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Abstract

Deciphering the way gene expression regulatory aspects are encoded in viral genomes is a

challenging mission with ramifications related to all biomedical disciplines. Here, we aimed to

understand how the evolution shapes the bacteriophage lambda genes by performing a high

resolution analysis of ribosomal profiling data and gene expression related synonymous/silent

information encoded in bacteriophage coding regions.

We demonstrated evidence of selection for distinct compositions of synonymous codons in

early and late viral genes related to the adaptation of translation efficiency to different bacterio-

phage developmental stages. Specifically, we showed that evolution of viral coding regions is

driven, among others, by selection for codons with higher decoding rates; during the initial/pro-

gressive stages of infection the decoding rates in early/late genes were found to be superior to

those in late/early genes, respectively. Moreover, we argued that selection for translation effi-

ciency could be partially explained by adaptation to Escherichia coli tRNA pool and the fact that

it can change during the bacteriophage life cycle.

An analysis of additional aspects related to the expression of viral genes, such as mRNA

folding and more complex/longer regulatory signals in the coding regions, is also reported. The

reported conclusions are likely to be relevant also to additional viruses.
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1. Introduction

Because of a major advantage of being a diverse group of easily
manipulated viruses, bacteriophages have various potential uses
both in fundamental research and in various biotechnological and
biomedical applications. For example, they are used as vehicles for
vaccines (both DNA and protein), for the detection of pathogenic
bacterial strains, and as a display system for many proteins and anti-
bodies.1–4 Furthermore, phages were also suggested to be used as
biocontrol agents in agriculture and petroleum industry, and as

alternatives to antibiotics in the case of antibiotic resistant bacterial
strains. In addition, they often serve as model organisms in molecular
evolution studies.1–4 Therefore, understanding the way the viral fit-
ness is encoded in the genetic material of bacteriophages (or other
type of viruses) is an important and challenging mission that may po-
tentially contribute to all biomedical disciplines.1–4

Deciphering the regulatory information encoded in the genomes
of phages or other viruses, and the relation between the nucleotides
composition of the coding regions and the viral fitness is a very
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challenging mission, which was tackled, in the recent years, by vari-
ous researchers.5–13 Among others, it was suggested that ribosome
profiling, which enables the large in vivo genome wide monitoring of
ribosome state at a resolution of single nucleotide, is a very useful
tool for deciphering the coding complexity of viral (and other organ-
isms) genomes. Specifically, it was shown that ribosome profiling en-
ables detecting novel (possibly very short) coding regions and
estimate the translation status of various open reading frames.5–9

Here, we focus on the Bacteriophage lambda which is a well-
known and studied member of the Siphoviridae family of double-
stranded DNA viruses in the Caudovirales order (also known as
‘tailed bacteriophages’ due to their characteristic form). During its
lifecycle this phage either resides within the genome of its
Escherichia coli host through lysogeny or enters into a lytic phase
(which lasts �25 min) during which it produces progeny viral par-
ticles, and kills and lyses the cell (see for example14,15). The genome
size of the bacteriophage lambda is �50 kb nt and includes 66
known genes that were analysed in this study. These genes can be
divided into two groups, ‘early’ and ‘late’ according to the stages in
the lytic phase when their expression is dominant.9

The specific aim of this study is at exploring the way in which
translation efficiency related information is encoded on a synonym-
ous level in the coding regions of genes that are expressed during dif-
ferent bacteriophage lambda development stages (i.e. 0–20 min after
the beginning of the lytic phase). Some previous studies shed some
light on specific elements related to this topic. For example, a recent
study by Liu et al.9 employed ribosome profiling to study the pro-
gress of bacteriophage lambda gene expression during phage devel-
opment and showed that the known genes are expressed in a
predictable fashion; in addition many previously unknown potential
open reading frames were detected. Other studies focused on differ-
ent aspects of viral translation (and lifecycle in general) regulation
that has a significant effect on shaping viral genomes, such as: sec-
ondary structures within viral transcripts (mainly in untranslated re-
gions16,17 but also within coding regions18–20) and evolutionary
pressure on synonymous codons usage bias.21–25

However, to the best of our knowledge, this is the first study aim-
ing to perform a comprehensive, large scale analysis of different
types of genomic synonymous information related to regulation of
translation efficiency in all coding regions of a bacteriophage
lambda, during different stages of its development. In particular, bas-
ing on the analysis of ribosome profiling data,9 we demonstrated, for
the first time, the condition specific adaptation of the bacteriophage
codons in early/late genes to the intra-cellular E. coli environment
during the different stages of phage development.

2. Material and methods

2.1. Data

Ribosome profiling was applied to the process of lytic growth of
Bacteriophage lambda by Liu et al.9 They chose temperature induc-
tion of the classic cI857 repressor mutant of Bacteriophage lambda
in a lysogen of E. coli MG1655 to synchronize the lytic process, sam-
pling the lysogen and control non-lysogen both before and 2, 5, 10,
and 20 min after shifting the temperature from 32 �C to 42 �C.
Transcript sequences were obtained from EnsEMBL for E. coli (K-12
MG1655 release 121, accessed 28/07/15) and from NCBI for the
lambda phage (J02459, accessed 07/12/15). There were 4,319 genes
of E. coli and 66 genes of lambda phage in the obtained sequences.

2.1.1. Ribo-seq reads mapping
Ribosome footprint sequences were obtained from9 (GSE47509, in-
duction 0–20 min). We trimmed the poly-A adaptors from the reads
using Cutadapt26 (version 1.8.3), and utilized Bowtie27 (version
1.1.1) to map them to the E. coli-lambda transcriptome. The location
of the A-site was approximated by an 11-nt shift from the 50 end of
the aligned read. This shift maximized the correlation between
MTDR (described below) and the observed read densities per E. coli
gene. Further details related to the ribo-seq processing appear in the
supplementary methods.

2.2. Randomization models

We considered two randomization models: (i) To preserve both the
amino acids order and content and the frequencies distribution of 16
possible pairs of adjacent nucleotides (dinucleotides), a model based
on a multivariate Boltzmann sampling scheme was used.28 This
model was initially introduced in the context of enumerative com-
binatorics and was used by us before for studying other viruses.16,17

We used the original source code which can be found in http://csb.cs.
mcgill.ca/sparcs (7 February 2017, date last accessed). (ii) To pre-
serve both the amino acids order and content and the codon usage
bias, synonymous positions in codon sequences were randomly
permuted.

2.2.1. tRNA adaptation index (tAI).29

Quantifies the adaptation of the codons of a coding region to the
tRNA pool. Technical details regarding this measure appear in the
supplementary.

2.2.2. Ribosome profiling data normalization
We began this analysis by reconstructing ribosome profiles for E.
coli and Bacteriophage Lambda expressed genes and performing nor-
malization described in the supplementary data. The normalization
enables measuring the relative time a ribosome spends translating
each codon in a specific gene relative to other codons in it, whilst
considering the total number of codons in the gene, resulting in its
normalized footprint count (NFC)30:

NFCj ¼
RCj

1
J�40

� �
RC21 þ RC22 þ . . .þ RCJ�20
� � ;

j ¼ 21 . . . J � 20;

where J is the number of codons in the gene and j is the index of a
codon.

We generate histogram of NFC for each codon. Each NFC distri-
bution describes the probability (Pi) (y-axis) of observing each of
the codon’s NFC values (x-axis) in the ORFs of the analysed
organism.

2.3. Codon typical decoding rate (TDR)

To estimate the typical decoding time of each codon based on NFC
distributions, we used a novel statistical model,17 which takes into
consideration the skewed nature of the NFC distribution. The aim is
to describe the NFC histogram of each codon as an output of a ran-
dom variable which is a sum of two random variables: a normal and
an exponential variable. Thus, the distribution of this new random
variable includes three parameters, and is called EMG distribution.30

In this model, the typical codon decoding time was described by the
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normal distribution with two parameters: mean (l) and standard de-
viation (r); the l parameter represents the location of the mean of
the theoretical Gaussian component that should be obtained if there
are no phenomena such as pauses/biases/ribosomal traffic jams; r

represents the width of the Gaussian component. The exponential
distribution has one parameter k which represents the skewness of
the NFC distribution due to reasons such as ribosomal jamming
caused by codons with different decoding times, extreme pauses, in-
complete halting of the ribosomes and biases in the experiment. The
EMG is defined as follows:

f x; l; r; kð Þ ¼ k
2

e
k
2 2lþkr2�2xð Þerfc

lþ kr2 � xffiffiffi
2
p

r

� �
;

erfc xð Þ ¼ 1� erf xð Þ ¼
ð1

x
e�t2

dt:

We used the maximum likelihood criterion to estimate these three
parameters for each codon based on E. coli ribosome profiling data
by fitting the suggested model to the NFC distribution. 1=l was
defined to be the TDR of each codon.

In order to optimize the TDR to E. coli’s read counts in every
time condition; we removed outliers from the NFC distribution of
each codon in the following way: for every codon (in every time con-
dition), and for each NFCi point related to the codon, we calculated
the Pi to see value larger or equal to NFCi based on the pdf fitted to
the codon (EMG distribution). Let Ni denote the number of meas-
urements of the codon NFC based on the data; we removed points in
which the result of pi�Ni was lower than 0.001.

2.4. Synonymous codons usage analysis

Synonymous codons composition of a coding sequence was repre-
sented by a 61-dimensional vector of relative synonymous codons
frequencies (RSCF) of each one of 61 coding codons (stop codons
were excluded):

RSCF ¼ RSCF 1½ �; . . . ;RSCF 61½ �ð Þ;

RSCF i½ � ¼ qiP
j2syn i½ � qj

;
X

j2syn i½ �
RSCF j½ � ¼ 1;

where qi is the number of appearances of codon i in a sequence,
syn[i] is a subset of indexes in RSCF pointing at codons synonymous
to codon i. Therefore, each of the 61 coding codons was assigned a
number between 0 and 1 according to its frequency relatively to the
other codons coding for the same among acid.

Clustering analysis was performed on RSCF vectors of all coding
sequences. In order to exclude biases due to a possible absence of
specific amino acids in some of the sequences (missing amino acids),
the relative synonymous frequency of a codon corresponding to a
missing amino acid was set to the average relative synonymous fre-
quency of this codon over all sequences in which at least one such
amino acid is present.

Each viral sequence was assigned a group label corresponding to
its temporary expression stage (early/late) (according to the classifi-
cation known in the literature). The tendency of sequences to clus-
ter according to the codons usage in two different clusters
corresponding to their temporary expression stages (early/late) was
measured using the Davies–Bouldin score (DBS). This score is based

on a ratio of within-cluster and between-cluster distances and is
defined as:

DB ¼ 1
k

Xk

i¼1

max
j6¼i
fDijg;Dij ¼

�di þ �dj

dij
;

where k is the number of evaluated clusters, Dij is the within-to-
between cluster distance ratio for the ith and jth clusters; �di is the
average Euclidian distance between each point in the ith cluster and
the centroid of the ith cluster; �dj is the average Euclidian distance be-
tween each point in the jth cluster and the centroid of the jth cluster;
dij is the Euclidean distance between the centroids of the ith and jth
clusters. The maximum value of Dij represents the worst-case within-
to-between cluster ratio for cluster i. The optimal clustering solution
has the smallest Davies–Bouldin score value.

The significance of cluster separation was assessed by comparing
the DBS of the wildtype sequences to the randomized scores ob-
tained from 100 permutations of gene group labels (early/late).

In order to visualize the clustering, a principal component analysis
(PCA) was applied to project the RSCF vectors to a plane spanned
by their first two principal components. In order to visualize the sep-
aration between clusters a maximum margin separation line—a line
for which the distance between it and the nearest point from either of
the groups is maximized, was calculated and plotted.

In the same manner, analysis of clustering between early and late
viral groups and a set of top 50 host genes with the highest protein
abundance can be performed.

2.4.1. Mean typical decoding rate (MTDR)
A measure which estimates the translation elongation efficiency of
the entire gene as a geometric average of TDRs of its codons:

MTDR ¼ e

�
1=L
�PL

l¼1

log ðTDRi lð ÞÞ
;

where i is an index of a codon and L is the gene length in codon unit.
We computed the MTDR based on the ribosome profiling data of

the E. coli (TDRs are effected by translation factors which are com-
mon to the host and the bacteriophage). Thus, it should not be sensi-
tive to the low number of bacteriophage reads at the first time points.

2.4.2. Relative translation elongation efficiency
coefficient (RTEC)
Quantifies the relative differences in mean MTDR values of early

and late gene: RTEC¼ mean MTDRE �mean MTDRLð Þ
ðmean MTDRE þmean MTDRLÞ where E and L sigh

for early and late genes.

2.4.3. Folding energy analysis
Minimum free folding energy (MFE) is a thermodynamic energy
involved in maintaining a secondary structure available to perform
physical work whilst being released, and thus is characterized by non-
positive values. mRNA secondary structure is believed to be in the most
stable conformation when minimum amount of free energy is exerted
(the MFE obtains the most negative value). The local MFE-profiles
were constructed by applying a 39 nt length sliding window to a gen-
omic sequence: in each step the MFE of a local subsequence enclosed by
the corresponding window was calculated by Vienna (v. 2.1.9) package
RNAfold31 function with default parameters (see, also16,32). This func-
tion predicts the MFE and the associated secondary structure for the in-
put RNA sequence using a dynamic programming based on the
thermodynamic nearest-neighbor approach (the Zucker algorithm).33
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First, all the genes in the bacteriophage genome were lined up ac-
cording to their start codon and MFE-profiles were calculated for
each coding region together with 40-nt up-stream the start codon se-
quence from the 50 UTR. Then, all the genes in the genome were
lined up according to their end codon and MFE profiles were calcu-
lated for each coding region together with 40-nt down-stream the
end codon from the 30 UTR.

For each gene 100 randomized MFE-profiles variants were com-
puted basing on randomized sequences generated by the dinucleotide
preserving and codon preserving randomization models (both pre-
serving also the encoded proteins, see section above).16,17,28 We did
not change the UTRs in the randomization as in this study we are
interested in the coding regions.

The mean MFE-profile was obtained by averaging the MFE-pro-
files of all genes (in a position wise manner). In a similar manner,
100 randomized mean MFE-profiles were computed by grouping the
randomized MFE-profiles of all genes in 100 groups, each group
contains a different variant for each gene, and then averaging the
profiles in each group in a position-wise manner.

In order to assess the statistical significance of the folding strength
at a particular position in a sequence, we compared the mean MFE
values at this position with the mean MFE values in the correspond-
ing position in each one of the randomized variants by calculating an
empiric P-value—a proportion of the randomized values as extreme
as in the wild type. Positions with MFE related P-value<0.05 were
defined as selected for strong/weak folding.

In addition, we computed mean MFE values for each gene over
all windows (by averaging the values in the corresponding MFE-pro-
files) and compared them to the mean MFE values obtained from the
corresponding 100 randomized profiles. For each gene we calculated
its mean MFE value and an average of 100 mean MFE values from
its randomized variants; the distributions of the wildtype and
randomized mean MFE values of different genes were compared
using Wilcoxon signed-rank test. Early and late genes were analysed
separately.

2.4.4. Average Repetitive Substring (ARS) index
This measure is based on the assumption that evolution shapes the
organismal coding sequences (and other part of the gene) to improve
their interaction with the intra-cellular gene expression machinery.
Since these interactions are mediated via binding of the gene expres-
sion machinery (e.g. translation/transcription factors, RNAP, ribo-
somes, RNA binding proteins, etc.) to the genetic material (DNA or
RNA), the genetic material tend to have optimized binding sites
(which are sub-sequences of nucleotides). We also expect that bind-
ing sites will appear in many coding regions and that more optimal
binding sites will tend to appear more times in the genome. Thus, if
longer substrings of a genome tend to appear in a certain organism’s
coding sequence, it suggests that this coding sequence is more opti-
mized to the intra-cellular gene expression machinery and thus it is
probably more highly expressed. Here, we computed the ARS index
for each bacteriophage gene in comparison to the host (E. coli) and
in comparison to the rest of the viral genes.

The algorithm of ARS index is based on the following steps: (i)
For each position i in the coding sequence S find the longest sub-
string Sj

i that starts in that position, and also appears in at least one
of the coding sequences of the reference genome (E. coli/viral). (ii)
Let jSj denote the length of a sequence S; the ARS index of S is the

mean length of all the substrings Sj
i : ARS ¼

P
sj
i

jsj :

2.4.5. Rare codons analysis
Rare codons in a reference set of coding sequences were defined as
codons with the relative synonymous frequency <0.2. Three refer-
ence sets were used: E. coli coding sequences, bacteriophage early
coding sequences, bacteriophage late coding sequences.

A rare codons score (RCS) for a specific early/late/E. coli coding
sequence with respect to a reference set of all early/all late/all E. coli
coding sequences is defined as a percentage of amino acids in that se-
quence encoded by a rare codon out of all amino acids that are
encoded by at least one rare codon in the corresponding reference set
(if an AA is not encoded by codons that are rare in the reference set
we exclude it from the analysis):

RCS ¼ 1
N

X
c

Ic; Ic ¼
1; RSCF cð Þ < 0:2

0; otherwise
;

(

where the sum is over all codons c that have at least one rare syn-
onymous codon that appears in the reference set and N is the total
number of such codons.

2.4.6. Late genes sampling
In order to control the influence of the difference of genes length be-
tween early and late groups we sampled the late genes so that the
average length of both genes groups is the same. The sampling was
of random contiguous blocks of codons from the late genes and ac-
cording to distributions of early genes.

3. Results and discussion

The research outline of the study is described in Fig. 1A. Our analysis
was based on the genome (mainly the coding sequences) of the E. coli
host (A), the genome of bacteriophage lambda (B) and the ribo-seq
measurements of these two (C). To assess the statistical significance of
the signals found in the analysed viral genes and to exclude the possibil-
ity that these signals are un-direct consequences of other genomic prop-
erties, we compared them to signals expected by chance in the
corresponding randomized variants (D); two different randomization
models were employed: one that maintains the encoded proteins and the
frequencies of pairs of adjacent nucleotides (dinucleotides), and the other
that maintains the encoded proteins and the frequencies of synonymous
codons (codon usage bias). Basing on the ribo-seq data, the expression
levels of each gene at each time point (E), the relative decoding rate of
each codon (F), and the classification of the bacteriophage genes to early
and late (with respect to the beginning of the lytic phase) (G) were
derived. On the basis of A, B, D, G, we performed synonymous codons
usage analysis of coding regions in viral and E. coli genes (H) using the
RSCF (I) and tRNA adaptation indexes (tAI) (J). On the basis of E, F, G,
we analysed codons decoding rates for early/late genes at different stages
of the viral development (L) on gene/genomic (M) and per-codon (N)
levels. In addition, based on A, B, D, G, we studied the local and global
signals of evolutionary selection for strong/weak mRNA folding (K) and
for higher order synonymous information encoded in repetitive sequence
motifs that are longer/more complex than single codons in the coding re-
gions of the bacteriophage genes (O).

The major aim of this study is to compare the properties of coding
regions of bacteriophage early and late genes; thus, we start with a
brief description of the expression pattern of these two gene groups.
The analysis of ribo-seq read count per nucleotide for early and late
groups of bacteriophage genes appears in Fig. 1B. As can be seen, at
the first time point the read count of both groups is very low.
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Afterwards the expression levels of both gene groups increase; whilst
the expression of the early gene group is dominant during minutes
1–10, the expression levels of the late group become dominant to-
wards the 20th minute. Specifically, 32 of the bacteriophage genes
are defined as early genes as their expression levels increase from 5 to
10 min, and then decrease by minute 20 after the beginning of the
lytic process9; the rest of the genes (34 genes) are define as late genes
as their expression levels become significant only at minute 10 from
the beginning of the lytic process, and then increase considerably by
minute 20 (Fig. 1B and9).

3.1. Evidence of selection for different codons in early

and late genes

At the first step (Fig. 2A), we aimed at comparing the synonymous
codons usage in E. coli and bacteriophage early and late coding se-
quences. To this end, for each coding sequence, we computed its rela-
tive synonymous codon frequencies (RSCF)—a 61-dimensional
vector representing each codon (except the stop codons) by its fre-
quency in that sequence normalized relative to the frequencies of
other synonymous codons coding for the same amino acid
(Methods). Our analysis demonstrated that the early and late genes
tend to be clustered into two significantly separated (P-value<0.01)
clusters according to their synonymous codons usage. In addition
synonymous codon usage in both groups of viral genes was found to
be significantly different (P-value<0.01) from that of E. coli (Fig.
2A; Methods). These results provide evidence that different sets of
synonymous codons for early vs. late genes are selected in the course
of viral evolution and may be related to the optimization of the viral
fitness.

3.2. Differential codon usage in early and late genes

can be partially explained by adaptation of translation

elongation efficiency to different bacteriophage

development stages

Having shown that early and late viral genes have a significantly dif-
ferent composition of synonymous codons which may be associated
with various features of their expression, we would like to focus one
such feature, and understand the translation elongation efficiency of
bacteriophage coding regions and how it behaves in different stages
of the viral lytic cycle.

To this aim we employed a condition specific measure of transla-
tion elongation30 to study the elongation speed of viral codons/genes
during the different steps of phage development. This measure, called
MTDR, is based on the estimation of a typical codon decoding rate
(TDR) of each codon at each time point30 based on the ribosome
profiling data9 and enables ranking codons and coding regions ac-
cording to their elongation rate whilst controlling for other factors,
such as initiation rates and mRNA levels (see details in the Methods
section).

At the first step, we wanted to check whether the bacteriophage
coding regions undergo any selection for optimizing translation
elongation. To this end, at every time condition we computed two
average MTDR values, for early and late genes separately, and com-
pared them to the average MTDR values obtained for corresponding
randomized variants that maintain the wild type amino acid content
and the dinucleotide distribution (Methods). As can be seen in Fig.
2B and Supplementary Fig. S1, the average MTDR of both groups is
significantly higher than expected from the random model in all time
points (early: p<0.01; late: p<¼0.04). These results suggest that,

indeed, translation elongation efficiency is maintained along the lytic
cycle of infection and may be a factor that drives codon evolution in
both groups of the bacteriophage genes.

At the next step, to compare the translation elongation efficiency
between early and late genes, we looked at the RTEC which quanti-
fies the relative differences in average MTDR values of two gene
groups: more positive RTEC values mean that early genes are more
efficient than the late genes and vice versa, more negative RTEC val-
ues mean that late genes are more efficient than the early ones;
RTEC values close to zero mean that the two groups of genes have a

Figure 1. (A) A flow diagram and illustration of the study (see details in the

main text). (B) Relative expression level of each of the gene groups (early/

late) in read count per nucleotide.
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Figure 2. (A) Selection for different codons in early and late genes. A plot of two principal components of RSCF vectors of all bacteriophage and E. coli genes.

Bicteriophage early (blue) late (red) and E. coli (green) genes tend to be clustered into two distinct groups according to their synonymous codons compositions. The sep-

aration between the groups was measured by Davies–Bouldin index and found to be significantly higher than expected in random (P<0.01; see methods). The separ-

ation between the groups of early and late viral genes was visualized by a maximum margin separation line—a line for which the distance between it and the nearest

point from either of the groups is maximized. (B) Selection for translation elongations efficiency in bacteriophage coding regions. At each time point: average MTDR val-

ues of wildtype early/late genes (vertical bars) were compared with MTDR values of 100 corresponding randomized variants (histograms). Average wildtype MTDR val-

ues of each group are significantly higher (P<0.05) than expected in random. The late genes were sampled to control the length factor (see methods; see also

Supplementary Fig. S1). (C) Adaptation of translation elongation efficiency in early and late genes to different bacteriophage development stages genes. Relative transla-

tion elongation efficiency coefficient, RTEC¼ mean MTDRE �mean MTDRLð Þ=ðmean MTDRE þmean MTDRLÞ, as a function of time from the beginning of the lytic

stage (0–20min), where MTDRE and MTDRL sigh for the MTDR of early and late genes, respectively. We can see that the RTEC of early genes is higher at the beginning

and become lower with time (as expected); the first point (t¼0), when there are no measurements of expression, is ignored (see also Fig. 1B). (D) Correlation between
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similar translational efficiency (Methods). Figure 2C describes the
RTEC as a function of time (0–20 min). As can be seen, the relative
efficiency of elongation of early genes (in comparison to the late
genes) is high at the beginning and become lower with time (P-val-
ue¼0.04; based on spearman correlation). These results demon-
strate that translation elongation efficiency of the early genes is
relatively higher at the early stages of the bacteriophage development
(when they are expressed) and the translation elongation efficiency
of the late genes is relatively higher at the late stages of the bacterio-
phage development (when they are expressed).

Figure 2D describes the per codon correlation between the TDR
and RSCF for the two bacteriophage gene groups (early and late)
and the E. coli genes at different time points. As can be seen, the cor-
relation is higher and significant for the first time points in the case
of the E. coli and early bacteriophage genes. For the late genes, the
correlation is significant only at the initial points. The fact that the
correlation between RSCF and TDR in the case of the early viral
genes is significant at the initial points supports the conjecture that
the relative codon decoding times change during the viral develop-
ment; this is probably related, among others, to the fact that the bac-
teriophage affects extensively the gene expression in the cell.

The lower correlations at time 2 does not seems to be relate to
trivial biases/problems with the experiment as the number of reads in
the E. coli (used for inferring the MTDR) is similar to the number of
read in the different time points; in addition, the number of reads
mapped to the viral genes is higher than in time 0. Thus, it is possible
that the lower correlation is related to a biological phenomenon: e.g.
it is possible that in this time point there is (strong) deviation (which
is possibly short in time) of the concentration levels of the translation
factors in the cell related to the other points; whilst the codon distri-
butions were shaped to fit the other (longer) periods of the bacterio-
phage development.

3.3. Selection for translation efficiency in

bacteriophage genes may be partially explained by

adaptation to the E. coli tRNA pool, and the fact that it

changes during the bacteriophage development

Previous studies demonstrated that that the codon decoding times
may be directly influenced by the tRNA levels in the cell (see, for
example30).

In Fig. 2E, we analysed the adaptation of the viral codons to the
genomic tRNA copy number in the host at natural conditions
(Methods) and found it to be significant in comparison to the
randomized variants that maintain the dinucleotides distribution for
both early and late gene groups. However, as can be seen in Fig. 2F,
the correlation between the TDR and the tAI of different codons is
significant but decreases during the viral development stages. These
results may suggest that among others the tRNA levels change during
the viral development stages, affecting the codon decoding times.

In addition, we analysed the tendency of early/late bacterial cod-
ing sequences to use rare synonymous codons with respect to early/

late/bacterial gene groups, respectively (RCS). Supplementary Fig. S2
describes the per condition partial correlation (controlling for gene
length) between RCS and mean read counts for the two viral gene
groups (early and late) and the E. coli genes. As can be seen, the cor-
relation decreases in the case of the early genes and E. coli genes and
increases for late genes. Our analysis demonstrates that early/late
genes with rare early/late genes codons tend to be lowly expressed at
the early/late stages, respectively.

The results reported in this section support the conjecture that
some of the differences between the early and the late genes are
related to the adaptation of viral codons to the intracellular environ-
ments in different stages of the phage development. Specifically, we
suggest that such adaptation may be result of the fact that the typical
decoding times (possibly due to changes in tRNA levels) change dur-
ing the bacteriophage development.

3.4. Additional constraints that shape the codon

content of the bacteriophage

In the previous section, we emphasized the importance of the transla-
tion elongation efficiency on shaping the codon composition of the
Bacteriophage coding regions. In this section, we demonstrate that
additional gene expression aspects are also encoded (in parallel) in
the coding sequences.

First, we examined whether there is a selection for strong/weak
local folding in different regions along the genomes (coding re-
gions and flanking UTRs) (Fig. 3A–C). To this end, all early/late
genes were aligned to the start codon and average values of a min-
imal folding energy (MFE) over all genes in each group were pre-
dicted within all possible 39-nt length local window. These
average MFE values where compared in a position wise manner
(Fig. 3A and B) and in average over all positions (Fig. 3C and
Supplementary Fig. S3) to the MFE values expected in random.
Positions with significantly strong (more negative MFE) or weak
(more positive MFE) folding where identified (Fig. 3A and B) and
also global P-value related to the mean average MFE values was
computed (Fig. 3C). To make sure that the obtained folding sig-
nals were not mainly an indirect consequence of codon usage bias
and/or selection for specific dinucleotide contents not related to
mRNA folding we employed two randomization models, one de-
signed to maintain both the encoded protein and the distribution
of dinucleotides and the other designed to maintain both the
encoded protein and the codon usage bias (see the Methods sec-
tion for more details).

Our analysis suggests that in general, there is an evidence of evo-
lutionary selection for strong folding in the coding region of the bac-
teriophage in the case of the late genes but not in the case of the early
genes and this is not related to very specific region along the coding
region (Fig. 3A–C).This selection is manifested by lower average
MFE values than expected in random (Fig. 3C and Supplementary
Fig. S3) and a higher number of positions selected for strong folding

codons typical decoding rates (TDR) and relative synonymous codons frequencies (RSCF) at different time conditions for all, early and late viral genes and all E. coli

genes. Time points with significant correlations (Spearman P-values<0.05) are marked by asterix. For early genes, the correlation is higher than for late and E. coli genes

and is significant (P-value<0.05) for the firsttime points. No significant correlation can be seen for late genes except the first time point. The correlation in the case of the

E. coli is significant up to 10min (except at 2min). (E) Selection for adaptation to E. coli tRNA pool in both early and late genes. Average tAI values of wildtype early

(blue)/late (red) genes (vertical bars) were compared with tAI values of 1,000 corresponding randomized variants (histograms). Average wildtype tAI values of each group

are significantly higher (P< 0.001) than expected in random. The late genes were sampled to control the length factor (see Methods). (F) Correlation between TDR and

tAI values for each codons at different type points is significant (P value<0.05).
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(27 in the early and 123 in the late genes in Fig. 3A; 37 in the early
and 144 in the late genes in Fig. 3B).

Local genomic regions (both in UTRs and in coding sequences) se-
lected for strong mRNA folding may be related to various functional
mRNA structures in the coding regions that effect the viral life
cycle16,17,34; specifically, it is possible that the mRNA structures are
more important in the late genes due to less canonical regulatory aspects
needed at the later phases of viral life. Interestingly, we found that in the
case of the late genes there is an evidence of selection for weak folding
at the 50 end of the coding regions, suggesting that there is a significant
evolutionary pressure for improved initiation efficiency.34

Secondly, we performed an analysis with a measure that detects long
sub-sequences in the viral genome (ARS index) and were able to detect
gene expression codes in an unsupervised manner35 (see technical details
in the Methods section). Our analysis (Fig. 3D) demonstrates that both
in the early and late genes there are significant gene expression codes in
the bacteriophage coding regions that cannot be explained by the viral
codon frequency or dinucleotide composition. These results suggest that
in parallel to single codon adaptations, the bacteriophage coding regions
undergoes an evolutionary pressure to include more complex/longer
regulatory signals in the coding region. This suggests that additional fu-
ture studies should be performed on this topic.

Figure 3. (A and B) Profiles of folding energy (average MFE in all windows of 39-nt length) across the bacteriophage genome (blue) vs. an averaged profile cor-

responding to 100 randomized variants (black) based on dinucleotide preserving randomization; the window index denotes the distance (in nucleotides) from

the beginning of the ORF to the beginning of the window. Regions where the folding energy of the wild type genome is significantly higher (red) or lower

(green) than in randomized variants are marked at the bottom of the figure. (A) The profiles include the 50-UTR near the beginning of the ORF (negative window

indexes). (B) The profiles include the 30-UTR near the ending of the ORF (positive window indexes). (C) Histograms of mean local folding energies (folding ener-

gies averaged over all the windows of each gene) compared with randomized mean local folding energies obtained from two models: (i) proteinþdinucleotides

preserving and (ii) proteinþ codon usage bias preserving (see also Supplementary Fig. S3). (D) Histograms of log[ARS index]. Eight analyses were performed:

two types of reference genomes; bacterial and viral, two type of randomizations; dinucleotide and codons, two groups of genes; early and late. In each histo-

gram, the wild type distribution is compared with the mean random distribution (1,000 random genomes). The P-values were calculated according to Wilcoxon

signed-rank test.
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4. Conclusions

The analyses performed in this study emphasize the way evolution
shape the coding region of Bacteriophage Lambda to improve its ex-
pression levels and fitness. We demonstrate that evolution shapes the
codon content of the Bacteriophage genes to fit them to the dynamic
intracellular environment during the Bacteriophage development.
Specifically, we show that the codon frequencies of the early and late
genes were shaped in a different manner: (i) there is high intra group
similarity in codon usage frequencies than inter-group similarities;
(ii) the codons frequencies of both groups are significantly different
than the codon frequencies of the host; (iii) whilst the decoding rates
of both group is higher than expected based on the amino acid con-
tent and dinucleotide composition, the mean decoding rate of the
early genes is relatively higher/lower than the late genes during the
initial/late stages of the viral development, respectively.

The results reported here demonstrate and suggest that it may be
possible to better understand the function of viral genes via the ana-
lysis of their codon distribution. They can also promote developing
novel approaches for vaccine development and viral therapies: For
example, based on the codon frequencies of different viral ORF we
may be able to predict if they are early of late genes. In addition, en-
gineering the viral genome such that its decoding rate (e.g. as meas-
ured by ribosome profiling) is attenuated may enable generating live
attenuated based vaccines; on the other hand, improving the viral
decoding rate may contribute to developing efficient oncolytic viruses
and contribute towards developing efficient procedures for generat-
ing inactivated vaccines.

Our analysis support the conjecture that the that tRNA pool in
the host changes during the bactriophage development with a tRNA
pool similar to the host pool in natural conditions at the early points
but more different than the host natural tRNA pool during the late
points (see Fig. 2F). Thus, the accurate measure for estimating the
optimization of the codon decoding rates of the bactriophage genes
is the TDR and measures based on the genomic tRNA copy number
(such as the tAI).

Nevertheless, it is important to mention that previous studies sug-
gest that relative levels of tRNAs tend to have high correlation
among different conditions and tissues (see for example36,37). This
may be related, among others, to the fact that a significant change of
tRNA levels ranking may have strong effect on co-translation protein
folding (see for example38) and thus a strong effect on the functional-
ity of many proteins, effecting both the host and the bacteriophage.
Similar phenomena was observed also in this study—there is signifi-
cant correlation between codon decoding rates at different time
points and the relevant genomic tRNA copy number (see Fig. 2F);
however, as mention, this correlation is lower at the later time
points.

At each time point the ‘optimal’ solution relate to the optimization
of translation elongation speed and the optimal allocation of transla-
tion factors include using the codons with the highest codon decod-
ing rates (i.e. the ones related to factors such as tRNA molecules that
have relatively higher abundance in the cell). Thus, genes undergo se-
lection to have codons similar to the translation factor concentration
and this selection is expected to be higher in highly expressed genes
(see39,40) in each condition since non-optimality in these genes
should have higher effect (in comparison to lowly expressed genes)
on the organism/viral fitness; eventually, at early/late stages the early/
late genes are expected to have higher mean decoding rate than late/
early genes, respectively (as we see in Fig. 2C).

Whilst the codons of the early/late genes are different both groups
use all the codons. However, the fact that the two groups of genes
have different codons also means that they use a little different set of
tRNA molecules—the late genes use tRNA molecules less used by the
early genes.

An interesting topic for future study is measuring the tRNA levels
in different time point and an interesting topic for future study will
be to perform such measurements to validate and better understand
the different codon frequencies of early/late genes.

Finally, whilst this study focused on codon frequencies and its re-
lation to translation elongation our analysis suggest that additional
regulatory aspects are encoded in via the local folding of the viral
RNA and possibly additional viral genomic motives (longer than
singe codon; Fig. 3D); these results and the previous ones demon-
strate that the complexity and information content of the
Bacteriophage genome is higher than thought before and encourages
further studies in this direction.

Supplementary data

Supplementary data are available at DNARES Online.
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