArlS autophosphorylation and subsequent signal transduction, the recombinant cytoplasmic domain of ArlS protein (ArlS') which contains the HATPase_c domain was purified and its activity to hydrolyze ATP was confirmed by the Kinase-GloTM Luminescent Kinase Assay (**Supplemen-tary Figure 2a**). By screening in the FDA-approved drugs library, oritavancin diphosphate, was found to inhibit the kinase activity of ArlS' (3 µg) by 98% at a concentration of 25 µM. A dose-dependent inhibition was further detected and the IC₅₀ value of oritavancin was 5.47 µM, calculated with the logistic regression fit (**Supplementary Figure 2b**).

To investigate the effect of oritavancin on spx expression, the spx promoter-GFP reporter assay was carried out. The USA300-Pspx strain was cultivated to mid-log phase (4 h), then oritavancin was added to the culture to a concentration of 0.7 μ M and no antibiotic treated culture was used as a control. Afterwards, the cell densities and GFP fluorescence intensities were

Figure 3. Binding of rArlR to the *spx* promoter region (EMSA). The promoter regions of *spx* and *arlR* (as a control) were amplified and labelled with digoxin (DIG). Lanes 1–5 were loaded with 0.4 ng DIG-*arlR* promoter region and increasing amounts of recombinant ArlR (0, 0.5, 1, 1.5, 2 µg respectively). Lanes 6–10 were loaded with 0.4 ng DIG-*spx* promoter region and increasing amounts of recombinant ArlR (0, 0.5, 1, 1.5, 2 µg respectively). The DIG-labelled DNA fragments were transferred to positively charged nylon membranes and visualized by an enzyme immunoassay using anti-Digoxigenin-AP, Fab-fragments and the chemiluminescent substrate CSPD. Chemiluminescent signals were recorded on X-ray film.

monitored at different time points during cultivation. It showed that during 42 h cultivation, *spx* expression (indicated with the intensity of GFP fluorescence normalized with OD_{600} value) in oritavancin treatment group was lower than that in the control group (Figure 4(a)).

Effect of oritavancin on the oxacillin susceptibilities of the MRSA strains in planktonic state and mature biofilms

To detect if oritavancin enhances oxacillin susceptibilities in MRSA strains in planktonic state, a synergism assay was performed using the checkerboard method. Firstly, the MICs of oritavancin and oxacillin were detected and confirmed in USA300, USA500 strains and three clinical MRSA isolates; then the combinational effect of the two drugs was determined and the fractional inhibitory concentration (FIC) index was calculated. The FIC index varied from 0.375 to 0.5 in five MRSA strains, all defined as synergism effects (Table 4).

As S. aureus biofilm formation is associated with antibiotic resistance, we further investigated the effect of oritavancin on oxacillin susceptibilities of bacterial cells in biofilms. The MRSA strain USA300 was inoculated in the fluorodishes and incubated for 24 h to form mature biofilms. Afterwards, 0.1% DMSO (control), 32 mg/L oxacillin, 3.1 µM oritavancin, 32 mg/L oxacillin plus 3.1 µM oritavancin was added respectively and incubated for another 24 h. After Live/Dead staining with SYTO9 and propidium iodide (PI), the thicknesses of mature biofilms and viability of embedded cells of MRSA were detected by Confocal Laser Scanning Microscopy. It showed that in control group, oxacillin group, oritavancin group and drug combination group, the average thickness of biofilm was 13.6, 15.9, 10.9 and 9.5 µm, respectively, while the ratio of dead cells in the treated mature biofilms indicated with PI/ (PI+SYTO9) fluorescence intensity was 0.34, 0.29, 0.45 and 0.72, respectively (Figure 4(b)).

Discussion

In this work, we find that the two-component signal transduction system ArlRS regulates susceptibility to oxacillin in MRSA strains USA300, USA500 as well as three clinical isolates. Furthermore, oritavancin diphosphate was found to inhibit the kinase activity of ArlS' and have synergy effect on antibacterial activities of oxacillin against the MRSA strains.

Transposon insertion mutation in USA300 *arlR* or *arlS* gene, *arlRS* knockout in USA300 and USA500, silencing *arlR* or *arlS* in MRSA isolates, all result in increased sensitive to oxacillin, suggesting an important role of *arlRS* in regulating oxacillin resistance in MRSA. Transcriptional profiles analysis of USA300

Figure 4. Effects of oritavancin on *spx* expression and oxacillin susceptibility of USA300 in mature biofilms. (a) The effect of oritavancin on *spx* expression was detected with *spx* promoter-GFP reporter assay: the USA300-*Pspx* strain was cultivated to mid-log phase (4 h, $OD_{600} \sim 0.6$), then oritavancin was added to a final concentration of 0.7 μ M. The cell densities and GFP fluorescence intensities were monitored at different time points during cultivation. no antibiotic treated culture was used as a control. The *spx* expression is indicated with the intensity of GFP fluorescence normalized with OD_{600} value. (b) Biofilms of the MRSA USA300 strain TCH1516 were grown in fluorodishes at 37°C for 24 h. Afterwards, the planktonic cells were removed and fresh TSB containing 0.1% DMSO (control), 32 mg/L oxacillin, 3.1 μ M oritavancin, or 32 mg/L oxacillin plus 3.1 μ M oritavancin was added and incubated at 37°C for another 24 h. The mature biofilms were stained with SYTO9 and propidium iodide (PI) and observed under a Leica TCS SP8 CLSM with a 63× 1.4-NA oil-immersion objective. The viable cells were constructed using IMARIS 9.0 software and the thicknesses of the biofilms were shown. The fluorescence intensities of SYTO9 and PI were determined by using Image J software, and ratio of PI/Total (PI + SYTO9) were calculated.

and its *arlRS* knockout mutant $\Delta arlRS$ shows no significant difference in mRNA levels of the genes that have been reported to be related to β -lactam antibiotics resistance, except mgrA and fmtB. MgrA is a global transcriptional regulator, which has been found to negatively regulate autolysis genes and affect expression of virulence genes in S. aureus [34-36]. MgrA acts as a direct activator for *abcA*, a gene encoding an ATP-dependent transporter, which is related with cell wall autolysis and β-lactam antibiotics resistance [37]. Besides, mgrA deletion in S. aureus ISP794 strain resulted in a decrease in oxacillin MIC from 4 to 2 mg/L [38]. ArlRS has been reported to modulate mgrA expression. However, the results from previous reports and in the present study indicate mgrA is not the major factor affecting oxacillin susceptibility in the arlRS mutant. First, although mgrA may affect cell wall autolysis, Memmi G et al. have demonstrated that inactivation of *arlRS* does not play a role in autolysis of MRSA strains including USA300 [16]. Meanwhile, in the present study, *abcA* expression shows no significant change in arlRS mutant, compared to USA300 wild-type strain. Furthermore, we find that mgrA knockout in USA300 only results in a slight reduction of MIC for oxacillin (from 64 mg/L to 32 mg/L), while knockout arlRS in USA300 leads to a much lower MIC value (4 mg/L). There is limited

information about another oxacillin resistance gene *fmtB*, which codes for a ~263 kDa cell wall-anchored protein. Komatsuzawa H et al. have found that transposon insertion mutation in *fmtB* of MRSA strain COL is indirectly linked with loss of oxacillin resistance, which cannot be restored by trans-complementation with *fmtB* in *fmtB* mutants but can be restored by overexpressing its downstream *glmM* gene [39]. In this work, however, the *glmM* expression showed no difference in the USA300 and $\Delta arlRS$ strains. The increased *fmtB* mRNA levels in $\Delta arlRS$ can be explained by the decreased *mgrA* expression, since MgrA represses *fmtB* transcription [34].

For the first time, we demonstrate that *spx*, which has not been reported to be associated with oxacillin susceptibility before, plays a great role in ArlRS mediated oxacillin resistance. First, the mRNA level of *spx* gene is dramatically decreased in the $\Delta arlRS$, compared to that in USA300. Besides, overexpressing *spx* in $\Delta arlRS$ restored the oxacillin resistance to a similar level in USA300 (MIC = 64 mg/L). Furthermore, the response regulator ArlR can direct regulate *spx* transcription by binding to its promoter region (Figure 3 and **Supplementary Figure 3**). More importantly, silencing *spx* results in a dramatic increase of oxacillin susceptibility in both USA300 and USA500 strains (MIC <0.25 and 0.125 mg/L respectively). Spx is first

Table 4. Effects of combination of oritavancin and oxacillin against MRSA strains.

reported in Bacillus subtilis as a global regulator of

MRSA strains					
	Oxacillin (mg/L)	Oritavancin (µM)	Oxacillin (mg/L) +Oritavancin (µM)	FIC index	Effect
USA300	64	0.78	16 + 0.195	0.5	synergism
USA500	64	0.78	16 + 0.195	0.5	synergism
234	128	1.56	32 + 0.195	0.375	synergism
15098	128	0.78	32 + 0.195	0.5	synergism
184749	64	0.78	16 + 0.195	0.5	synergism

MIC

genes that is induced by disulfide stress, through a unique mechanism that requires direct interaction with the subunit of RNA polymerase but not with DNA [40]. Spx is highly conserved in low G + CGram-positive bacteria such as *Staphylococcus*, *Listeria*, Enterococcus, and Streptococcus [41–43]. However, the function of spx in Staphylococcus has not been intensively studied. Recent works tend to recognize spx as an essential gene in both S. aureus and S. epidermidis [41,42], although it can be knocked out in *B. subtilis*. Pamp SJ et al. have reported construction of a *spx* deletion mutant in the S. aureus 8325-4 strain, and find inactivation of *spx* makes the cells highly susceptible to multiple stresses including high and low temperature, salt stress, and hydrogen peroxide [42]. Villanueva M et al. have discovered recently by deep sequencing that the Δspx strain harbours suppressor mutations that allowed it to grow without spx [44]. Our group has tried to construct a *spx* deletion mutant of USA300 but cannot achieve. Thus, we use antisense RNA technique to conditionally silence *spx* expression in USA300 and USA500 with ATc. Compared to no ATc induction condition, 250 ng/ml ATc induced spx antisense RNA expression results in delayed bacterial growth in lag phase and log phase, and similar levels in stationary phase. Meanwhile, *spx* silencing leads to an over 256-fold increase in susceptibility to the oxacillin and *spx* overexpression can restore loss of oxacillin resistance in $\Delta arlRS$, suggesting its important role in MRSA. There are very limited reports about the relation of Spx and antibiotic resistances. Jousselin A et al. have found Spx modulates the expression of trfA gene involved in glycopeptide resistance in S. aureus [45]. The trfA encodes teicoplanin resistance factor A, which closely resembles an adaptor protein of Listeria monocytogenes and B. subtilis. Deletion of trfA and trfB ($\Delta trfAB$) in MRSA strain NRS3 leads to increased susceptibility to oxacillin [46]. Our qRT-PCR data is consistent with the finding, for the transcription level of *trfA* is decreased in the $\Delta arlRS$ by ~1.4 fold and is restored in arlRS complementation strain. In the spx silencing strain, the mRNA levels of trfA at 4 and 10 h were decreased by 3.6-fold and 2.5-fold (Figure 2(c)). Furthermore, the $CdCl_2$ inducible trfA gene overexpression plasmid pCN-trfA was constructed and transformed to USA300 $\Delta arlRS$. The

MIC to oxacillin in USA300 $\Delta arlRS$ containing pCNtrfA was similar to that in the mutant when there was no CdCl₂, while it was partially restored by overexpressing trfA when 2 μ M CdCl₂ was present (Table 2). These results indicate that trfA plays a role in arlRS and spx mediated oxacillin susceptibility. Besides, Göhring N et al. show that inactivation of yjbH, which encodes a Spx-interacting protein governing Spx proteolytic degradation, led to moderate resistance to oxacillin in S. aureus [47]. However, no change in yjbH mRNA level was found in $\Delta arlRS$ in our work. Thus, the role of spx in regulating oxacillin resistance warrants further investigations, e.g. whether spx mediates oxidative stress responses to hydroxyl radicals produced by bactericidal antibiotics.

The important role of ArlRS in regulating oxacillin resistance in MRSA strains indicates that this twocomponent system is a potential target for antimicrobial resistance breaker drugs, which may enhance the antibacterial activity of oxacillin. Bacterial two-component systems (TCSs) have been demonstrated to be promising targets [48–50], not only because they are vital to bacterial survival, virulence and antibiotic resistance, but also because their homologues have not been identified in humans. Novel inhibitors have been developed against several bacterial TCSs, including Enterococcus faecium VanSR (vancomycin resistance) [51], Staphylococcus epidermidis WalKR (bacterial growth and biofilm formation) [52], E. coli QseCB (virulence) [53] and Mycobacterium tuberculosis DosRST (persistence) [54]. Most of the inhibitors are screened or designed against histidine kinase (HK) CA (HATPase_c) domain because of its conserved features and its essential role in TCS signal transduction [55]. In this work, by screening in the FDA approved drugs library, we have found that oritavancin (diphosphate) can inhibit the ATPase activity of the recombinant histidine kinase ArlS CA domain. Oritavancin is a semisynthetic lipoglycopeptide analogue of vancomycin, which has multiple mechanisms of action against exponentially growing S. aureus cells, including the inhibition of cell wall synthesis and RNA synthesis, disruption of membrane potential and increasing membrane permeability [56,57]. Our finding suggests that inhibition of ArlS kinase activity by oritavancin thereby interfering the signal transduction may be another mechanism of action against

MRSA, because ArlRS modulates oxacillin resistance. This may be one of the reasons for the fact that oritavancin has synergy effect on antibacterial activities of oxacillin against the MRSA strains (Table 4). Furthermore, CLSM observation showed that ArlRS regulated MRSA biofilm formation (Supplementary Figure 4): compared to the parent strain USA300, USA300- $\Delta arlRS$ formed thinner biofilm layers (10.32 µm VS. 17.83 µm), which was restored by arlRS complementation (PCNarlRS, 17.8 µm) but not by the empty vector (PCN, 11.26 µm). This may give a possible explanation for that oritavancin treatment results in disruption of mature MRSA biofilms and facilitates bactericidal activity of oritavancin and oxacillin against embedded S. aureus cells (Figure 4). Our findings are consistent with the report by Belly A et al. that oritavancin is active against biofilm S. aureus cells in vitro [58].

In conclusion, our work demonstrates the two-component system ArlRS plays vital roles in regulating oxacillin susceptibility via direct modulation of *spx* expression and in regulating biofilm formation in MRSA strains. ArlRS is an attractive target for breaking oxacillin resistance of MRSA in planktonic state and in mature biofilms.

Acknowledgements

We thank Prof. Ying Zhang (John Hopkins University, USA) for providing the MRSA USA300 strain. We thank Prof. J.M. van Dijl (University of Groningen, Netherlands) for the gift of the plasmid pCN51.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Natural Science Foundation of China [grant number 81671982, 81300810], Zhejiang Provincial Natural Science Foundation of China [grant number LY16H190006] and Zhengyi Scholar Program of Fudan University.

References

- Tong SYC, Davis JS, Eichenberger E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–661. DOI:10. 1128/cmr.00134-14
- [2] Gonzalez BE, Martinez-Aguilar G, Hulten KG, et al. Severe Staphylococcal sepsis in adolescents in the era of community-acquired methicillin-resistant Staphylococcus aureus. Pediatrics. 2005;115:642–648. DOI:10.1542/peds.2004-2300
- [3] Roberts RB, Chung M, De Lencastre H, et al. Distribution of methicillin-resistant Staphylococcus aureus clones among health care facilities in

Connecticut, New Jersey, and Pennsylvania. Microb Drug Resist. 2000;6:245–251. DOI:10.1089/mdr.2000. 6.245

- [4] Otto M. Community-associated MRSA: what makes them special? Int J Med Microbiol. 2013;303:324– 330. DOI:10.1016/j.ijmm.2013.02.007
- [5] Rybak MJ, Akins RL. Emergence of methicillin-resistant Staphylococcus aureus with intermediate glycopeptide resistance: clinical significance and treatment options. Drugs. 2001;61:1–7.
- [6] Sakoulas G, Gold HS, Venkataraman L, et al. Methicillin-resistant Staphylococcus aureus: comparison of susceptibility testing methods and analysis of mecA-positive susceptible strains. J Clin Microbiol. 2001;39:3946–3951. DOI:10.1128/jcm.39.11.3946-3951. 2001
- [7] Tesch W, Ryffel C, Strassle A, et al. Evidence of a novel staphylococcal mec-encoded element (mecR) controlling expression of penicillin-binding protein 2'. Antimicrob Agents Chemother. 1990;34:1703–1706.
- [8] Ryffel C, Kayser FH, Berger-Bachi B. Correlation between regulation of mecA transcription and expression of methicillin resistance in staphylococci. Antimicrob Agents Chemother. 1992;36:25–31.
- [9] Hackbarth CJ, Chambers HF. Blai and blaR1 regulate beta-lactamase and PBP 2a production in methicillinresistant Staphylococcus aureus. Antimicrob Agents Chemother. 1993;37:1144–1149.
- [10] Rosato AE, Kreiswirth BN, Craig WA, et al. mecA-blaZ corepressors in clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother. 2003;47:1460–1463.
- [11] Goldstein F, Perutka J, Cuirolo A, et al. Identification and phenotypic characterization of a beta-lactamdependent, methicillin-resistant Staphylococcus aureus strain. Antimicrob Agents Chemother. 2007;51:2514–2522. DOI:10.1128/aac.00040-07
- [12] Stranden AM, Ehlert K, Labischinski H, et al. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. J Bacteriol. 1997;179:9–16.
- [13] Piriz Duran S, Kayser FH, Berger-Bachi B. Impact of sar and agr on methicillin resistance in Staphylococcus aureus. FEMS Microbiol Lett. 1996;141:255-260.
- [14] Li L, Cheung A, Bayer AS, et al. The global regulon sarA regulates beta-lactam antibiotic resistance in methicillin-resistant Staphylococcus aureus In vitro and in endovascular infections. J Infect Dis. 2016;214:1421–1429. DOI:10.1093/infdis/jiw386
- [15] Singh VK, Schmidt JL, Jayaswal RK, et al. Impact of sigB mutation on Staphylococcus aureus oxacillin and vancomycin resistance varies with parental background and method of assessment. Int J Antimicrob Agents. 2003;21:256–261.
- [16] Memmi G, Nair DR, Cheung A. Role of ArlRS in autolysis in methicillin-sensitive and methicillin-resistant Staphylococcus aureus strains. J Bacteriol. 2012;194:759–767. DOI:10.1128/JB.06261-11
- [17] Ji Y, Yu C, Liang X. Transcriptomic analysis of ArlRS two-component signaling regulon, a global regulator, in Staphylococcus aureus. Methods Enzymol. 2007;423:502–513. DOI:S0076-6879(07)23024-1 [pii]. DOI:1016/S0076-6879(07)23024-1
- [18] Luong TT, Lee CY. The arl locus positively regulates Staphylococcus aureus type 5 capsule via an mgrAdependent pathway. Microbiology. 2006;152:3123– 3131. DOI:10.1099/mic.0.29177-0

- [19] Liang X, Zheng L, Landwehr C, et al. Global regulation of gene expression by ArlRS, a two-component signal transduction regulatory system of Staphylococcus aureus. J Bacteriol. 2005;187:5486–5492. DOI:187/15/ 5486-a [pii]. DOI:1128/JB.187.15.5486-5492.2005
- [20] Fournier B, Klier A. Protein A gene expression is regulated by DNA supercoiling which is modified by the ArlS-ArlR two-component system of Staphylococcus aureus. Microbiology. 2004;150:3807–3819. DOI:10. 1099/mic.0.27194-0
- [21] Fournier B, Hooper DC. A new two-component regulatory system involved in adhesion, autolysis, and extracellular proteolytic activity of Staphylococcus aureus. J Bacteriol. 2000;182:3955–3964.
- [22] Fournier B, Klier A, Rapoport G. The two-component system ArlS-ArlR is a regulator of virulence gene expression in Staphylococcus aureus. Mol Microbiol. 2001;41:247–261. DOI:mmi2515 [pii].
- [23] Burgui S, Gil C, Solano C, et al. A systematic evaluation of the two-component systems network reveals that ArlRS is a key regulator of catheter colonization by Staphylococcus aureus. Front Microbiol. 2018;9:342. DOI:10.3389/fmicb.2018.00342
- [24] Diep BA, Gill SR, Chang RF, et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet. 2006;367:731–739. DOI:10.1016/s0140-6736(06)68231-7
- [25] Charpentier E, Anton AI, Barry P, et al. Novel cassettebased shuttle vector system for gram-positive bacteria. Appl Environ Microbiol. 2004;70:6076–6085. DOI:10. 1128/aem.70.10.6076-6085.2004
- [26] Xu T, Wu Y, Lin Z, et al. Identification of genes controlled by the essential YycFG two-component system reveals a role for biofilm modulation in Staphylococcus epidermidis. Front Microbiol. 2017;8:724, DOI:10. 3389/fmicb.2017.00724
- [27] Bae T, Schneewind O. Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid. 2006;55:58–63. DOI:10.1016/j.plasmid. 2005.05.005
- [28] Pang YY, Schwartz J, Thoendel M, et al. agr-Dependent interactions of Staphylococcus aureus USA300 with human polymorphonuclear neutrophils. J Innate Immun. 2010;2:546–559. DOI:10.1159/ 000319855
- [29] Dubendorff JW, Studier FW. Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J Mol Biol. 1991;219:45–59.
- [30] Bruckner R. Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus. FEMS Microbiol Lett. 1997;151:1–8. DOI:S0378-1097(97)00116-X [pii].
- [31] Vuong C, Gotz F, Otto M. Construction and characterization of an agr deletion mutant of Staphylococcus epidermidis. Infect Immun. 2000;68:1048–1053.
- [32] Martinez-Irujo JJ, Villahermosa ML, Alberdi E, et al. A checkerboard method to evaluate interactions between drugs. Biochem Pharmacol. 1996;51:635–644.
- [33] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the $2-\Delta\Delta$ CT method. Methods. 2001;25:402–408. DOI:10.1006/meth.2001.1262
- [34] Crosby HA, Schlievert PM, Merriman JA, et al. The Staphylococcus aureus global regulator MgrA modulates clumping and virulence by controlling surface

protein expression. PLoS Pathog. 2016;12:e1005604. DOI:10.1371/journal.ppat.1005604

- [35] Sun F, Zhou L, Zhao B-C, et al. Targeting MgrAmediated virulence regulation in Staphylococcus aureus. Chem Biol. 2011;18:1032–1041. DOI:10.1016/j. chembiol.2011.05.014
- [36] Trotonda MP, Xiong YQ, Memmi G, et al. Role of mgrA and sarA in methicillin-resistant Staphylococcus aureus autolysis and resistance to cell wall-active antibiotics. J Infect Dis. 2009;199:209–218. DOI:10.1086/595740
- [37] Villet RA, Truong-Bolduc QC, Wang Y, et al. Regulation of expression of abcA and its response to environmental conditions. J Bacteriol. 2014;196:1532–1539. DOI:10.1128/jb.01406-13
- [38] Truong-Bolduc QC, Hooper DC. The transcriptional regulators NorG and MgrA modulate resistance to both quinolones and beta-lactams in Staphylococcus aureus. J Bacteriol. 2007;189:2996–3005. DOI:10. 1128/jb.01819-06
- [39] Komatsuzawa H, Ohta K, Sugai M, et al. Tn551mediated insertional inactivation of the fmtB gene encoding a cell wall-associated protein abolishes methicillin resistance in Staphylococcus aureus. J Antimicrob Chemother. 2000;45:421–431.
- [40] Zuber P. Spx-RNA polymerase interaction and global transcriptional control during oxidative stress. J Bacteriol. 2004;186:1911–1918.
- [41] Kajfasz JK, Mendoza JE, Gaca AO, et al. The Spx regulator modulates stress responses and virulence in Enterococcus faecalis. Infect Immun. 2012;80:2265– 2275. DOI:10.1128/IAI.00026-12
- [42] Pamp SJ, Frees D, Engelmann S, et al. Spx is a global effector impacting stress tolerance and biofilm formation in Staphylococcus aureus. J Bacteriol. 2006;188:4861–4870. DOI:10.1128/JB.00194-06
- [43] Kajfasz JK, Rivera-Ramos I, Abranches J, et al. Two Spx proteins modulate stress tolerance, survival, and virulence in Streptococcus mutans. J Bacteriol. 2010;192:2546–2556. DOI:10.1128/JB.00028-10
- [44] Villanueva M, Jousselin A, Baek KT, et al. Rifampin resistance rpoB Alleles or multicopy thioredoxin/thioredoxin reductase suppresses the lethality of disruption of the global stress regulator spx in Staphylococcus aureus. J Bacteriol. 2016;198:2719–2731. DOI:10. 1128/JB.00261-16
- [45] Jousselin A, Kelley WL, Barras C, et al. The Staphylococcus aureus thiol/oxidative stress global regulator Spx controls trfA, a gene implicated in cell wall antibiotic resistance. Antimicrob Agents Chemother. 2013;57:3283–3292. DOI:10.1128/AAC.00220-13
- [46] Renzoni A, Kelley WL, Barras C, et al. Identification by genomic and genetic analysis of two new genes playing a key role in intermediate glycopeptide resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53:903–911. DOI:10.1128/aac. 01287-08
- [47] Gohring N, Fedtke I, Xia G, et al. New role of the disulfide stress effector YjbH in beta-lactam susceptibility of Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55:5452–5458. DOI:10.1128/AAC. 00286-11
- [48] Okada A, Gotoh Y, Watanabe T, et al. Targeting twocomponent signal transduction: a novel drug discovery system. Methods Enzymol. 2007;422:386–395. DOI:10. 1016/S0076-6879(06)22019-6

- [49] Stephenson K, Hoch JA. Developing inhibitors to selectively target two-component and phosphorelay signal transduction systems of pathogenic microorganisms. Curr Med Chem. 2004;11:765–773.
- [50] Stephenson K, Hoch JA. Two-component and phosphorelay signal-transduction systems as therapeutic targets. Curr Opin Pharmacol. 2002;2:507–512. DOI: S1471489202001947 [pii].
- [51] Macielag MJ, Demers JP, Fraga-Spano SA, et al. Substituted salicylanilides as inhibitors of two-component regulatory systems in bacteria. J Med Chem. 1998;41:2939–2945. DOI:10.1021/jm9803572
- [52] Liu H, Zhao D, Chang J, et al. Efficacy of novel antibacterial compounds targeting histidine kinase YycG protein. Appl Microbiol Biotechnol. 2014;98:6003– 6013. DOI:10.1007/s00253-014-5685-8
- [53] Rasko DA, Moreira CG, Li D. R, et al. Targeting QseC signaling and virulence for antibiotic development. Science. 2008;321:1078–1080. DOI:10.1126/science. 1160354

- [54] Gupta RK, Thakur TS, Desiraju GR, et al. Structurebased design of DevR inhibitor active against nonreplicating Mycobacterium tuberculosis. J Med Chem. 2009;52:6324–6334. DOI:10.1021/jm900358q
- [55] Bem AE, Velikova N, Pellicer MT, et al. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem Biol. 2015;10:213–224. DOI:10.1021/ cb5007135
- [56] Zhanel GG, Schweizer F, Karlowsky JA. Oritavancin: mechanism of action. Clin Infect Dis. 2012;54(Suppl 3):S214–S219. DOI:10.1093/cid/cir920
- [57] Corey GR, Kabler H, Mehra P, et al. Single-dose oritavancin in the treatment of acute bacterial skin infections. N Engl J Med. 2014;370:2180–2190. DOI:10. 1056/NEJMoa1310422
- [58] Belley A, Neesham-Grenon E, McKay G, et al. Oritavancin kills stationary-phase and biofilm Staphylococcus aureus cells in vitro. Antimicrob Agents Chemother. 2009;53:918–925. DOI:10.1128/ AAC.00766-08