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Summary

1. Predictive species distributional models are a cornerstone of wildlife conservation plan-

ning. Constructing such models requires robust underpinning science that integrates formerly

disparate data types to achieve effective species management.

2. Greater sage-grouse Centrocercus urophasianus, hereafter ‘sage-grouse’ populations are

declining throughout sagebrush-steppe ecosystems in North America, particularly within the

Great Basin, which heightens the need for novel management tools that maximize the use of

available information.

3. Herein, we improve upon existing species distribution models by combining information

about sage-grouse habitat quality, distribution and abundance from multiple data sources. To

measure habitat, we created spatially explicit maps depicting habitat selection indices (HSI)

informed by >35 500 independent telemetry locations from >1600 sage-grouse collected over

15 years across much of the Great Basin. These indices were derived from models that

accounted for selection at different spatial scales and seasons. A region-wide HSI was calcu-

lated using the HSI surfaces modelled for 12 independent subregions and then demarcated

into distinct habitat quality classes.

4. We also employed a novel index to describe landscape patterns of sage-grouse abundance

and space use (AUI). The AUI is a probabilistic composite of the following: (i) breeding den-

sity patterns based on the spatial configuration of breeding leks and associated trends in male

attendance; and (ii) year-round patterns of space use indexed by the decreasing probability of

use with increasing distance to leks. The continuous AUI surface was then reclassified into

two classes representing high and low/no use and abundance.

5. Synthesis and applications. Using the example of sage-grouse, we demonstrate how the

joint application of indices of habitat selection, abundance and space use derived from multi-

ple data sources yields a composite map that can guide effective allocation of management

intensity across multiple spatial scales. As applied to sage-grouse, the composite map identi-

fies spatially explicit management categories within sagebrush steppe that are most critical to

sustaining sage-grouse populations as well as those areas where changes in land use would
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likely have minimal impact. Importantly, collaborative efforts among stakeholders guide

which intersections of habitat selection indices and abundance and space use classes are used

to define management categories. Because sage-grouse are an umbrella species, our joint-index

modelling approach can help target effective conservation for other sagebrush obligate species

and can be readily applied to species in other ecosystems with similar life histories, such as

central-placed breeding.

Key-words: abundance, Centrocercus urophasianus, conservation planning, Great Basin,

habitat selection index, lek, map, resource selection function, sagebrush steppe, species distri-

bution modelling

Introduction

The ability to predict the occurrence of imperilled species

is a critical component of conservation planning (Johnson

& Gillingham 2004; Rushton, Ormerod & Kerby 2004;

Early, Anderson & Thomas 2008) because of its impor-

tance in preserving biodiversity at local, regional and glo-

bal scales. Predictive distributional models can delineate

priority areas for habitat preservation, identify areas

where management and restoration activities are likely to

be most beneficial, evaluate risks of anthropogenic activi-

ties and identify low-risk areas where human activities can

occur with minimal impact. Each of these objectives may

require predictive distributional models that operate at

different spatial or temporal scales. For example, models

at range-wide or regional extents are important for assess-

ing species range contractions. Landscape-scale models

may be required to identify specific geographical areas

with high potential for preservation. Local-scale models

may be best for evaluating effects of site-specific develop-

ments.

All distributional models require some form of spatial

data on the target species (Rushton, Ormerod & Kerby

2004). The utility of such data depends on the match

between the spatiotemporal resolution of the distribu-

tional information and the scale at which the model is

to be applied. Discrete breeding locations and survey

counts often are used to define species occupancy at

broad spatial scales (e.g. regional), particularly for taxa

such as birds that are often surveyed during the breeding

season. These types of count data can also provide a

useful index as a proxy for abundance (Stephens et al.

2015). Breeding location data sometimes can be relatively

coarse, however, if they do not provide spatially explicit

information on habitat use other than immediate breed-

ing location. In lekking species, for example, leks (tradi-

tional breeding grounds) are located at discrete locations

where animals readily can be counted but that do not

fully represent the broader area of breeding occupancy.

For such central-place breeders, point-based models,

such as lek location models, are less suited for identify-

ing ecological relationships that predict animal space use

at local scales and the associated relationships with habi-

tat features. Such data sets may not be suited for fine-

scale predictions of occupancy that often are necessary

for conservation planning.

Advances in radio- and satellite-telemetry allow the

location of individual animals to be measured with great

precision (Cagnacci et al. 2010). Analytical tools can

allow individual-based location data to be expressed as

probabilistic space use by animals at a range of temporal

and spatial scales in order to address a variety of applied

and ecological questions (Hebblewhite & Merrill 2008).

Advances in geographical information systems (GIS)

allow predictions of species occurrence based on estimated

relationships with underlying ecological features that

influence their distribution. In particular, habitat selection

indices (HSIs) generated from resource selection functions

(RSFs) yield a powerful empirical approach to link ani-

mal spatial distribution to environmental characteristics

(Manly et al. 2002; Gillies et al. 2006), which can then be

combined with geospatial data to predict the relative

probability of occurrence across adjacent unsampled areas

(Boyce & McDonald 1999; Manly et al. 2002; Johnson

et al. 2006). However, conducting telemetry studies with a

sufficient spatial extent to avoid over-extrapolation to

unsampled areas is often challenging, especially across

remote areas. Modelling approaches that rely on ecologi-

cal relationships derived from multiple sampled popula-

tions within a region could be useful for region-wide

habitat inferences. This could be especially effective in a

hierarchical framework, whereby inference is made to the

‘average’ population in a region.

Given the limitations in spatial and temporal data in

most ecological studies, the use of indices as proxies for

space use, abundance and measures of habitat quality are

widespread but often used separately to inform environ-

mental management and policy decisions (Stephens et al.

2015). However, where sufficient data exist, course (e.g.

point count) and fine-scale (e.g. probabilistic) data could

be integrated to create an analytical tool that reflects

known relationships and projects across broad geographi-

cal areas to guide landscape-scale decisions. Such an inte-

grated tool also could be scaled down to guide decisions

at a local scale. For example, the integration of point-

based lek-survey data and telemetry-based locational data

provide both coarse and fine resolution inputs, respec-

tively, that can be integrated to create an analytical tool

across a range of spatial scales.

Here, we describe a process for categorizing region-

wide habitat quality and prioritizing areas for conserva-

tion and management of greater sage-grouse Centrocercus
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urophasianus; hereinafter ‘sage-grouse’ across a relatively

large portion of their range. Sage-grouse are a North

American lek-breeding grouse in decline largely as a

result of loss, degradation and fragmentation of sage-

brush Artemisia spp. ecosystems (Knick & Connelly 2011)

and currently occupy approximately one-half of their his-

toric range (Schroeder et al. 2004). This species has been

a candidate for listing under the US Endangered Species

Act (ESA) of 1973 (CFR 2010, 2015) and is listed as an

Endangered Species in Canada (Stiver 2011). Sage-grouse

are considered an umbrella species (Rowland et al. 2006)

based on their dependence on large, contiguous expanses

of sagebrush habitat to meet multiple life-history needs

(Knick & Connelly 2011) that concomitantly encompass

other sagebrush-dependent wildlife. In addition, although

protection for sage-grouse and their habitat under the US

ESA was recently ruled to be unwarranted, that decision

was based in part on enactment of effective conservation

measures (CFR 2015). Hence, spatially explicit decision-

support tools, operating at multiple spatial scales, are

needed largely because of recent intensification in sage-

grouse population management and policymaking. The

process described here incorporates two indices: one

derived from large-scale distributional data based on

known lek locations and their counts and the other

derived from fine-scale information of individual sage-

grouse based on telemetry data across 12 subregions. This

joint distributional index model can be a powerful

decision-support tool for land and wildlife managers and

policymakers.

Materials and methods

GEOGRAPHICAL EXTENT OF ANALYSIS

The geographical extent of our study was defined by the outer

perimeter of all sage-grouse population management units (PMU;

NDOW 2014) in Nevada and north-eastern California. We

included a 10-km buffer beyond the PMU’s outer perimeter to

ensure adequate representation of available sage-grouse habitats

(Fig. 1). This represented an area of 21�5 million hectares that

Fig. 1. Region-wide extent and subregion

boundaries used in resource selection func-

tion analyses for greater sage-grouse habi-

tat and management category mapping in

Nevada and north-eastern California.

MCP, minimum convex polygon.
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approximated the total potential sage-grouse range in Nevada

and north-eastern California, excluding those sage-grouse associ-

ated with the bi-state distinct population segment on the eastern

side of the central Sierra Nevada Mountains (Benedict et al.

2003). Floristically, the region was typical of sagebrush Artemesia

spp. shrub-steppe communities in the Great Basin (see

Appendix S1, Supporting Information).

SAGE-GROUSE TELEMETRY DATA

Region-wide modelling and mapping of sage-grouse habitat and

management scenarios relied on two primary sources of sage-

grouse data: lek surveys and telemetry locations (illustrated in a

conceptual model in Fig. 2). A summary of the overall methodol-

ogy is located in Appendix S2. We used data from 19 sage-grouse

telemetry studies located across the Great Basin (Nevada and

California) over 15 years (1998–2013), provided by Nevada

Department of Wildlife (S. P. Espinosa) and California Depart-

ment of Fish and Game (S. C. Gardner). In total, 35 883 teleme-

try locations of 1612 individual sage-grouse were compiled into a

region-wide data base. We split location data into three indepen-

dent data sets: (i) an RSF model training subset that contained

80% of location data; (ii) a classification subset that contained

10%; and (iii) a validation subset that contained 10% (Fig 2).

Individual sage-grouse were randomly assigned to the three data

sets at the given proportions, with no individual sage-grouse

occurring across data sets. We assigned individual sage-grouse to

data sets rather than grouse locations to prevent autocorrelation

among training, validation and classification data sets attributa-

ble to random effects associated with individual grouse. Further

details on capture and radiotelemetry techniques can be found in

Appendix S3.

DELINEATING SUBREGIONS

Spatial associations between sage-grouse and existing PMU

boundaries (NDOW 2014) were used as a starting point for delin-

eating subregions for habitat selection analyses (see Fig. S1). We

calculated the spatial extent of each subregion (n = 19) from a

minimum convex polygon (MCP) that encompassed all telemetry

locations, then buffered each MCP by the averaged maximum

daily sage-grouse movement (1451 m; Fig. 1). Seven subregions

had insufficient sample size to be included in the training data set

(criteria for inclusion were >20 radiomarked grouse and >100

telemetry locations). As another validation set of telemetry data,

we used data from these seven subregions to evaluate model per-

Fig. 2. Diagram showing conceptual model for greater sage-grouse habitat selection model and habitat management category map for

Nevada (NV) and north-eastern California (CA). Input data sets (blue boxes) were subjected to a series of processing steps (black boxes)

to produce interim and final spatially explicit maps (red parallelograms). RSF, resource selection function.
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formance from sage-grouse locations in areas not used to train

the model. After data screening, 12 subregions were represented

in the model training data set.

CLASSIF ICATION OF LANDSCAPE HABITAT FEATURES

We used GIS to quantify a broad suite of biotic and abiotic vari-

ables that represented hypothesized ecological relationships with

sage-grouse populations. Land-cover types representing the domi-

nant vegetation within 900 m2 pixels derived from Landsat ima-

gery were classified into binary raster layers (see Appendix S2).

The non-sagebrush land-cover classes used in our analysis were

annual grass, perennial grass, lowland non-sage shrub, upland

non-sage shrub, wet meadow, riparian, pinyon Pinus spp. and

juniper Juniperus spp. conifer (hereafter, pinyon-juniper conifer),

non-pinyon-juniper conifer, agricultural cropland, open water

and bare ground. All sagebrush taxa were condensed into a single

‘sagebrush’ land-cover class for analysis.

Because variation in sage-grouse habitat selection can be

strongly scale-dependent (Doherty et al. 2008; Casazza, Coates &

Overton 2011; Aldridge et al. 2012), we measured proportions of

each land-cover type at three different spatial scales relevant to

sage-grouse movement patterns. Specifically, we used a circular

moving window in ArcGISTM Spatial Analyst (Environmental Sys-

tems Research Institute, Redlands, CA) with a search radius of

167�9 m (8�7 ha), 439�5 m (61�5 ha) or 1451�7 m (661�4 ha) to

classify the proportion of cells within each buffered distance that

were classified as each land-cover type. The search radius lengths

are biologically relevant in that they represented the averaged

minimum, mean and maximum daily distance travelled by sage-

grouse in this study. Within each spatial extent, we also measured

the variety of land-cover types (i.e. the number of unique land-

cover types), the variety of edge types (i.e. the number of unique

combinations of adjacent land-cover types) and the total length of

interface of two adjacent cover types (hereafter, ‘interspersion’).

We also calculated distances to point and linear landscape fea-

tures and specific topographic characteristics that may affect the

probability of sage-grouse occurrence (Aldridge et al. 2008; see

Appendix S2). Landscape distance features included perennial

streams, springs, wet meadows and open water bodies. For all

features, linear distance was calculated as the Euclidean distance

from a used or available point. Nonlinear distance metrics were

calculated using exponential decay functions (Nielsen, Cranston

& Stenhouse 2009). Topographic characteristics included eleva-

tion, topographic roughness (e.g. variance in elevation change;

(Riley, DeGloria & Elliott 1999) and topographic position indices

(TPI; e.g. finer scale depressions or ridges; De Reu et al. 2013).

SUBREGIONAL RSF MODELL ING

We estimated population-level resource selection functions

(RSFs) using logistic regression (Boyce & McDonald 1999;

Manly et al. 2002; Johnson et al. 2006) in a mixed effects model

framework (Gillies et al. 2006), where the landscape habitat fea-

tures (described above) were modelled as fixed effect covariates.

Individual sage-grouse were fit as a random effect (i.e. random

intercept) to balance the unequal sampling effort and account for

potential autocorrelation among locations within an individual

(Gillies et al. 2006). Year was also included as a random intercept

for subregions with >1 year of telemetry data to account for tem-

poral intraclass correlation. Five random locations within each

subregion MCP were generated for every used location to mea-

sure availability of habitat features (Aldridge et al. 2012). Ran-

dom locations received less weight to allow for equal influence of

used (weight = 1�0) and random (weight = 0�2) points. To allow

all seasonal use areas to be represented equally, thereby repre-

senting the entire annual cycle of sage-grouse (i.e. breeding, late-

summer/autumn, wintering), we added an additional weight to

each location based on the proportion of use occurring during

spring/summer (March–August), autumn (September–November)

and winter (December–February). Thus, each season had equal

representation for estimation of model parameters. We fit all

models using the lme4 package (Bates, Maechler & Bolker 2012)

in Program R (R-Core-Team 2014).

For each subregional map, we employed a multistep model

evaluation approach that has been described in (Coates et al.

2014). The first step reduced the number of variables by identify-

ing the most appropriate spatial scale, distance function or topo-

graphic covariate that best approximated the probability of

occurrence for each corresponding environmental factor. Covari-

ates that represented the best performing scale function met two

criteria: (i) model consisted of the lowest bias-corrected Akaike

Information Criterion (AICc) value (Burnham & Anderson 2002);

and (ii) null model (i.e. random effects only model) was >2 AICc

relative to the single covariate model. Additionally, covariates

that represented the best performing distance and topography

function were <2 AICc relative to null model. Variables meeting

these criteria were carried forward to step 2. During the second

step, we constructed a series of additive models containing all

possible two-covariate combinations of those covariates carried

forward from the first step. We sought to reduce multicollinearity

by constructing correlation matrices and removing models with

evidence of correlated effects (r ≥ |0�65|). We then calculated

model-averaged parameter estimates (bs) for each covariate

across the set of additive models to account for model selection

uncertainty (Burnham & Anderson 2002). The purpose of this

stage was to estimate the effect of each covariate, while account-

ing for the presence of all other covariates (2-factor models), and

use the model-averaged parameter estimates to calculate an RSF,

rather than developing the most parsimonious additive model

with multiple covariates (Coates et al. 2014). The RSF took the

form:

wðxÞ ¼ exp ðb1X1 þ b2X2 þ; . . .;þ bkXk; (eqn 1)

where w(x) is the RSF as a function of model-averaged coeffi-

cients (b1,. . ., bk) for each covariate (X1,. . ., Xk; (Manly et al.

2002). Although the RSF is not an absolute probability in our

study because unused areas were not known, the RSF is useful as

an approximation of the probability of selection (Manly et al.

2002). Covariates were excluded from the RSF if their 95%

unconditional confidence intervals overlapped zero.

REGION-WIDE HSI , CLASSIF ICATION AND VALIDATION

The subregional RSF consisted of values spanning orders of mag-

nitude. Therefore, we transformed each RSF to an HSI as

follows:

HSI ¼ wðxÞ
1þ wðxÞ (eqn 2)
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The HSI is equivalent to a logistic transformation on the bkXk,

for each covariate Xk, and was used only to express relative dif-

ferences in habitat quality, expressed as a 0-to-1 index (low to

high) for each grid cell (mapped resolution 900 m2). Although we

do not interpret HSI values as absolute probabilities, an increase

in HSI corresponds to a relative increase in the probability of

selection based on environmental covariates. The subregional

HSIs were applied across the region and then averaged across

each pixel to calculate a single continuous surface representing

the region-wide HSI (Fig 2).

An index of habitat quality may be obtained directly from the

region-wide surface, which likely provides the most flexible and

informative estimates for habitat conditions. However, a continu-

ous 0-to-1index at the highest possible mapping resolution may

yield greater ambiguity for decision-making when compared with

larger areas classified into discrete habitat quality classes. There-

fore, we extracted HSI values from the region-wide model using

the independent classification data set of telemetry locations (e.g.

10% of randomly selected sage-grouse held aside) and formed four

discrete categories of habitat selection (i.e. high, moderate, low

and non-habitat) using classification values corresponding to stan-

dard deviations (SD) below the mean (�x) HSI as demarcations.

We validated the accuracy of the categorized HSI map with

three independent data sets, two comprised of telemetry loca-

tions and one of lek locations (Fig. 2). The first set of telemetry

locations consisted of 10% of the data held aside for validation

within RSF regions (n = 3124). The second set was comprised

of the locations from non-RSF subregions that had insufficient

sample size for HSI calculation and were excluded from the

model training data set (n = 609, subregions = 7) and provided

evaluation of the habitat classification where they were extended

outside the area represented by training data. The third evalua-

tion data set was comprised of all known active leks region-

wide. Locations from each validation set were overlaid onto the

classified HSI map then evaluated for agreement between per-

centages of locations falling within each habitat class and SD

percentile class used for habitat classification. We also used

Cohen’s Kappa coefficient (j) to assess agreement between the

frequencies of observed validated HSI values vs. expected values

based on SD percentile bins. Values of j > 0�75 constitute excel-

lent agreement, 0�40–0�75 are acceptable and <0�40 are poor

(Fleiss 1981).

REGION-WIDE ABUNDANCE AND SPACE USE INDEX

We developed a region-wide index that served as a proxy for

abundance and space use (AUI) for sage-grouse using lek data

following procedures described in Farzan et al. (2015). To

develop this index, we first obtained spatial coordinates for leks,

as well as the number of males occupying each lek over the past

5 years, from data bases compiled by the Nevada Department of

Wildlife and California Department of Fish and Wildlife. Using

lek data to provide information about contemporary abundance,

we combined indices describing both density and distance to

account for lek location configuration and variation in counts

(density index), as well as space use from individual utilization

distributions in relation to lek sites (distance index; Fig 2.).

As described in Farzan et al. (2015), the density index was gen-

erated using kernel density estimation (Silverman 1986) on point-

based lek location data to create a utilization distribution

weighted by the average maximum number of sage-grouse

counted, following similar procedures described in (Doherty et al.

2011). For further detail on this procedure see Appendix S4. The

distance index was developed from the results of Coates et al.

(2013) and expressed a nonlinear relationship between distance

from leks and the relative probability of occurrence across the

annual life cycle of sage-grouse. For further detail, see

Appendix S4. To create the AUI, values for density and distance

indices at each grid cell (900 m2) were normalized by dividing by

the maximum of their respective index then averaged across the

region-wide extent.

For the purpose of creating a more usable decision-support

map for management and policymakers, we generated two classes

from estimated AUI values: high use and low/no use areas. High

use areas consisted of regions within the cumulative 85% isopleth

of AUI values. (Doherty et al. 2011) delineated high abundance

population centres that contain 75% of the known breeding pop-

ulation. However, a more conservative demarcation of 85% was

used here for greater spatial connectivity among areas of likely

sage-grouse use and is comparable with previously used standards

for sage-grouse breeding density. Also, the 85% value is appro-

priate for the western portion of their range because sage-grouse

seasonal use areas often are relatively far apart. Low/no use areas

of the landscape consisted of areas with <15% of the cumulative

AUI density.

MANAGEMENT SCENARIO CATEGORIZATION

Subsequent intersections between categorized HSI and AUI can

provide spatially explicit information to managers and policy-

makers (Fig. 2). As an example, we developed a rubric, in consul-

tation with a stakeholder team composed of experts from state

and federal resource agencies and academia, to derive four man-

agement scenario categories from these intersections. A brief

rationale follows:

1. Core Areas: Defined as the intersection between all HSI classes

(high, moderate and low) and the high use AUI class. This

management scenario is intended to incorporate areas where

environmental conditions are relatively good with a high cer-

tainty of current sage-grouse occupancy.

2. Priority Areas for Management Action: Defined as the inter-

section between high HSI class within the low/no AUI class,

as well as those areas that scored as non-habitat but occurred

within high AUI areas. These are priority areas for manage-

ment attention and potential action, where high-quality, but

unoccupied, habitat exists, and management intervention

might be especially fruitful because those areas have potential

for occupancy. Where habitat quality is low, but is sometimes

occupied by sage-grouse, as occurs when sage-grouse move

through low-quality habitat during seasonal migration, man-

agement attention to these counterintuitive locations may be a

high priority. Specifically, the priority area scenario encom-

passes the following: (i) high-quality habitats based on envi-

ronmental covariates with a lower potential for occupancy

given the current distribution of sage-grouse; and (ii) sage-

grouse incursion into areas of low-quality habitat that is

potentially important for local populations such as corridors

of non-habitat connecting disjunct higher quality habitats.

3. General Areas: Defined as moderate and low HSI classes pre-

sent within the low/no AUI class. This scenario represents

areas used less frequently by sage-grouse yet environmental

conditions are likely conducive for grouse.
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4. Non-habitat Areas: Defined as non-habitat HSI class within

the low/no AUI class. This scenario represents habitat of mar-

ginal value to sage-grouse populations.

Results

Although effects of environmental covariates varied

across subregions (see Tables S1 and S2), sage-grouse

consistently selected sagebrush at the largest spatial scale,

as expected, and generally avoided pinyon juniper at the

intermediate scale across all subregions. A covariate rep-

resenting distance to water was inversely related to sage-

grouse habitat selection in all subregional RSFs, while

the effects of other covariates were variable across subre-

gions, particularly cropland. Habitat selection indices

were generally highest in the north-central part of the

region and more variable across the south-eastern part

where alternating mountain ranges and valleys occurred

(Fig. 3). When categorized using SDs from the classifica-

tion data set, high value of selected habitat comprised all

HSI values >0�5 SD below the �x (percentile rank range:

30�9–100%; Fig. 4a). Moderate value comprised HSI val-

ues between 1�0 and 0�5 SD below the �x (percentile rank

range of 15�0–30�9%; Fig. 4b). Low value comprised HSI

values between 1�5 and 1�0 SD below the �x (percentile

rank range: of 6�7 – 15�0%; Fig. 4c). Non-habitat was

comprised of HSI values ≤1�5 SD below the �x (<6�7%;

Fig. 4d). The ratio of the proportion of habitat area

gained to the proportion of RSF telemetry points added,

which indicated that demarcations beyond 1�5 SD incor-

porated disproportionately fewer telemetry points per

unit area (Fig. S2). As further support, this demarcation

value likely corresponds to the appropriate portion of

time (<7%) that sage-grouse might spend in non-habitat

areas while moving between seasonal habitat or in explo-

ration.

In overlaying a validation data set on habitat classes

(Fig. S3), validation of the habitat classes resulted in rela-

tively good agreement based on both percentage and j
(Table 1). Agreement across all classes was exceptionally

Fig. 3. Spatially explicit habitat selection

indices for greater sage-grouse in Nevada

and north-eastern California.
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(a) (b)

(c) (d)

Fig. 4. Classification of habitat selection index generated from generalized linear mixed effects models using environmental covariates

for greater sage-grouse in Nevada and north-eastern California. Index was demarcated into four quality classes: high (a), moderate (b),

low (c) and non-habitat (d).
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strong within the RSF subregion validation set and

acceptable for the non-RSF subregional set. On a

cumulative basis, 79%, 94% and 97% of leks occurred

within the classes: (i) high only; (ii) high and moderate;

and (iii) high, moderate and low habitat, respectively.

Acceptable agreement occurred for the lek validation

set although more leks occurred in high class habitat and

fewer leks occurred in low and non-habitat than expected

(Table 1).

The highest relative abundances occurred within the

north-eastern portion of Nevada (Fig. S4) and leks tended

to be more isolated with lower numbers of males counted

at leks in the south-eastern portion of our study area.

High and low/no use areas were demarcated by calculat-

ing the 85% isopleth of the AUI (Fig. 5). As a result of

allowing the distance index to be a component of the

AUI, all active leks were surrounded by some amount of

high use area. Management categories were established

using a stakeholder-driven rubric, resulting in a spatially

explicit categorical management scenario map (Fig. 6).

All active leks were surrounded by some amount of core

management, based on overlap between high use and the

presence of habitat.

Table 1. Summary of Cohen’s Kappa coefficient (j) to assess

agreement between the frequencies of observed validated habitat

selection index classes vs. expected values based on standard devi-

ation percentile bins for greater sage-grouse in Nevada and

north-eastern California. RSF, resource selection function

Habitat

selection

class

Expected

%

Validation set

RSF

subregions

% (j)

Non-RSF

subregions

% (j)

Active

Leks %

(j)

High 69 68 (0�97) 56 (0�50) 79 (0�73)
Moderate 15 20 (0�83) 34 (0�37) 15 (0�98)
Low 9 7 (0�89) 3 (0�61) 3 (0�50)
Non-habitat 7 5 (0�81) 7 (0�85) 3 (0�57)

Fig. 5. Classification of abundance and

use index generated from probabilistic esti-

mates of lek density and nonlinear space

use relative to distance to leks for greater

sage-grouse in Nevada and north-eastern

California. Index was demarcated by the

85% isopleth into two classes: high and

low to no use.
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Discussion

We have presented a ‘first of its kind’ spatially explicit

model of sage-grouse distribution that integrates indices

of habitat quality (i.e. HSI) with information related to

sage-grouse occupancy and abundance based on sage-

grouse lek locations, population size and movement pat-

terns (i.e. AUI). By combining multiple data types, our

joint distribution model incorporated large-scale distribu-

tional information with finer scale probabilistic models of

telemetry-based ecological relationships. Ultimately, this

allows for greater flexibility when designing conservation

strategies for greater sage-grouse because decisions can be

informed by the same predictive tool at local, landscape

and regional scales.

The increased availability of remotely sensed imagery

used to classify resources across regional extents, coupled

with large telemetry data sets, has led to various types of

modelling that improves understanding spatial variation in

habitat selection for sage-grouse (Aldridge et al. 2012) and

many other taxa. Previous large-scale mapping efforts that

quantified sage-grouse habitat have either relied solely

upon the spatial distribution of leks and their associated

habitat characteristics (Knick, Hanser & Preston 2013) or

contrasted historic vs. contemporary correlates of occu-

pancy (Aldridge et al. 2008). Typically, detailed studies of

habitat selection using RSF analyses are derived from data

on radiomarked sage-grouse at local scales (e.g. Doherty

et al. 2008; Doherty, Naugle & Walker 2010). Only recently

a few studies have relied on large-scale collaborative efforts

to develop detailed habitat selection models using multiple

telemetry data sets across relatively large spatial extents

(e.g. Rice et al. 2013; Fedy et al. 2014). In our study, HSIs

were derived from such high resolution data across multiple

local sites and then scaled up by averaging predicted values

across the region-wide extents. Furthermore, our manage-

ment scenarios incorporate contemporary sage-grouse

abundance associated with the distribution and relative

density of breeding leks. Because sage-grouse occupancy of

areas is closely associated with the distribution of breeding

lek sites (Fedy et al. 2012; Coates et al. 2013), output can

then be downscaled more robustly to inform local habitat

Fig. 6. An example of habitat manage-

ment categories based on the intersection

of objectively classified habitat selection

and abundance and use indices for greater

sage-grouse in Nevada and north-eastern

California.
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management decisions, for example by targeting actions in

specific areas with high-quality habitat and high likelihood

of sage-grouse occupancy.

The results of the resource selection models aligned clo-

sely with well-known aspects of sage-grouse ecology. For

example, large contiguous expanses of sagebrush are a

critical factor that influence sage-grouse persistence

(Aldridge et al. 2008) and consistent selection of

sagebrush at the largest spatial scale (667 ha) across sub-

regions in our study fits this pattern. Avoidance of pin-

yon-juniper woodlands, typically at more intermediate

(61 ha) scales, corroborates avoidance of this land-cover

type by sage-grouse even when it is more patchily dis-

tributed across the landscape (Casazza, Coates & Overton

2011; Baruch-Mordo et al. 2013; Knick, Hanser & Pre-

ston 2013). Selection for habitats in close proximity to

some water sources likely reflects high use of forage habi-

tats with higher soil moisture levels that enhance avail-

ability of forbs and arthropods critical to the growth and

survival of young sage-grouse (Connelly et al. 2004;

Casazza, Coates & Overton 2011). Selection of cropland

in some subregions may indicate similar patterns of

resource use, although ecological benefits may be limited

since cropland exceeding approximately 25 ha km�2 is

associated with decreased sage-grouse persistence range-

wide (Aldridge et al. 2008).

Validation tests indicated exceptional agreement for

HSIs derived within RSF subregions. However, our aver-

aging technique may have resulted in the loss of some res-

olution in partitioning habitat selection classes across

some unsampled areas of the region, as suggested by the

imperfect validation agreement within non-RSF subre-

gions where high and moderate habitat classes were

under- and over-represented, respectively. The subsequent

categorization of priority and general management scenar-

ios may have some similar bias. However, the extent of

the core area scenario is unaffected by this possible bias

because the category includes both high and moderate

habitat classes and exceptional agreement existed for all

habitat vs. non-habitat in the non-RSF subregions.

Four potential limitations of our modelling approach

merit consideration. First, it is important to recognize

that GIS-based habitat models, such as ours, can miss

microscale features that are necessary life-history-specific

resources (e.g. nesting microsite concealment cover and

functional forage types). For example, unmapped micro-

habitat characteristics likely influence variation in

resource selection within high-quality habitat modelled at

broader GIS-based landscape scales. For management

purposes, additional microhabitat information would be

beneficial. A second limitation is that using RSFs alone

as a proxy for habitat quality does not incorporate poten-

tial source–sink dynamics that can result in higher occu-

pancy rates of low-quality habitats as fewer high-quality

habitats become saturated (Johnson, Seip & Boyce 2004).

In other words, the relationships between the quality of

habitats, demographic performance and population abun-

dance are often decoupled by multiple ecological pro-

cesses (Stephens et al. 2015). This limitation is, in part,

ameliorated by our assignment of habitat management

categories that account for environmental conditions con-

ducive to sage-grouse with the composite index of abun-

dance and space use derived from lek surveys. For

example, sage-grouse population dynamics are driven, in

part, by variation in nest survival (Taylor et al. 2012),

and the spatial distribution of sage-grouse leks correlates

strongly to the presence of nesting habitat (Connelly et al.

2004). Importantly, a low AUI does not intrinsically indi-

cate an absence of adequate nesting habitat because fac-

tors other than nesting habitat also influence sage-grouse

occupancy. Nevertheless, a relatively high AUI value can

serve as a surrogate indicator for presence of nesting

habitat. Hence, prioritization rubrics based on indices of

habitat coupled with abundance likely can help managers

identify areas most relevant to sage-grouse population

performance.

Our method of developing a single composite map that

represented the annual life cycle of sage-grouse did not

include separate maps reflecting seasonal habitat (Fedy

et al. 2014). Nevertheless, we controlled for season by

weighting each location based on the proportion of use

occurring during the three seasons (spring/summer,

March–August; autumn, September–November and win-

ter, December–February). This technique allowed all sea-

sons to be represented equally and provided a single

predictive surface representing annual patterns in selection

for use by managers and policymakers.

Lastly, we recognize that effective conservation plan-

ning involves stakeholder involvement. We stress that the

HSI and AUI demarcations and resulting habitat manage-

ment categories presented here serve simply as an example

of the type of information output that can be created with

this empirical framework. Nevertheless, this process pro-

vides substantial opportunity for stakeholder perspectives

to be modelled for predictive purposes or to pursue cus-

tomized stakeholder goals, and demarcations can be

reclassified readily. For example, SD demarcations can be

relaxed or constrained to modify classes of habitat qual-

ity, yet objectivity remains as long as new probabilities

and rationale are reported.

Our approach represents the only quantitative decision-

support tool currently available to inform region- and

state-wide sage-grouse planning decisions in the south-

western portion of their range. For example, the resulting

empirically derived surfaces might be used to help inform

decisions related to mitigation, evaluate ecological impacts

of management actions and delineate areas of highest

importance for protection. Additionally, these maps could

be updated and the model re-employed as new data

became available. For example, not all lek locations are

known, new leks might arise while others cease to exist,

and some leks shift locations. Other updates include vari-

ance in resource selection and abundance associated with

life-history-specific habitat requirements (e.g. nesting,
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brood rearing and overwinter), anthropogenic distur-

bances (e.g. power lines, energy development) and wild-

fire. Adaptive management approaches should be

employed to allow for such revisions. Also, our approach

is not limited to sage-grouse and can be applied to other

taxa with sufficient data for developing indices as proxies

for habitat quality and population abundance, particu-

larly germane for taxa with central-place breeding or

foraging strategies.
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