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Abstract: The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise
to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully
functional organism. Then, as development proceeds, a series of programmed cell divisions occur
whereby the arising cells progressively acquire their own cellular and molecular identity, and
totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves
transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external
modulators contribute. Both human and mouse embryos are a source of different types of pluripotent
stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review
is to address the cellular properties and the molecular signature of the emerging cells during mouse
and human early development, highlighting similarities and differences between the two species
and between the embryos and their cognate stem cells.

Keywords: peri-implantation embryo; EGA; lineage specification; pluripotent stem cells; pluripo-
tency transcriptional networks; epigenetic; DNA methylation and histone modification; X chromo-
some inactivation; non-coding RNAs

1. Introduction

The ability of a cell to differentiate and give rise to different specialized cell types
represents the cell potency. Thus, depending on a cell’s differentiation potential, potency
spans from totipotency, pluri-, multi-, oligo- or uni-potency [1,2]. The fusion of two highly
differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single
totipotent cell, which has the capability to develop into an entire, fully functional organism.
Then, as development proceeds, totipotency becomes restricted at stages that vary among
species.

In the mouse, following the first cell division, the blastomeres of 2-cell stage embryos
may not be equally totipotent. In fact, following bisection, the pairs may develop into
two live-born mice with variable frequency [3–6], which cannot be ascribed to detrimental
effects of the bisection procedure itself [7]. Rather, unequal segregation of the zygote
cytoplasmic components [8] may influence totipotency continuity in the blastomere pairs.
Difficulties in preserving blastomeres undamaged hampered the possibility to document
reproductive totipotency in 4- and 8-cell mouse embryos (for a review, see [9]). Then,
embryonic cells evolve towards pluripotency while the embryos undergo through cellular
events that occur at specific time points after fertilization. At 2.5 days post coitum (dpc),
8-cell stage embryos undergo compaction, followed by morula cavitation and blastocyst
formation (3.5 dpc), the latter constituted of an outer single-layered epithelium, the trophec-
toderm (TE) and an inner cell mass (ICM) facing a fluid-filled cavity (blastocoel) (Figure 1).
While the TE forms the fetal component of the placenta, the ICM, initially made of common
progenitor cells [10], gives rise, through a second lineage specification, to the epiblast (EPI)
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and the primitive endoderm (PrE) (Figure 1) [11]. During this time window, EPI cells
become pluripotent, i.e., able to develop into ectoderm, mesoderm and endoderm (the
three germ layers), to the germ line and to the extraembryonic ectoderm and mesoderm.
At 4.5 dpc, following hatching from the zona pellucida, the mature blastocyst implants into
the endometrium and gastrulation will then follow at 6.5 dpc.

During human development, these processes are slightly delayed. Totipotency is
typical of the zygote and the 2-cell stage embryo [12], but when and how blastomeres lose
totipotency is still debated. Unequal potential of the 4-cell blastomeres was highlighted
in a study where 4-cell embryos were dissociated and 67% of blastomeres reached the
blastocyst stage [13]. At 4 days post-fertilization (dpf), at the 16-cell morula stage, embryos
undergo compaction, intercellular adhesion increases and blastomeres flatten. On day 5,
cavitation occurs, leading to the formation of a fluid-filled blastocoel cavity. At this stage,
the blastocyst shows a compact ICM surrounded by TE cells. Then EPI and PrE segregation
occur at 6 dpf [14] (Figure 1). In human, no ICM specific molecular signature has been
identified so far, and thus, only the EPI can be considered pluripotent [15,16].

The embryo cell potency can be captured and transferred in vitro, and both human and
mouse peri-implantation embryos are a source of different types of pluripotent stem cells
(PSCs), whose characteristics depend on the developmental stage of the embryo. The first
lines of stem cells (SCs), named embryonic stem cells (ESCs), were derived from the ICM
of mouse 3.5–4 dpc blastocysts in 1981 by Martin [17] and by Evans and Kaufman [18] and,
17 years later, from the ICM of human 5 dpf blastocysts by Thomson and colleagues [19].
In 2007, mouse epiblast stem cells (EpiSCs) were originally derived from the EPI, dissected
from 5.5 dpc [20] or 5.75 dpc [21] post-implantation embryos. Following these first studies,
EpiSCs were also derived from embryos up to 8 dpc [22]. Although strongly influenced by
culture conditions [23], ESCs and EpiSCs represent an extraordinary tool for understanding
cell pluripotency, the mechanisms that underlie its identity, maintenance and evolution.
These mechanisms include the fine regulation of transcriptional networks, epigenetic
landscapes, families of RNAs and several inter-related molecular pathways.
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Figure 1. Mouse and human embryonic development from the zygote to early post-implantation stages. Zy, zygote. C, 
cell. M, morula, EB, early blastocyst. LB, late blastocyst. ICM, inner cell mass. TE, trophectoderm. EPI, epiblast. PrE, prim-
itive endoderm (5.5 dpc and 10 dpf embryos images were redrawn and modified from [24]). 
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2.1. Mouse  
2.1.1. Embryonic Genome Activation 

Immediately after fertilization, further development of the totipotent zygote is con-
trolled by maternal-effect factors (RNAs and proteins) accumulated during oocyte matu-
ration [25], which govern the maternal-to-embryo transition and the following embryonic 
genome activation (EGA). EGA is a mandatory step for the synthesis of new transcripts 
necessary to the acquisition of an embryonic control of development [26]. Interestingly, 
Oct-4 (master gene of the pluripotency network; see below) exerts a central role in the 
maternal-to-zygotic transition [27], and it is expressed in all cell embryos throughout the 
morula stage, becoming then restricted to cells of the ICM in the blastocyst stage [28]. 

In the mouse, a minor wave of EGA starts in the zygote at the S/G2 phase, followed 
by a major wave at the 2-cell stage [26] (Figure 1). When genome transcription begins, 
major satellites are massively activated, together with transposable elements (TE). These 
latter comprise long interspersed nuclear element 1 (LINE-1) [29,30], intracisternal A-par-
ticles (IAPs) [31,32] and murine endogenous retroviruses with leucine tRNA primers 
(MuERV-L) [33]. TE transcripts, with different expression kinetics, constitute a significant 
portion of the transcriptome during mouse EGA.  

EGA coincides with the gradual and progressive degradation of the maternal tran-
scripts. Several RNA-binding protein complexes regulate maternal mRNA silencing to 
promote their degradation via cleavage, de-adenylation and elimination of their protec-
tive cap [34]. The early expression of zygotic microRNAs is necessary for the degradation 
of hundreds of maternal transcripts [26,35,36]. In addition, specific transcription factors, 
e.g., the general transcription factor TATA-binding protein, part of the TFIID complex, 
promote the formation of the RNA polymerase II pre-initiation complex [37] directing the 
transcriptional machinery during EGA [26].  

Figure 1. Mouse and human embryonic development from the zygote to early post-implantation stages. Zy, zygote. C, cell.
M, morula, EB, early blastocyst. LB, late blastocyst. ICM, inner cell mass. TE, trophectoderm. EPI, epiblast. PrE, primitive
endoderm (5.5 dpc and 10 dpf embryos images were redrawn and modified from [24]).
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The main aim of this review is to address the molecular identity of cell potency
in early embryos and their derived SCs. To this purpose, we will describe the cellular
and molecular features of the cell potency in mouse and human embryos, highlighting
similarities and differences between the two species, and of their derived stem cells,
comparing the characteristics of the cell potency when in vitro or in vivo.

2. Cellular and Molecular Features of Mouse and Human Peri-Implantation Embryos
2.1. Mouse
2.1.1. Embryonic Genome Activation

Immediately after fertilization, further development of the totipotent zygote is con-
trolled by maternal-effect factors (RNAs and proteins) accumulated during oocyte matura-
tion [25], which govern the maternal-to-embryo transition and the following embryonic
genome activation (EGA). EGA is a mandatory step for the synthesis of new transcripts
necessary to the acquisition of an embryonic control of development [26]. Interestingly,
Oct-4 (master gene of the pluripotency network; see below) exerts a central role in the
maternal-to-zygotic transition [27], and it is expressed in all cell embryos throughout the
morula stage, becoming then restricted to cells of the ICM in the blastocyst stage [28].

In the mouse, a minor wave of EGA starts in the zygote at the S/G2 phase, followed by
a major wave at the 2-cell stage [26] (Figure 1). When genome transcription begins, major
satellites are massively activated, together with transposable elements (TE). These latter
comprise long interspersed nuclear element 1 (LINE-1) [29,30], intracisternal A-particles
(IAPs) [31,32] and murine endogenous retroviruses with leucine tRNA primers (MuERV-
L) [33]. TE transcripts, with different expression kinetics, constitute a significant portion of
the transcriptome during mouse EGA.

EGA coincides with the gradual and progressive degradation of the maternal tran-
scripts. Several RNA-binding protein complexes regulate maternal mRNA silencing to
promote their degradation via cleavage, de-adenylation and elimination of their protective
cap [34]. The early expression of zygotic microRNAs is necessary for the degradation
of hundreds of maternal transcripts [26,35,36]. In addition, specific transcription factors,
e.g., the general transcription factor TATA-binding protein, part of the TFIID complex,
promote the formation of the RNA polymerase II pre-initiation complex [37] directing the
transcriptional machinery during EGA [26].

The synergy between EGA and RNA degradation induces genome remodeling, medi-
ated by histone acetylation and methylation, the establishment of topologically associating
domains and nucleosome positioning, mandatory for the acquisition of the cellular identity
in the embryo [26]. After EGA, molecular differences arise among blastomeres.

2.1.2. Embryo Compaction and First Cell Lineage Specification

At the 8-cell stage, embryos undergo polarization and compaction (Figure 1). Cell
polarization is induced by the assembly of the core cell polarity complexes on the outer
apical membrane of the blastomeres and by the localization of MAP/microtubule affinity-
regulating kinase 2, scribbled homolog and lethal giant larvae homolog 1 [38–40] localized
on the basal lateral membrane of each blastomere, generating an apical–basal axis [40].
Concomitant with polarization, the expression and localization of E-cadherin and several
cytoskeleton and cell adhesion/junction-related proteins allow embryo compaction [41].
At this stage, a switch from all symmetrical to combined symmetrical and asymmetrical
cell divisions generates a morula embryo with outside polar and inside apolar cells [40,42].

From the morula stage, lineage specification and differentiation are accompanied by
a decrease of global cell potency, the latter achieved through a precise spatio-temporal
activation of key genes [43,44]. At this stage, the first lineage specification is determined
by several regulatory pathways and, among these, the Hippo signaling pathway has a
major role in triggering the specification of the ICM and TE [45–47]. The Hippo pathway is
selectively inactive in the outside cells and active in the inside cells of the embryo [47–49].
In outer cells, Yap1 and its related protein Wwtr1 (hereafter called Yap) translocate and
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accumulate in the nucleus, where they activate the TE-specific transcriptional program.
Specifically, Yap1 promotes the expression of Cdx2 and Gata-3, which together with Notch,
Eomes and Elf5 contribute to its differentiation [14,50,51], induce TE fate [52–57], while
repressing the expression of Sox2 [58,59]. In the inner cells, Yap1 is phosphorylated and
retained in the cytoplasm, where it is degraded; thus, the Hippo pathway is activated,
allowing transcription of ICM-specific genes (e.g., Oct-4, Nanog, Sox2 and Esrrb) [60].
Mouse ICM is composed by heterogeneous cells, which co-express different levels of
lineage-associated factors, such as Gata-6 (PrE) and Nanog (EPI) [61,62].

2.1.3. Second Cell Lineage Specification

At the blastocyst stage, cells of the ICM undergo a second lineage specification de-
termined by the FGF/FGF-receptor signaling, mediated via MEK/ERK [63,64]. Gata-6
and FGF/ERK induce PrE fate [53,65,66], whereas Gata-4 and Sox17 are involved in its
maintenance [65,67]. EPI cells are characterized by the expression of Oct-4, Nanog, Sox2,
Kfl2, Klf17 and Esrrb, all involved in pluripotency maintenance [14,51,53,68]. Specifically,
the establishment and maintenance of the pluripotency state is characterized by a well-
defined “pluripotency gene regulatory network” (PGRN) and by a strong cooperation of
transcription and epigenetic factors that act in synergy [69,70]. The PGRN is a very highly
interconnected system, in which Oct-4, Nanog and Sox2 represent the central functional
core. Among this triad of genes, Oct-4 is at the top of the pluripotency regulatory hierarchy,
being essential to reach and maintain pluripotency [71–73]. Oct-4, Nanog and Sox2 function
together, regulating their own promoters and forming an auto-regulatory loop [74–76].
Several transcription factors enhance the auto-regulation of Oct-4 and Sox2, either directly
or indirectly via Nanog [77]. Specifically, Oct-4 interacts also with Sall4 [78], Zfp322a,
Egr1 [79], Utf1 [80] and Dpp4a [81]. Similarly, Nanog interacts Sall4 [78], STAT3 [82],
c-fos [83], Utf1 [80] and Dpp4a [81]. Sox2 interacts with Sall4 [78], Utf1 [80] and Dpp4a [81].

The Oct-4, Nanog and Sox2 functional core is involved in the formation of multiple-
gene networks that govern cell pluripotency, enhancing the genes necessary to maintain
the pluripotent status and repressing transcription, in a target gene-dependent manner, of
genes encoding differentiation signals.

2.2. Human
2.2.1. Embryonic Genome Activation

Human embryos show two waves of EGA, a minor wave, at the 2-cell stage [84,85],
and a major wave, between the 4- and 8-cell stage [26,86] (Figure 1). EGA coincides with
the gradual degradation of the maternal transcripts and, as reported for the mouse, TE
(SINE-VNTR-Alus [87]; HERV [88]) are heavily transcribed.

2.2.2. Embryo Compaction and First Cell Lineage Specification

Studies are still needed to clarify the sequence of molecular events that regulate the
human first and second lineage specification. Polarization, which initiates at the 8-cell
stage, and compaction lead to the morula stage (Figure 1). The molecular mechanisms
that drive these processes in human are still unknown, but as they are highly conserved
in all mammalian species (except for the timing), it has been hypothesized that human
blastomere compaction is driven by actomyosin cytoskeleton and E-cadherin as in other
species [89]. By the time embryos reach compaction, apical microvilli and basolateral
E-cadherin expression have been observed [90,91].

At the compacted morula stage (4 dpf), both specific TE determinants and ICM-related
genes are expressed to determine the first lineage specification [66]. The lineage-specific
transcripts become mutually exclusive only at the early blastocyst stage (5 dpf). However,
it has been shown that 5 dpf TE cells still retain the ability to form ICM cells [92], and,
conversely, isolated ICMs can also generate TE cells [93], indicating that cells at this stage
of development are not yet fully committed. In human embryos, the specification of the
cell lineages does not seem to occur through a stepwise process, as for the mouse [66],
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with transcriptional differences being detected at 5 dpf, once the blastocyst is formed.
Additionally, it is unclear whether Hippo pathway determines the first cell fate decision,
as, in early blastocyst, YAP1 is present in the nucleus of all blastomeres, but, in the late
blastocyst at 6 dpf, its expression becomes restricted only to TE cells [55,94]. GATA-3 and
CDX2 are also involved in TE cell determination [53,56,95].

2.2.3. Second Cell Lineage Specification

Human EPI cells display the expression of NANOG, OCT-4 and SOX2, all required for
pluripotency maintenance, and of KLF17 [53,68,96]. GATA-6, initially broadly expressed
in the early blastocysts, is involved in PrE fate induction [56,65], together with SOX17
and GATA-4. These latter two are expressed later and are restricted to the PrE, where
they are required for its maintenance [53,65]. Very recently, successful 3D culture systems,
able to sustain embryos from 5–6 up to 14 dpf, confirmed the results reported above and
allowed a finer tuning of the molecular characteristics of the early blastocyst cells and their
derived cell lineages [97,98]. At 5–6 dpf, almost all blastomeres show GATA-6 expression,
whereas OCT-4, NANOG, KLF17 and PRDM14 are expressed only in the ICM cells. At
7–8 dpf, following lineage specification, PrE, TE and EPI express GATA-6, CK7 and OCT-4,
respectively, and at 9 dpf, the three cell lineages acquire a more specific molecular identity
and EPI-specific genes are associated with signaling pathways involved in the regulation
of stem-cell pluripotency; among these, PI3K–AKT, p53, RAP1 and MAPK are the best
defined [98].

In summary, both mouse and human pre-implantation embryos display two consec-
utive waves of transcription, which determine the activation of the embryonic genome.
These waves occur at different stages of development, as well as cell polarization and
compaction. The majority of genes that mark the EPI, the PrE and the TE are shared
between the two species, with the exception of Eomes, involved in the TE fate, and Esrrb
and Klf2, involved in the EPI fate, only in mouse embryos. In this same species, the Hippo
pathway governs the first cell fate decision, whereas the FGF/ERK pathways are necessary
for PrE induction in both species.

3. Features Governing Cell Potency
3.1. The Epigenetic Landscape

During the early phases of development, molecular modifications, e.g., DNA methy-
lation, histone methylation and acetylation, and, for female embryos, the progressive
silencing of X-linked genes for dosage compensation, determine specific epigenetic land-
scapes, which contribute to the progressive acquisition of pluripotency.

3.1.1. DNA Methylation and Histone Modifications
Mouse

After fertilization, the female and male genomes undergo genome-wide epigenetic
reprogramming, which induces a reset of the gametes’ epigenetic profiles to a basal state,
with the exclusion of imprinted domains (ID) and some classes of repetitive elements (RE).
ID and RE are protected from demethylation by the four maternal-effect genes SETDB1,
ZFP57, TRIM28 and DNMT1 [99,100] (Figure 2).

Within 4–6 h after zygote formation, the mouse male genome undergoes an active
widespread erasure of DNA methylation [101,102], achieved through Tet enzymes (in
particular TET3 methylcytosine hydroxylase) and only to a limited extent by base excision
repair components [103] (Figure 2).
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pronucleus undergoes an active, almost global, erasure of DNA methylation, mainly achieved through the Tet3 enzyme,
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During the protamine/histone replacement period, the conformation of the naked
male genome permits the accessibility to demethylases, favored by the affinity for specific
regions of binding and by the low packaging of nucleosomes for the presence of acetylated
histones [104]. In parallel, H3K7me3 accumulates at the peri-centromeric regions, initiating
their silencing [105], whereas H3K9me3 [99] protect from DNA methylation erasure. Then,
histone acetyl groups are replaced by monomethyl groups and by H3K4me1, H3K9me1
and H3K27me1 activator histones [106,107]. The levels of histone arginine methylation (on
H3 and H4 histones) and lysine acetyl modification, markers of active gene expression,
significantly decrease [108,109]. On the contrary, the mouse female genome maintains
its DNA methylation profile unaltered up to the 4-cell stage, since it escapes the active
demethylation process. The female factor Dppa3, by interacting with H3K9me2 (enriched
in the female, but not in the male pronucleus), concurs with the reduction of TET3 affinity
and protection of 5-methylcytosines from oxidation [110,111] (Figure 2). In addition,
acetylated lysines and methylated histones H3K4me1, H3K4me3, H3K9me2/3, H3K27me1,
H4K20me3, H3K27me3 and H3K64me3 are the typical epigenetic signature of the female
genome [109], rapidly erased after fertilization and re-established later only at CpG islands
and active promoters [112,113] (Figure 3). Repressive H3K64me3 and H4K20me3 gradually
decrease after fertilization [114,115], whereas repressive H3K9me3 and H3K9me2 are
maintained at centromeric major and minor satellites, respectively [106,116,117] (Figure 3).
The chromatin state of pre-EGA embryos is in an open conformation and the regions where
EGA starts are marked by H2Aac, H3ac and H4ac histone modifications [118] (Figure 3).

In the mouse, SINEs and LINEs RE gain methylation during the transition from the
morula to the blastocyst stage [119,120]. Thus, blastocyst formation and the cell commit-
ment to form ICM or TE is flanked by a second wave of asymmetric epigenetic remodeling
(Figure 3). Once lineage specification begins, morphological changes are marked by new
epigenetic signatures. Although the epigenetic regulation during lineage specification is
not fully characterized, a de novo acquisition of repressive histone markers (H3K9me2 and
H3K27me3) is mandatory to guarantee the proper lineage specification and the transition
towards pluripotency [121,122]. In addition, some regulatory domains and promoters
in the ICM show both the presence of H3K4me3, an activation-associated modification,
and H3K27me3, a repression-associated modification. Activating and repressive marks
localize at the same genomic portion, determining a characteristic chromatin status called
bivalent. This status maintains developmental genes expressed at very low levels, al-
though, at the same time, it keeps them poised and ready to be activated; the massive
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establishment of this chromatin regulation modality is observed during the transition
from the morula to the blastocyst stage, when the first lineage specification (ICM and
TE) occurs [123]. Additionally, ICM cells are enriched of repressive H3K27me1/2/3 and
activating H3K9ac, but also of H4K8ac, H4K16ac, H3K27ac and H3K4me3, found at the
Oct-4 and Nanog regulatory regions. Similarly, in TE cells, Cdx2 promoter is enriched of the
same active H4K8ac and H3K4me3 markers [124,125]. As soon as the lineage specification
moves on, many bivalent domains are resolved to a monovalent mark (either H3K4me3
or H3K27me3) [123], inducing either gene expression or repression [126,127]. When ICM
cells receive differentiation signals, H3K27me3 histone variant is removed from the lineage-
specific differentiation genes, while it is maintained in developmental control genes not
relevant to the specific commitment [128]. Bivalent domains also exist in pluripotent
EPI cells of early post-implantation embryos. However, in lineage-restricted trophoblast
and extraembryonic endoderm stem cells, there are few of these bivalent domains and
repressive H3K27me3 is replaced by H3K9me3 [129].

Cells 2021, 10, x FOR PEER REVIEW 7 of 33 
 

 

(Figure 2). In addition, acetylated lysines and methylated histones H3K4me1, H3K4me3, 
H3K9me2/3, H3K27me1, H4K20me3, H3K27me3 and H3K64me3 are the typical epige-
netic signature of the female genome [109], rapidly erased after fertilization and re-estab-
lished later only at CpG islands and active promoters [112,113] (Figure 3). Repressive 
H3K64me3 and H4K20me3 gradually decrease after fertilization [114,115], whereas re-
pressive H3K9me3 and H3K9me2 are maintained at centromeric major and minor satel-
lites, respectively [106,116,117] (Figure 3). The chromatin state of pre-EGA embryos is in 
an open conformation and the regions where EGA starts are marked by H2Aac, H3ac and 
H4ac histone modifications [118] (Figure 3). 

 
Figure 3. Methylation dynamics during mouse embryonic preimplantation development. After fer-
tilization, the male genome (blue) undergoes fast demethylation, whereas the female genome (pink) 
undergoes a slow passive DNA demethylation. De novo methylation occurs at the blastocyst stage, 
with a differential methylation pattern between the ICM and the TE. Specific histone marks are 
present in the male and female genomes and in the embryo at different pre-implantation stages. Zy, 
zygote. C, cell. M, morula. B, blastocyst. ICM, inner cell mass. TE, trophectoderm. 

In the mouse, SINEs and LINEs RE gain methylation during the transition from the 
morula to the blastocyst stage [119,120]. Thus, blastocyst formation and the cell commit-
ment to form ICM or TE is flanked by a second wave of asymmetric epigenetic remodeling 
(Figure 3). Once lineage specification begins, morphological changes are marked by new 
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Figure 3. Methylation dynamics during mouse embryonic preimplantation development. After
fertilization, the male genome (blue) undergoes fast demethylation, whereas the female genome
(pink) undergoes a slow passive DNA demethylation. De novo methylation occurs at the blastocyst
stage, with a differential methylation pattern between the ICM and the TE. Specific histone marks are
present in the male and female genomes and in the embryo at different pre-implantation stages. Zy,
zygote. C, cell. M, morula. B, blastocyst. ICM, inner cell mass. TE, trophectoderm.

Human

In human zygotes, the male genome, which displays a lower DNA methylation level
than the female one, is actively and rapidly demethylated, whereas the female genome
maintains its oocyte-derived DNA methylation pattern up to the third cell division [130–134].
Then, from morula to the blastocyst stage, a second reduction of DNA methylation level
occurs [133]. Before the major wave of EGA, at the 4-cell stage, the activator histone variant
H3K4me3 is localized at the promoters of several genes and 53% of this mark remains up



Cells 2021, 10, 2049 8 of 32

to the 8-cell stage. The sites in which H3K4me3 is lost (~47%) are the promoters of genes
related to development and differentiation, which remain inactive during EGA. H3K27me3,
highly present in GV oocytes, is absent in 8-cell stage embryos, indicating its global erasure
from the female genome [135,136]. In embryos, the lack of this histone has been correlated
with absence of the core components of polycomb repression complex 2 (PRC2) [137] and
of an imprinting regulation (e.g., XCI), as reported for the mouse [66,138].

As for the mouse, de novo methylation occurs at the blastocyst stage in human
embryos [139]. When cultivated in vitro up to 14 dpf, DNA methylation levels highly
increase, with distinct and asynchronous patterns, from day 6 to day 10 dpf in all the three
EPI, TE and PrE lineages [97].

In synthesis, in both mouse and human embryos, the male genome is actively demethy-
lated before the first cell division, whereas the female genome is passively demethylated
during the following divisions. Then, in both species, de novo methylation occurs at the
blastocyst stage. At each stage of development, together with DNA methylation, several
distinct acetylated and methylated histones progressively concur in shaping the embry-
onic epigenome, which, mainly during the transition from morula to blastocyst, acquires
a chromatin bivalent status in the mouse, but that has never been described in human
embryos.

3.1.2. X Chromosome Inactivation and Reactivation

During pre-implantation development, the establishment of the totipotency condition
and the following transition towards pluripotency is accompanied by another important
epigenetic event, which occurs only in the female pre-implantation embryos, i.e., the X chro-
mosome inactivation (XCI). Although with different dynamics in mouse and human [140],
the XCI compensatory mechanism is mediated by the expression of the long non-coding
RNA (lncRNA) Xist (see Section 3.2.2 Long non-coding RNAs), through which one of the
two female X chromosomes (paternal X (Xp); maternal X (Xm)) is randomly inactivated to
equalize X-linked gene expression between male and female individuals [141]. Opposite to
XCI, reactivation of the Xi chromosome, leading to an Xa, occurs only in the mouse female
embryos.

Mouse

In the mouse, X inactivation occurs through two subsequent waves, the first at the
2-/4-cell stages and the second after blastocyst implantation. After EGA, Xist selectively
coats and silences the Xp (imprinted XCI), maintaining this condition up to the morula
stage and then in TE cells. This event is also accompanied by the accumulation of the
repressive H3K27me3, H3K9me3 and PRC2 chromatin remodeling complexes, together
with the loss of activating H3K4 methylation and H3K9 acetylation, the inclusion of macro-
H2A and an extensive DNA methylation [142]. Prior to the second wave of random
XCI, in mouse EPI cells, X chromosome reactivation (XCR) occurs [143,144]. This process,
opposite to XCI, consists of the reactivation of the inactive Xp (Xip) to become an active X
(Xap). It gradually takes place through three distinct phases (initiation, progression and
completion), through which the epigenetic memory is progressively erased, followed by
transcriptional gene reactivation and X chromosome-wide chromatin remodeling [145,146].
Although with a mechanism that is not completely known, mouse Xip reactivation takes
place within few hours [144] and starts before the commitment of PrE and EPI lineages.
It occurs in some ICM cells before Xist downregulation and H3K27me3 loss, suggesting
that the process is independent from Xist silencing [144,147]. Progressively, the biallelic
gene reactivation becomes restricted to the pre-EPI cells and strongly correlates with Xist
silencing, Tsix expression (negative regulator of Xist), loss of the epigenetic memory and
the expression of Nanog protein [143,144]. In addition, the enrichment of chromatin marks
associated with gene repression (e.g., H3K27me3), macroH2A and DNA methylation are
progressively removed [143,144,148–150]. Upon blastocyst implantation, mouse EPI cells
undergo random XCI and either the Xp or the Xm is subject to inactivation, with a stochastic
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choice that appears to be made independently in each cell [151], after which the inactive X
is clonally inherited to the cell progeny.

Human

Differently from the mouse, in human pre-implantation embryos, the precise mech-
anism of X dosage compensation remains still under discussion [152]. A current model
proposes that X chromosome dampening (XCD) [66], i.e., a progressive decrease of bial-
lelic expression of X-linked genes, occurs shortly after EGA and continues throughout
pre-implantation [66,97,153]. By the time of implantation, either the Xp or the Xm is inac-
tivated, followed by an upregulation of Xa-linked genes [66,97,154]. With the exception
of the female germ line, where the Xi is reactivated, the XCI choice made at the time of
implantation is clonally inherited throughout development in the somatic lineage.

In summary, Xist, cooperating with several other lncRNAs, governs the X dosage
compensation in both mouse and human pre-implantation embryos. However, the events
through which the inactivation of the X chromosome occurs in the two species are different
and, for humans, the precise mechanism of X dosage compensation still remains debated.

3.2. Non-Coding RNAs

Non-coding RNAs are an abundant heterogenous group of RNAs which exert fun-
damental regulatory functions in mammalian cells. By interacting with DNA, RNA or
with proteins, non-coding RNAs are engaged in the modulation of chromatin structure and
function, and in the regulation of gene expression, RNA splicing and protein translation.

During development, they act as modulators of the cell potency and, as miRNAs and
lncRNAs are the most abundant in pre-implantation embryos, we will focus our attention
on these two families [155].

3.2.1. miRNAs

The expression of specific miRNAs at specific embryonic stages is relevant for a correct
embryonic mouse development [156] and characteristic miRNA profiles were identified at
each pre-implantation stage [157,158].

The fully-grown oocyte and the zygote have a very similar miRNA profile, as the
majority of zygotic miRNAs are maternally inherited [156,159]. Besides the maternal
inheritance, at the time of fertilization, the sperm delivers several small RNA species to
the oocyte, including miRNAs [160], whose role, although not yet clearly understood, is
critical to embryo development, since their lack results in embryonic failure. For example,
sperm-borne miR-43c is required for the initiation of the first cell division [161]. Between
the zygote and the 2-cell stage, a significant global loss of maternal miRNAs occurs: about
60% of the miRNAs pool was downregulated and some miRNA were reduced by 95%.A
high-throughput profiling of miRNAs has evidenced that 3′ mono- and oligo-adenylation
modifications frequently occur in the zygote and in the 2-cell embryos. This modification
protects miRNAs from degradation and represses their function during these two phases,
although they may be re-activated during the following cleavage stages [162]. At the
2-cell stage, after EGA, a de novo synthesis of miRNAs starts and, among these, miR-290
to miR-295 are the first to be detectable [159]. Precursors miR-20a and miR-292 are also
observed, followed by their mature forms in the subsequent 4-cell embryos [163]. The
progression from the 4-cell to late blastocyst stage is marked by reduced capacity for
miRNAs processing, as demonstrated by the progressive downregulation of the genes
coding for proteins involved in their biogenesis [163]. Interestingly, the expression of the
miR-290-295 cluster, which has an upward trend from the zygote to the blastocyst stage, is
directly controlled by Oct-4 and Nanog [164], which, together with Sox2, constitute the core
of the PGRN. At the blastocyst stage, in EPI cells, members of the miR-290 cluster, including
miR-292-3p and miR-292-5p, are highly expressed and a significant increase in miR-292-3p
and miR-292-5p is reported in the latest stages of pre-implantation development [163].
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The meagre knowledge of miRNAs’ role during human development arises from
oocytes or embryos used for Assisted Reproductive Technology (ART) procedures, in which
specific miRNAs were identified as biomarkers of human oocytes’ competence, embryos’
quality or of successful implantation outcome, without an accurate characterization of their
functions. For example, increased expression of hsa-miR-142-3p and decreased expression
of hsa-miR-20a and hsa-miR-30c have been identified in the culture media of non-implanted
blastocysts, when compared to that of implanted embryos [165,166]. Similarly, miR-320a
and miR-15a-5p were found highly abundant, whereas miR-21-5p and miR-20a-5p were
significantly less abundant, in the media where low-quality embryos were cultured, when
compared to their presence in the culture media of excellent quality embryos [167]. To
the best of our knowledge, no studies focus on miRNAs and their relationship with the
acquisition of pluripotency during human embryonic development.

3.2.2. Long Non-Coding RNAs

LncRNAs are part of the dynamic transcriptional variations that parallel morpho-
logical changes occurring during mouse and human early embryo development [168].
LncRNA abundance changes at each stage of development; for example, in the mouse, they
represent 42.1% of all the zygote’s RNAs, reaching 53.2% in the blastocyst, suggesting that
they become predominant over protein-coding RNAs at the late stages of pre-implantation
development [169]. LncRNAs are expressed in a temporal-specific manner, more in mouse
than in human early embryos [170], and they are also heterogeneously expressed in seem-
ingly identical cells [171], suggesting their contribution in the acquisition of cell identity
and in cell potency changes.

Within the lncRNA family, hereafter we briefly report on XIST and XACT, chosen for
their role in the XCI process, and on LincGET for its role as an early regulator to bias cell
fate in mouse 2-cell embryos [172].

Historically, the first identified lncRNA was XIST, an untranslated spliced 17-kb-long
molecule, which triggers cis-inactivation of the X chromosome during the early human
developmental phases. It is transcribed at a low level from both Xa chromosomes, and
then, it is upregulated and expressed from the presumptive Xi [173,174], forming a cloud-
like structure in the nucleus and leading to gradual specific X-chromosome silencing. To
mediate this process, XIST acts as a platform for the recruitment of the polycomb repressive
complex 1 (PRC1) and PRC2 chromatin remodelers, histone deacetylases, histone variants
and the entire DNA methylation machinery [175–178], modifying the chromatin organi-
zation of the decorated X-chromosome and its positioning within the nucleus [179–182].
In human embryos, a 252 kb lncRNA, named XACT (X-active coating transcript) [183],
participates in the compensatory mechanism occurring during the early stages of develop-
ment [66]. It co-accumulates with XIST, controlling the association of XIST to the putative
Xi in cis, possibly to antagonize or temper its silencing ability [184]. In mouse and human
peri-implantation embryos, several other lncRNAs (e.g., Tsix, Jpx, Xite, Ftx and Tsx, for
mouse; TSIX, JPX and FTX, for human) concur with XIST in the silencing process [140].

Very recently, an endogenous retrovirus (ERV)-associated lncRNA, called LincGET,
with an essential role in embryo development has been identified [185]. It is expressed
during the early mouse developmental phases, along with EGA, appearing first at the
early 2-cell stage. It is upregulated through the late 2- to early 4-cell stage, downregulated
through the late 4- to early 8-cell stage and subsequently undetectable at the late 8-cell
stage. LincGET expression was highly heterogeneous in single blastomeres, specifically in
4-cell blastomeres compared to that in 2-cell embryos, suggesting a role in directing the
developmental fates of early blastomeres. Its heterogeneity at the 4-cell stage correlates
with the expression of CARM1, a protein arginine methyltransferase, which accumulates
in nuclear granules in the 2- to 4-cell stage embryo and is responsible for the histone
H3R26me2 modification heterogeneity in 4-cell embryos [186]. Through its interaction with
CARM1, LincGET controls alternative splicing [185] and regulates gene expression [172].
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4. Cellular and Molecular Features of Stem Cell Pluripotency In Vitro

SCs, isolated either from embryos at different stages of pre- and early post-implantation
development or from PSC lines, can be maintained in vitro applying self-renewal cul-
ture conditions [187,188] and possess cellular and molecular features that mirror differ-
ent pluripotency states, defined as extended, naïve, intermediate and primed. They are
characterized by distinguishable colony morphology, growth factor requirement, ener-
getic metabolism, molecular signatures and, in the female cell lines, X inactivation sta-
tus [70,189,190].

4.1. Cellular Features
4.1.1. Mouse
Stem Cells with Naïve Pluripotency

Mouse ESCs retain the same molecular and transcriptional features of the EPI cells
present at 4.5 dpc pre-implantation embryo stage [191], with a pluripotency character-
istic called “naïve” [189] (Figure 4). In vitro, naïve mESCs grow as small, compact and
domed-shape colonies, and they display high clonogenicity capability. Using leukemia
inhibitory factor (LIF), mESCs can be propagated without feeder cells on gelatin-coated
plates. Serum/LIF is the standard culture condition that allows the maintenance of naïve
mESCs potency, suitable for blastocyst chimera formation. Indeed, when injected in early
pre-implantation embryos, naïve mESCs contribute to all somatic lineages and to germline,
indicative of their pluripotency in vivo [192]. Mouse ESCs are in an unstable balance
between pluripotency and differentiation signals, which support self-renewal (maintained
by LIF) or promote differentiation (induced by FGF). However, the addition of exogenous
LIF favors self-renewal at the expense of differentiation [193].
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this subpopulation is due to a two-step reprogramming process, which entails, at the be-
ginning, the downregulation of pluripotency genes (e.g., Oct-4, Sox2), followed by the ac-
tivation of the expression of 2-cell-specific transcripts (e.g., Zscan4) [207].  

Figure 4. Pluripotency status of stem cells (SCs) derived from 4.5–8 days post coitum (dpc) embryos.
ESCs derived from the mouse blastocyst have a naïve pluripotency; EpiSCs derived from post-
implantation embryos have a primed pluripotency. SCs derived from either 5–6.5 dpc mouse
embryos or naïve ESCs possess rosette or formative pluripotency, intermediate between the naïve
and primed pluripotency. EPI, epiblast.
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As ICM cells from which they derive, ESCs are heterogeneous and mainly consist of
two cell types, i.e., the primed progenitors of the EPI and PrE [194–197]. In vivo, bipotent
progenitors exist for a short transient time window prior to implantation, as they rapidly
become committed [10]. On the contrary, in vitro, these two cell states are maintained
indefinitely and dynamically interconvert in Serum/LIF culture conditions [195] and
the regulation of this interconversion involves the activity of PRCs [198]. Additionally,
mESC lines exhibit a small subpopulation (about 1%), called 2-cell like (2C-like), with
several features of the 2-cell embryo blastomeres [33,199,200], such as the expression of
specific genes and repeats (e.g., Zscan4 genes and MuERV-L repeats) [201], dispersed
chromocenters and high histone mobility [33,202,203]. Additionally, when injected into
morula stage embryos, 2C-like cells contribute to both embryonic and extraembryonic
tissues [33]. In serum/LIF conditions, these 2C-like cells can spontaneously derive from
mESCs and multiple factors, such as Tet proteins [204], miR-34a [205] and components
of noncanonical PRC1 [206], which concur in the pluripotent-to-2C-like state transition.
The appearance of this subpopulation is due to a two-step reprogramming process, which
entails, at the beginning, the downregulation of pluripotency genes (e.g., Oct-4, Sox2),
followed by the activation of the expression of 2-cell-specific transcripts (e.g., Zscan4) [207].

More recently, the dual inhibition (2i) culture system, a defined serum-free medium
(N2B27) with small molecule inhibitors of the MAPK/ERK pathway (PD0032, a MEK
inhibitor) and of the Glycogen Synthase Kinase 3 (GSK3) (CHIR99021 or CHIR), ame-
liorated the maintenance and the propagation of mESCs [208,209]. Dual inhibition of
MEK1/2 and GSK3, optionally in combination with LIF (2i/LIF medium), allows mESCs
to maintain the transcription profile, DNA hypomethylation status and developmental
potential characteristic of the pre-implantation EPI, a condition referred to as “naïve ground
state” [191,210–214]. Following 2i culture, mESCs do not respond to differentiation signals
directly and they necessitate a capacitation passage, prior to engage differentiation towards
the three germ layers and primordial germ cells (PGCs). ESCs progression from the naïve
ground state, initiated by the removal of the inhibitors of the MAPK/ERK pathway and of
GSK3 [215], undergoes reprogramming of the pluripotency transcription factor networks,
a metabolic reorganization, epigenome and chromatin remodeling, conferring to them
the ability to differentiate [122,215–220]. The complete sequences of events and molecular
mechanisms that accompany this passage are not characterized [215].

Stem Cells with Intermediate Pluripotency

In recent years, SCs, derived from either 5–6.5 dpc mouse embryos or naïve ESCs, have
been shown to possess intermediate states of pluripotency between naïve and primed (see
below). These transition pluripotency states are defined as “poised” [221], “rosette” [222]
or “formative” [223–226] (Figure 4). These cells, while downregulating the naïve transcrip-
tional program, begin to acquire the competence for multi-lineage differentiation, although
they do not yet express lineage-associated markers.

Poised pluripotency cells express high levels of most pluripotency transcription factors
(TFs) do not express markers of primed pluripotency, and are characterized by expression
of a specific set of mRNAs and miRNAs. Poised pluripotency is, thus, considered as an
intermediate phase that precedes the formative status [221].

The recently described rosette pluripotency [222] is characteristic of cells that exist
in 5 dpc embryos and in ESCs cultured in conditions where both WNT and FGF/ERK
signaling are inhibited. Rosette PSCs co-express the naïve marker Klf4 and the primed
marker OTX2. The transition from naïve to rosette pluripotency is guided by the downregu-
lation of WNT signals, whereas the activation of the MEK pathway induces the progression
towards primed pluripotency [222].

The pluripotency states captured from 5.5–6.5 dpc mouse embryos have been called
formative. Formative PSCs display a unique transcriptome and gene regulatory networks,
which comprise signaling pathways and epigenetic machinery necessary to acquire compe-
tence for lineage specification [223–226] (see Sections 4.1 and 4.2).
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Stem Cells with Primed Pluripotency

Mouse EpiSCs, derived from the EPI of post-implantation embryos at 6.25–8 dpc
(Figure 4), are characterized by a pluripotency status named “primed”. mEpiSC colonies
grow as a flatten monolayer [20] and require Activin and FGF signaling for their mainte-
nance in vitro [20,21]. As naïve mESCs, primed mEpiSCs display unlimited potential to
self-renewal and differentiate into the three germ layers in vitro, but they are limited in
their pluripotency in vivo, as they cannot give rise to blastocyst chimeras [20,227,228].

4.1.2. Human

The first derived human ESC (hESC) lines showed primed pluripotency [20,229–232].
They grow as flatten monolayer colonies, display XCI and poor survival after single-cell
disaggregation. hESCs primed pluripotency is maintained when fibroblast growth factor
2 (FGF2) and transforming growth factors β (TGF-β) are present in the culture medium,
without supplemented LIF [233,234]. This pluripotency characteristic was first attributed
to unspecified genetic differences between mouse and human, but further experiments
with ‘non-permissive’ mouse strains demonstrated an in vitro cell adaptation into a primed
state during isolation, suggesting the need of culture strain-specific requirements [235].

Many efforts were then made to obtain hESCs with naïve pluripotency. In a series of
studies, naïve pluripotency has been successfully acquired from the conversion of primed
hPSCs [236,237], by inducing the over-expression of KLF2, KLF4 and OCT-4 pluripotent
factors or by adding specific chemicals (e.g., Erk inhibitor PD0325901, Gsk3 inhibitor
CHIR99021 and adenylylcyclase activator Forskolin) in the culture medium [236]. Primed
cells can also be reverted to the naïve state when cultivated in a 5iLAF medium containing
LIF, Activin and/or Fibroblast Growth Factor 2 and a cocktail of five inhibitors, which
target MEK, B-Raf, GSK3β, Src and ROCK [238].

In other studies, naïve pluripotency was captured from embryos and maintained
in vitro following the development of specific derivation and culture protocols [237–242].
For example, short-term induction of KLF2 and NANOG allow the derivation of naïve-like
hESCs, which are then maintained in medium comprising titrated inhibition of GSK3 and
block of the mitogen-activated protein kinase (MAPK/Erk) pathway (t2i) with LIF and
protein kinase C (PKC) inhibitor (t2iL+Gö medium) [237].

4.1.3. Mouse and Human Stem Cells with Extended Pluripotency

In 2017, a new type of mouse PSCs, defined extended (or expanded) pluripotent
stem (EPS) cells, has been derived from 4- or 8-cell mouse embryos, with an efficiency of
20% in feeder-free cultures, and up to 100% on feeder cells [243,244]. EPS cells express
pluripotency genes similar to naïve mESCs, display normal karyotype, form teratomas
and contribute to both somatic and germline lineages in chimaeras. Once injected into
morulae, EPS cells contributed both to the ICM and to the TE, generating both embryonic
and extra-embryonic lineages in vivo [243,244]. Two years later, under similar in vitro
culture conditions (medium supplemented with inhibitors for GSK3 (CHIR99021), SRC
(WH-4-023) and Tankyrases (XAV939), Vitamin C, ACTIVIN A and LIF), human EPS cells
were obtained from established hESC lines. These cells possess expanded potency for both
embryonic and extra-embryonic cell lineages in vitro [245].

In synthesis, mouse naïve PSCs, derived from 3.5–4 embryos, show the same molecular
and transcriptional features of the EPI cells present at 4.5 dpc pre-implantation embryo
stage. As the cells from which they derive, naïve PSCs are heterogeneous and mainly consist
of two cell types (the primed progenitors of the EPI and PrE). In vitro, these two cell states
are maintained indefinitely and dynamically interconvert. Additionally, when injected in
early pre-implantation embryos, they contribute to all somatic lineages and to the germline.
All these features can be influenced by the culture conditions in which they are derived and
maintained. PSCs with intermediate states (poised, rosette and formative) between naïve
and primed pluripotency have been isolated from either 5–6.5 dpc mouse embryos or naïve
ESCs and begin to acquire the competence for multi-lineage differentiation. Primed PSCs,
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derived from derived from the EPI of post-implantation mouse embryos at 6.25–8 dpc,
display unlimited potential to self-renewal and differentiate into the three germ layers
in vitro, but they cannot give rise to blastocyst chimeras.

The first derived human ESC lines showed primed pluripotency. Naïve pluripotency
can be obtained from the conversion of primed hPSCs or can be captured and maintained
from embryos applying specific culture protocols.

Mouse and human extended PSCs, derived from 4- or 8-cell mouse embryos or hESC
lines, express pluripotency genes similar to naïve SCs and, when injected into morulae,
they contributed to both embryonic and extra-embryonic lineages.

For both species, the improvement of the derivation and culture conditions permitted
the successful capture and transfer in vitro of the pluripotent continuum features of the
developing EPI cells in the form of PSCs. However, culture conditions themselves can
influence the pluripotency states of SCs, generating a certain degree of disparity between
the in vivo and the in vitro conditions.

4.2. Molecular Features
4.2.1. Pluripotency Transcriptional Networks (PTNs)
Mouse PTNs

Naïve

Mouse naïve PSCs express the triad Oct-4, Sox2 and Nanog gene core together with a
cohort of transcription factors characteristic of pre-implantation EPI cells, such as Klf2, Klf4,
Klf5, Stella (Dppa3), Fgf4, Esrrb, Rex1 (Zfp42), Tfcp2l1, Tbx3 and the Alkaline phosphatase
activity (Figure 5) [188,246]. While the molecular elements of this transcriptional network
are all involved in pluripotency maintenance in vitro, some of these exert a different role
during embryo development in vivo. For example, Esrrb, a crucial regulatory element of
the pluripotency network of mouse and hESCs, is not necessarily required for early EPI
development in vivo [247]. Specifically, in vivo, Esrrb acts by sustaining the expression of
Cdx2, Eomes and Sox2, crucial transcriptional regulators of the TE cell identity. Its expression
declines after the early blastocyst stage, becoming prevalent in the TE [248].

Formative

In SCs with formative pluripotency, the entire transcriptome is reorganized, the molec-
ular PGRN governing naïve pluripotency partially dismantled and chromatin accessibility
remodeled [226]. Specifically, several genes, e.g., Abcg2, Cldn4, Vgll1, Gata2, Gata3 and
Erp27, are uniquely upregulated and Nanog transcription appears to be strongly down-
regulated compared with both SCs possessing naïve or primed pluripotency [249]. The
transcriptome and chromatin landscape of formative cells provide the proper molecular
signals to induce germ layer formation and germline specification [225,226].

Primed

In mouse pluripotent primed EpiSCs, the pluripotency triad Oct-4, Sox2 and Nanog
is active, but the expression of naïve state markers Rex1, Stella, Klf2 and Klf4 is low or ab-
sent [21]. EpiSCs express the early post-implantation embryo markers, such as Brachyury,
Eomes, Gsc, Mixl1 and Fgf8 (mesoderm), Sox17, Gata6, Gata4 and FoxA2 (endoderm) and
Oct-6, Nodal, Fgf5, Otx2 and Lefty (ectoderm) [20]. In addition, EpiSCs exhibit higher ex-
pression of cell adhesion markers (e.g., Tnc, Col1a1 and Col6a1), TGF-β-, MAPK- and Wnt-
associated genes, similar to their in vivo post-implantation EPI counterpart (Figure 5) [250].
During culture, mouse primed EpiSCs are characterized by high propensity of spontaneous
differentiation and by the generation of subpopulations. These latter co-express the lineage
markers Brachyury and FoxA2 together with Oct-4, Sox2 and Nanog, but the level of
expression of mesoderm and endoderm markers is inversely correlated with that of Sox1, a
neurectoderm marker, suggesting the presence of at least two subpopulations [251]. EpiSCs
display intra- and inter-cell lines heterogeneity in the expression of some of these lineage
markers, probably related to different in vitro culture conditions (different growth factors
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added to culture medium (e.g., FGF2 and activin) or differentially active signaling path-
ways (FGF, Nodal and Wnt)) [252]. Additionally, a small fraction of EpiSCs exhibits features
of naïve pluripotency, such as low Brachyury and low Fgf5 expression, Oct-4 regulation
by its distal enhancer (the cis-regulatory element, known to regulate its expression only in
naïve pluripotent cells) [217] and high levels of specific naïve pluripotency markers [247].
This subpopulation has gene expression features between those of the naïve and primed
pluripotency states [247].
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Human PTNs

Naïve and Primed

Similar to the mouse, naïve and primed hESCs display some differences in their tran-
scriptional networks [249]. When analyzed with single-cell RNA sequencing, naïve and
primed populations present different transcriptomes, but all naïve cell lines analyzed are
homogeneous among themselves, as well as primed cell lines. However, a small subpopu-
lation of cells can be identified in the naïve state population that display transcriptional
features of primed pluripotency [249].

Beyond the pluripotency triad, naïve hESCs express high levels of GATA-6, KLF4,
KLF5, KLF17, DNMT3L, DPPA3, DPPA5, IL6ST and TFCP2L1 [249], whereas primed
hESCs express markers such as CD24, OTX2, ZIC2, ZIC3, SFRP2, THY1 and DUSP6 [249]
(Figure 5).

In summary, the Oct-4, Sox2 and Nanog triad represents the core of both naïve and
primed mouse and human pluripotency networks. The triad is conserved between mouse
and human, but few interactor genes are shared between the two species.

https://string-db.org/
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In naïve PSCs, interactor genes, which relate to the triad, are also expressed in EPI
cells, while, in primed PSCs, interactors are also found expressed in mesoderm, endoderm
and ectoderm germ layers, suggesting that the different pluripotency states are sustained
by dissimilar molecular networks, which also change between the two species.

4.2.2. DNA Methylation and Histone Modification

The transfer of embryonic cells from in vivo to in vitro culture entails modifications in
the epigenetic landscape that determines their potency. The process of isolation of the ICM
from the blastocyst and its cultivation in defined media, suitable for self-renewal mainte-
nance, involves arrest of the normal developmental program, determined by epigenetic
regulators which play a key role in this tricky passage.

Mouse

Naïve mESCs, cultured in 2i/LIF medium, exhibit global DNA hypomethylation, a
hallmark of their epigenome [253,254], Dnmt3a/b downregulation (induced by mitochon-
drial Stat3) and reduced 5mC levels. On the contrary, mESCs cultured with Serum/LIF
display higher levels of DNA methylation [255]. Compared to the ICM, mESCs display
higher levels of repressive epigenetic marks [79] and several epigenetic regulators have
different levels of expression (up- or downregulation), probably to underpin the phenotypic
changes occurring during the in vivo/in vitro adaptation. Epigenetic regulators linked
to repressive epigenetic status are frequently upregulated and, among these, Dnmt3a,
Dnmt3b, Dnmt3l, Mecp2 and Mbd2 show a 2- to 12-fold increase in ESCs compared to
ICM cells. In addition, histone deacetylases Hdac5, 6, 7 and 11, H4K20 methyltransferase
Suv420h2, H3K9 methyltransferase Ehmt1 and the heterochromatin binding protein Hp1β
are significantly increased in ESCs. On the contrary, several epigenetic modifiers associated
to active epigenetic status are downregulated. Among these, histone acetyltransferases
Ncoa3, Creppb, Kdm4d, H3K27 demethylase Kdm6b and H3K4 methyltransferase Mll3
show a significant decrease, ranging from 2- to 10-fold from ICM outgrowth to ESCs [79].
Thus, globally, ESCs are in a more repressive status compared to ICM cells, probably
because these latter need a more epigenetic flexibility, being a transient developmental
phase, whereas the repressive epigenetic status reported for ESCs is probably related to
culture conditions suitable to maintain them undifferentiated and with a self-renewal capa-
bility [23,79]. All together, these features suggest that the current in vitro culture conditions
do not accurately reproduce the in vivo environment. The development of the 2i medium
permitted to maintain DNA of ESCs into a hypomethylated status comparable to that
of in vivo ICM cells [212,213,256]. Indeed, a significant low level of H3K27me3 histone
(associated to gene silencing), caused by PRC2, has been described at several promoter
regions [211], together with the presence of H3K27me3/H3K4me3 bivalent chromatin, as
in ICM cells [123,211]. On the contrary, ESCs cultivated in Serum/LIF medium display
similar DNA methylation levels of post-implantation embryos [257–259].

Similar to naïve mESCs, mouse 2C-like cells show lower global DNA methylation
together with low DNMTs expression [33,206].

Compared to ESCs, EpiSCs express different epigenetic regulators and exhibit a close
chromatin conformation [260,261]. Histone H3K4me1, a mark of active genes, varies signif-
icantly between ESCs and EpiSCs [261]. This histone displays an active role in determining
the primed pluripotency state; however, its global redistribution at both enhancers and
repressors of lineage determinant factors can induce a spontaneous conversion from EpiSCs
to a naïve state [262]. In addition, when compared to ESCs, EpiSCs show a reduced expres-
sion of SMARCAD1, a blocker of H2K9me3-mediated heterochromatin formation [263].

Mouse extended PSCs exhibit an intermediate level of 5mC between the naïve and
primed ESC states, but higher level of 5hmC [264].

Human

Fewer data are available on the epigenome of naïve and primed hESCs. It has
been demonstrated that the conversion from primed hESCs to naïve state using The-
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unissen [87] or Takashima [237] culture media (see Section 4) determines a global reduction
of DNA methylation level, in both CpG (26.9–33.2%) and non-CpG sites (0.19–0.29%),
compared to their primed counterparts (CpG, 75.2–81.0%; non-CpG, 0.32–0.60%). The level
of DNA methylation of converted naïve hESCs is comparable to that of pre-implantation
EPI [87,237]. hESC lines, derived under naïve conditions, display some similarities with
the epigenic profile of the human pre-implantation EPI. For example, they showed low
levels of DNA methylation, with a marked downregulated expression of DNMT3A and
DNMT3B. However, the methylome of naïve hESCs is distinct from the human EPI cells
of the embryo, concerning, for example, the DNA methylation at primary imprint sites,
which is lost in vitro. Additionally, in naïve hESCs, DNA methylation is uniform across
the genome, whereas the pluripotent EPI embryo cells show regions with higher levels of
methylation [265].

In summary, naïve mESCs exhibit global DNA hypomethylation, Dnmt3a/b downreg-
ulation and reduced 5mC levels. Their DNA methylation level changes when the culture
medium conditions change (2i/LIF medium lower methylation level; serum/LIF medium
higher methylation level). Compared to the in vivo counterpart, mESCs show higher levels
of repressive epigenetic marks and they are globally in a more repressive status, suggesting
that the current in vitro culture media do not accurately reproduce the in vivo environment.
Primed PSCs exhibit a closer chromatin conformation when compared to naïve cells.

In human, the conversion from primed hESCs to naïve state determines a global
reduction of DNA methylation level, which is comparable to that of pre-implantation EPI.
Human ESC lines, derived under naïve conditions, display some similarities with the
epigenic profile of the human pre-implantation EPI, such as low levels of DNA methylation
and marked downregulated expression of DNMT3A and DNMT3B.

4.2.3. X Chromosome Inactivation and Reactivation

Mouse female naïve ESCs and primed EpiSCs exhibit different XCI patterns, which
correlate to their differential pluripotency state. Naïve ESCs display two Xa chromosomes,
as pluripotent EPI embryo cells [266]; instead, primed EpiSCs have an Xa and an Xi, medi-
ated by Xist expression. During in vitro derivation of EpiSCs, a precise recapitulation of
in vivo events occurs, which ends with random inactivation of one of the two X chromo-
somes, due to Xist expression [140]. Interestingly, the pluripotency gene triad Oct-4, Nanog
and Sox2 contribute to the regulation of Xist lncRNA expression in both male and female
pluripotent ESCs [76,77,267].

Human primed PSCs do not show the dampening of X chromosomes, but three distinct
classes of cells with different X chromosome states. Specifically, Class I cells display both Xa
chromosomes and low (or undetectable) XIST expression (XaXa); Class II cells show XIST
expression, together with H3K27me3 deposition, which cause random inactivation of one
of the two X chromosomes (XaXi); Class III cells display downregulated XIST and depletion
of H3K27me3 on the Xi chromosome, followed by partial reactivation of a number of
Xi-linked genes, generating an X-eroded chromosome (XaXe) [268]. During in vitro culture,
a gradual progression through the three classes occurs.

XCR takes place during the forced conversion of hESCs from primed to a naïve-like
state in vitro. During this transition, XIST, expressed in primed cells, is progressively
silenced; in parallel, XACT is reactivated [87,183] and H3K27me3 and H3K9me3 repres-
sive histone marks are removed [238,241,269]. These events generate an XIST-negative
intermediate condition, in which the Xi is reactivated, giving rise to XaXa cells [154,270].
Progressively, during in vitro culture, reactivation of XIST transcription occurs, generating
XIST-positive cells, where the dampening of both X-chromosomes determines the reduction
of X-linked gene expression.

In summary, as in vivo, Xist also mediates X chromosome silencing in in vitro cultured
PSCs.

Mouse female naïve ESCs and primed EpiSCs exhibit different XCI patterns (XaXa
and XaXi, respectively), which is strictly correlated to their different pluripotency state.
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Human primed PSCs do not show the X chromosomes dampening. Culture conditions
and the time spent in culture influence the expression of X-linked genes, determining three
classes of cells: XaXa cells at the time of PSCs derivation, followed by the establishment of
XaXi cells, characterized by random silencing of one of the two X chromosomes, and finally
XaXe cells, which display a partial reactivation of X-linked genes of the Xi chromosome.

4.2.4. Non-Coding RNAs

Non-coding RNAs are regulators of naïve and primed pluripotency states, concurring
with the maintenance of self-renewal and the inhibition of multilineage differentiation.
miRNAs and lncRNAs represent the best characterized for their role in the modulation of
the biological properties of PSCs in vitro [271,272].

miRNAs

In ESCs, a single family of miRNAs, possessing the AAGUGC seed sequence, is the
most highly expressed [273]. The members of this family are organized in two major
clusters, localized on mouse chromosomes 3 and 7, and on human chromosomes 4 and 19.
The first cluster, named miR-302/367, is very conserved and comprises miR-302a, miR-
302b, miR-302c and miR-302d and the unrelated miR-367 (this latter without the AAGUGC
seed sequence). The second cluster, named miR-290-295, is less conserved and includes
miR-290, miR-291a, miR-291b, miR-292, miR-294 and miR-295 and miR-293 (without the
AAGUGC seed sequence). The human orthologue comprises miR-371 and the AAGUGC
seed-containing miR-372 and miR-373 (miR-371-373 cluster) [274]. In both clusters, other
miRNAs with the AAGUGC seed are present, as well as other miRNAs with a different
seed [275]. miRNAs belonging to both clusters are highly expressed in mouse and human
ESCs and their expression rapidly drops upon differentiation [276]. Specifically, in hESCs,
the miR-302 cluster represents more than 60% of all expressed miRNAs [277], whereas in
mESCs, miRNAs belonging to the miR-290-295 cluster predominates, representing about
30% of their global miRNome [278]. Interestingly, in both mouse and human, genes of the
ESC pluripotency core were found to be involved in regulating the expression of miRNAs
of these two major clusters.

NANOG and OCT-4 transcription factors are upstream regulators of the miR-302/367
cluster [279] and, together with SOX2 and TCF3, bind directly to the promoters of miR-
290-295 clusters (and of other miRNAs), modulating their expression in both mouse and
human ESCs [280]. In association with Polycomb complexes, the same genes repress the
transcription of lineage-specific miRNAs (e.g., miRNA-155 mesoderm specific; mir-9/-124
ectoderm specific) [280].

miRNAs are key regulators of self-renewal and differentiation of stem cells, as impor-
tant as transcription factors in controlling gene expression. For example, miR-302 family
members were found to be involved in the regulation of the mESCs cell cycle. Specifically,
they target the CDK inhibitors p21, Rbl2 and Lats2 in both mESCs [281] and hESCs [282],
and in the latter, this family also regulates Cyclins D1 and D2 [283]. Additionally, in hESCs,
miR-302 family, miR-145 and miR-296 have a periodic expression along the cell cycle, with
an induction at G1/S boundary and high expression levels at S phase [284]. The miR-302
cluster have also a central role in expediting the G1/S transition and promoting cellular
proliferation [285]. Instead, miR-145 and miR-296 are induced during differentiation and
silence self-renewal [286,287].

The miRNA signature is distinguishable when comparing the naïve with the primed
pluripotent states. miRNA markers of human naïve cells are miR-143-3p, -22-3p and the
miR-371-373 cluster, the latter very highly expressed. On the contrary, miRNA markers
of primed state are miR-363-5p and several members of the miR-17 and miR-302 fami-
lies [274]. The conversion of mESCs from naïve to the primed condition is shepherded by
an immediate upregulation of miRNA-363-3p and miRNA-205-5p, as well as miR-17 family
members miR-18b-3p, -20b-5p, -20b-3p and -106a-5p [274]. During this transition, quan-
titative variations of both miR-290-295 and the miR-302/367 clusters were also detected.
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The expression of miR-290-295 and miR-142-3p, high in naïve mESCs, drops in EpiSCs,
in which miR-302/367 and let7e significantly prevail [273]. Human primed ESCs display
higher expression of the miR-302/367 compared to miR-371-373 cluster; the latter takes
over during the first steps of differentiation [288].

Transient exposure to miR-203, a non-coding RNA expressed in mouse embryo from
the 2-cell to the morula stage, improves the differentiation capacity of both murine and hu-
man PSCs. Specifically, short exposure to miR-203 of mPSCs induces a transient expression
of 2-cell embryo markers, expanding their differentiation potency to multiple lineages and
improving their efficiency in tetraploid complementation and human–mouse chimerism
assays. This phenomenon has been associated with a repression of Dnmt3a and Dnmt3b
methyltransferases, which induces a transient and reversible erasure of DNA methylation
in PSCs [289]. To the contrary, inhibition of miR-34a in mESCs expands their developmental
and cell fate potential, becoming capable to differentiate into both embryonic and extraem-
bryonic cell lineages. In miR-34a-deficient PSCs, Gata2 transcription factor increases and
MuERV-L are strongly induced, a typical feature of the 2-cell blastomeres [205].

Long Non-Coding RNAs

PSCs express a characteristic set of lncRNAs [290,291], which is actively involved
in the maintenance of the pluripotency status [274,275,292]. More than one thousand
pluripotency-associated lncRNAs act as “regulators of regulators” by interacting with
the PGRN, or operate as “pivots of pluripotency” acting as a barrier against differen-
tiation [292,293]. Indeed, lncRNAs silencing is associated to pluripotency loss and the
beginning of differentiation [294]. For the maintenance of pluripotency in the mouse,
lncRNA-1592 and lncRNA-1552 regulate and are regulated by the pluripotency transcrip-
tion factors (including Oct-4, Nanog and Klf4) in a positive feedback loop, whereas the
lncRNAs GOMAFU and AK141205 are direct targets of Oct-4 and Nanog, respectively [294].
In addition, pluripotency is sustained by lncRNA TUNA/MEGAMIND, which, by form-
ing a complex with Nucleolin and other ribonucleoproteins, bind Nanog, Sox2 and Fgf4
promoters [295].

In hESCs, the pluripotency status is regulated also by the lncRNA RoR (Regulator
of reprogramming), which acts in the cytoplasm by endogenous competition with miR-
145, the latter being able to block pluripotency transcription factors translation [296].
LncRNAs ES1, ES2 and ES3, which directly associate with SUZ12 (Polycomb Group (PcG))
and SOX2 [297], together with lincRNA-p21, a nuclear noncoding transcript repressor
of the p53-dependent transcriptional cascade [298,299], contribute to the pluripotency
maintenance. In general, depletion of one or more of these lncRNAs results in pluripotency
perturbation (decreased expression level of pluripotency factors) and inhibition of the
in vitro self-renewal capacity and differentiation induction [272].

Several pluripotency-associated lncRNAs are also involved in the modulation of the
activity of epigenetic regulators and guide chromatin remodelers and histone modifiers,
such as Polycomb and Tritorax complexes [300], acting as a scaffold by regulating nu-
cleosomal structures or by modulating post-translational modifications on histone tails.
For instance, in both mouse and human PSCs, a number of lncRNAs (e.g., Meg3, ANRIL,
RIAN and MIRG and other lncRNAs from the imprinted Dlk1-Dio3 locus) temper PRC2
interaction with its cofactors via Jumonji and AT-Rich Interaction Domain Containing 2
(JARID2) [301,302]. Meg3 and other lncRNAs work as scaffolds, favoring the interaction
between JARID2 and PRC2 core components. In addition, these lncRNAs may also guide
the initial recruitment of PRC2/JARID2 at specific target sites via RNA-DNA base-pairing.
LncRNAs interact with WD repeat-containing protein 5 and with other Tritorax-related
factors (including mammalian MLL complexes), positively controlling transcription by
promoting H3K4me3 deposition.
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5. Conclusions

In the last few decades, studies on mouse and human peri-implantation embryos
were aimed at the identification of the main genetic and epigenetic factors involved in
determining the potency of cells at the beginning of development and its transition towards
a pluripotency status while reaching the peri-implantation stages. While the knowledge
of the mouse embryo peri-implantation developmental processes has reached a fine char-
acterization of the cellular and molecular events that guide the cell potency transition
towards the achievement of pluripotency, technical and ethical limitations have delayed
a similar understanding of human peri-implantation embryos events. Nevertheless, the
knowledge so far gathered has evidenced several differences between these two species,
suggesting that the development processes may be differentially regulated in Mammals.
The differences mainly concern the timing of the cellular events and molecular players
leading to the achievement of the first and the second lineage specification, from the zygote
to the peri-implantation embryo, as well as the epigenetic machinery that regulate and ac-
company the achievement of a pluripotency status. The opportunity to derive and maintain
in vitro different cell lines from both mouse and human embryos has allowed a significant
improvement in the comprehension of the determinants involved in the establishment of
the cell identity and in the maintenance and/or progression towards the different states
of the cell potency. In particular, for the mouse, changes in the pluripotency states have
been captured and transferred in vitro. However, the pluripotency status of these cell
lines represents a static picture of the cell potency continuum in vivo and, in addition,
it can be significantly influenced by the culture conditions used for their derivation and
maintenance. Nevertheless, each single static picture starts to take its specific place in a
more complex scenario. Indeed, based on the moment of isolation, the genes expressed,
the pathways activated or repressed, the epigenetic signature and the wide spectra of
regulating molecules (e.g., non-coding RNAs) define a distinguishable and identifiable
naïve, rosette, formative and primed pluripotency status.

Future studies, using new technologies (e.g., high resolution and time-lapse imag-
ing, single cell next generation sequencing, single cell proteomic analysis, advanced cell
images and computational models) and 3D culture techniques, which allow to mimic
and reproduce in vitro the whole peri-implantation period of development, are needed to
precisely define how these pluripotency states functionally and transcriptionally relate to
one another and whether they reflect bona fide counterparts in embryos.
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