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aim: The increased number of individuals older than 80 years, centenarians, and super-
centenarians is not a synonym for healthy aging, since severe infections, hospitalization, 
and disability are frequently observed. In this context, a possible strategy is to preserve 
the main characteristics/functions of the immune system with the aim to cause less 
damage to the organism during the aging process. Vitamin D acts on bone marrow, 
brain, breast, malignant cells, and immune system and has been recommended as a 
supplement. We aimed to evaluate whether immune parameters and vitamin D serum 
levels are correlated.

Methods: We evaluated some features of the immune system using the peripheral 
blood of individuals older than 80 years (n = 12) compared to young subjects (n = 10). 
In addition, we correlated these findings with vitamin D serum levels.

results: Old individuals presented metabolic parameters of healthy aging and main-
tained preserved some features of immunity such as CD4/CD8 ratio, and low production 
of pro-inflammatory cytokines after stimulus. On the other hand, we observed increase 
in the frequency of myeloid-derived suppressor cells, reduction in circulating leukocytes, 
in the percentage of total CD8+, and in CD8+ Naïve T cells, in addition to increase in the 
percentage of CD8+ effector memory re-expressing CD45RA (EMRA) T cells. We found 
seropositivity for CMV in 97.7%, which was correlated with the decrease of CD8+ Naïve 
T cells and increase in CD8+ EMRA T cells. Vitamin D levels were insufficient in 50% of 
old individuals and correlated positively with total CD8+ T cells and negatively with CD8+ 
EMRA T cells.

conclusion: In the studied population, longevity was correlated to maintenance of 
some immune parameters. Considering the limitations of the study as size of the sample 
and lack of functional assays, it was found that vitamin D in old individuals was correlated 
to some features of the immune system, mainly in the CD8 compartment.

Keywords: longevity, immunity, vitamin D, myeloid-derived suppressor cells, T cells

inTrODUcTiOn

In several developed and developing countries, human longevity has been achieved (1–3) but insuf-
ficient function of the immune system in the old population leads to severe infections, frequent 
hospitalizations, and immunization reduced after vaccination (4–6).

Therefore, to reach the longevity with good quality of life, a possible strategy is to preserve the main 
characteristics/functions of the immune system with the aim to cause less damage to the organism 
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during the aging process. Aging has been associated with lower 
generation of progenitors from pluripotent hematopoietic stem 
cells (HSC) located in the bone marrow. In addition, there occurs 
a myeloid-biased differentiation of HSC due to selection pres-
sures from cell-intrinsic and extrinsic mechanisms (7–10). These 
factors lead to a decrease in the number of circulating leukocytes 
and increased frequency in the myeloid lineage. The increase in 
the frequency of myeloid cells may be the reason for the recently 
described increase in myeloid-derived suppressor cells (MDSC) 
in aging individuals. MDSC membrane markers are CD11b+ 
CD33+HLA−DR−/low, which can be subtyped in monocytic MDSC 
(CD14+) or granulocytic (CD15+) MDSC.

The suppressive actions of MDSC are mainly based on the 
production of arginase-1, reactive oxygen species, nitric oxide 
(NO), IL-10, and TGF-β1. These cells exert several effects on 
lymphocytes such as impairment in the antigen presentation 
and recognition by T cells, deficient B and T cells activation, and 
accumulation of regulatory T cells (11, 12).

Changes in hematopoiesis have also been related to the 
decreased percentage of CD4+ and CD8+ T cells in the circulat-
ing blood. In addition, the inverted CD4/CD8 ratio was reported 
by Swedish OCTO and NONA immune longitudinal studies as 
a blood marker predictive for a high rate of mortality in 2, 4, and 
6 years (immune risk profile) (13).

Another aspect of aging is the thymic involution which has 
been linked to less diversity in the T-cell receptor and decreased 
frequency of Naive T cells (14, 15), while the peripheral homeo-
static proliferation compensates for the T-cell loss (16, 17).

The phenotype of T  cells has been used to characterize the 
immune system status and Hamann et al. (18, 19) proposed that 
in humans, the CD8+ T cell compartment presents four different 
phenotypes based on membrane markers and cellular function. 
The phenotype CD45RA+CD27+ represents undifferentiated 
Naive cells and CD45RA−CD27+ lymphocytes are antigen-
experienced T cells (central memory) with increased frequency 
of lymphotoxicity precursors (CTLp). CD45RA+CD27− cells pre-
sent features of antigen-stimulated cells with cytolytic potential, 
production of IFN-γ and tumor necrosis factor-alpha (TNF-α), 
high amounts of perforin and granzyme B, Fas ligand mRNA 
expressed in abundancy, and cells exerting potent cytotoxic 
activity without previous in vitro stimulation [effector memory 
re-expressing CD45RA (EMRA)]. CD45RA−CD27− T  cells are 
observed in low frequency and express perforin and granzyme B 
(effector memory). The correlation between aging and increased 
frequency of CD8+CD45RA+CD27− has been reported. The same 
phenotypes were identified in different stages of CD4+ T  cells 
mainly during stimulation by viral infections (CMV, EBV, HSV, 
and VZV) (20, 21).

In order to preserve the functional characteristics of the 
immune system that could in turn prevent and/or delay age-
related diseases, health professionals have proposed physical 
activity, control of diet, supplements, and probiotics (22–24).

The main actions of vitamin D in bone tissue and the lat-
est reports of its effects on bone marrow, brain, colon, breast, 
malignant cells, and immune system (25) raised the interest of 
researchers to investigate the role played by vitamin D in the 
immunity of old individuals.

Considering that low levels of vitamin D are common in 
older individuals, some health professionals have recommended 
vitamin D supplementation to the aging population in general 
and especially for aged-care residents and critically ill patients 
(26–28). However, the benefits arising on the immunity with 
vitamin D supplementation are not consistent in the literature. 
Upper respiratory infections (URI) in non-hospitalized middle-
aged and older individuals with vitamin D supplementation 
have been associated with a lower incidence of infection (29), 
discrete decrease of infections events (30), or no alteration in 
severity and duration of infection (31, 32). In addition, resi-
dents of sheltered accommodation supplemented with vitamin 
D showed increase in URI and duration of symptoms and no 
changes to the risk or duration of lower respiratory infections 
(33). However, in patients with antibody deficiency or increased 
susceptibility to respiratory tract infections (RTI), supplementa-
tion with vitamin D was beneficial and associated with fewer 
episodes of RTI and increased time for first infection compared 
to placebo group (34).

As the extension of life expectancy is a reality, it is a challenge to 
understand how the aging population deals with the remodeling 
of the immune system and if interventions as vitamin D could 
provide extra years of life with good health. In this study, our goal 
was to investigate changes that occur in some parameters of the 
immune system in individuals reaching longevity (80–100 years) 
and the possible correlation with vitamin D levels.

MaTerials anD MeThODs

The present study is part of a larger epidemiologic survey called 
the health, well-being, and aging study (SABE), which was coor-
dinated by the Pan-American Health Organization, Washington, 
and in Brazil by the School of Public Health of the University 
of São Paulo. From 2000 to 2001, SABE evaluated a sample of 
2,143 non-institutionalized individuals, representing 836,204 
aging people (60 years and older) living in the municipality of 
São Paulo, who were selected through multi-stage sampling. In 
2006, the School of Public Health continued the survey in São 
Paulo and transformed it into a multi-cohort study with 1,115 
individuals from the previous study who agreed to participate 
in the follow-up. Since then, the survey has been repeated every 
5 years. In this study, the inclusion/exclusion criteria were applied 
as cited above, except that we used blood only from individuals 
older than 80 years (male, female) and they were enrolled as their 
biological samples were received. Young individuals (20–30 years, 
male and female) were master and Ph.D. students from UNIFESP.

The blood samples were collected with 12  h of fasting 
(6:00  a.m.–9:00  a.m.) during the summer months (December, 
January, and February) in Brazil.

The Ethics Committee of the Federal University of São Paulo—
UNIFESP approved all procedures (Protocol number 10904).

Peripheral blood mononuclear cells (PBMCs) were isolated 
using Ficoll–Hypaque density gradient (Amersham Biosciences, 
Uppsala, Sweden) and centrifugation. Viable cells were counted, 
adjusted for 2 × 106/100 μL in 80% fetal bovine serum and 20% 
dimethylsulfoxide (Sigma, St. Louis, MO, USA), and frozen 
stored (−80°C) until the phenotyping and cell culture.
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Table 1 | Metabolic parameters in old individuals (80–100 years) and reference values of 80-year-old individuals (37).

Metabolic parameters

age gender cholesterol total mg/dl hDl mg/dl Triglycerides mg/dl glucose mg/dl Urea mg/dl creatinine mg/dl albumin mg/dl

100 F 179 38 183 162 35 0.91 3.1
90 F 224 53 178 80 33 1.09 3.4
90 F 188 73 125 86 42 0.67 3.9
93 M 181 43 47 80 57 0.98 3.9
93 F 186 51 121 93 28 0.93 3.6
88 M 275 68 114 104 36 1.01 4
94 M 177 39 86 71 47 1.26 3.4
90 M 163 43 72 82 30 1.1 3.7
90 M 181 38 135 95 43 1.22 3.9
94 M 132 33 80 90 61 1.97 3.9
91 F 207 63 106 81 41 0.73 4.3
90 F 236 58 109 90 29 0.94 4

Mean ± SD 194.1±37.1 50 ± 13.1 113 ± 40.2 92.8 ± 2 40.2 ± 10.7 1.1 ± 0.3 3.8 ± 0.3
Range 132–275 33–73 47–183 71–162 28–61 0.67–1.97 3.1–4.3

Reference values 
(37)

108.3–313.2 27.1–104.4 43.8–287.8 126 19.8–89.5 0.52–1.94 3.2–4.7
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cell culture
Cells were diluted in RPMI 10, counted, and adjusted for 
1 × 106/100 mL. The assessment of cell proliferation was based 
on a substance (CFSE) that once in the cell cytoplasm halves its 
content to each cell division. Cells were incubated with 5(6)- 
carboxyfluorescein acetate (CFSE, CFDA Vybrant IF Cell Tracer 
Kit Invitrogen) for 10 min. The cells were washed, counted, and 
adjusted for plating (2 × 105/100 μL of RPMI10 per well). Culture 
conditions were phytohemagglutinin (PHA+, 5  µg/mL, Sigma) 
or absence of stimulus (PHA) for 72  h in 5% CO2, humidity 
controlled and 37°C. After 3 days of culture, the cell suspension 
was collected, centrifuged, and the proliferation (CFSE) was 
measured in flow cytometer (35). The cell culture supernatant 
was frozen (−80°C) for the measurement of cytokines (ELISA).

cell Phenotype
The cells were stained with monoclonal antibodies to T-cell 
phenotype CD3 APC, CD4 PerCP Cy 5.5, CD8 APC Cy7, CD27 
FITC, CD45RA PE (eBioscience, CA, USA). The cells were also 
stained with monoclonal antibodies to MDSC phenotype CD3 
APC, CD19 APC, CD56 APC, HLA-DR APC e-fluor 780, CD33 
PerCP Cy5.5, CD11b PE, CD14 PE Cy7, CD15 FITC (eBiosci-
ence, CA, USA). After 30  min of incubation with monoclonal 
antibodies, in the dark and at 4°C, the cells were washed with PBS 
and centrifuged. Living cells (based on forward and side scatter) 
were acquired in the FACS Canto II using the DIVA software 
(Becton Dickinson, USA). Further analyses of FACS data were 
performed using the 9.3 FLOWJO software (Tree Star, USA).

T lymphocytes were characterized as described previously (36).

Naïve: CD3+CD4+CD45RA+CD27+ or CD3+CD8+CD45RA+ 
CD27+ (Naïve).
Central memory: CD3+CD4+CD45RA−CD27+ or CD3+CD8+

CD45RA−CD27+ (CM).
Effector memory: CD3+CD4+CD45RA−CD27− or CD3+CD8+

CD45RA−CD27− (EM).

Effector memory re-expressing CD45RA: CD3+CD4+CD45RA+ 
CD27− or CD3+CD8+CD45RA+CD27− (EMRA).

Myeloid-derived suppressor cells were characterized as:

CD3−CD19−CD56−HLA−DR−/lowCD33+CD11b+CD15+ 
granulocytic or
CD3−CD19−CD56−HLA−DR−/lowCD33+CD11b+CD14+ 
monocytic.

elisa
The frozen culture supernatants were thawed and cytokines [IL-1, 
IL-2 α, interleukin-6 (IL-6), IFN-γ, and TNF-α] were evaluated 
by ELISA assay according to the manufacturer’s instructions 
(DuoSet ELISA Development Systems R&D). ELISA reading 
PerkinElmer—EnSpire, quantified the samples.

Metabolic Data
Obtained from the databank of SABE study.

cytomegalovirus igM and igg
Serum was previously isolated by centrifugation and frozen 
stored (−80°C). IgG and IgM levels were measured in serum 
by electrochemiluminescence immunoassay according to the 
manufacturer’s instructions (cobas® http://e-labdoc.roche.com 
REF 04784618 190).

Measurement of Vitamin D
Serum of studied individuals was previously isolated by centrifu-
gation and frozen stored (−80°C) until the measurement of vita-
min D. 25-Hydroxyvitamin D value was obtained in accordance 
with the manufacturer’s instructions (cobas® http://e-labdoc.
roche.com 05894913 190 V7).

statistics
After testing the variables for normality (Shapiro–Wilk) it was 
used the unpaired Student’s t-test (Vitamin D) or Mann–Whitney 
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FigUre 1 | Representative flow cytometry plots showing gate strategy for myeloid-derived suppressor cells (MDSC) frequency. Gate in live cells (FSC-A × SSC-A), 
doublets exclusion (SSC-H × SSC-W), gate in lineage negative cells (CD3−CD56−CD19−), gate in HLA-DRlow/neg cells, gate in CD33+CD11b+ cells. Gate in 
granulocytic (CD15+) and monocytic (CD14+) cells (a). Number of circulating leukocytes, MDSC (% MDSC) frequency, absolute number of MDSC, and frequency  
of monocytic and granulocytic MDSC in individuals of 20–30 years and 80+ years old individuals (b).
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FigUre 2 | Representative flow cytometry plots showing gate strategy for the frequency of CD4+ and CD8+ T cells. Gate in live lymphocytes (FSC-A × SSC-A), 
doublets exclusion (SSC-H × SSC-W), gate in CD3+CD4+ T cells, gate in CD3+CD8+ T cells (a). Frequency of T lymphocytes CD3+CD4+, CD3+CD8+, and CD4/CD8 
ratio in 20–30 and 80+ years old individuals. The CD4/CD8 ratio lower than 1 (0.542; blue square) (b).
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(parameters of the immune system) for comparisons between young 
and old groups. The correlation between parameters of the immune 
system and serum levels of IgG (CMV) or vitamin D was performed 
by Spearman test. Values of p < 0.05 were considered statistically 
significant. All statistical analyses were performed with the aid of 
the Graph Pad PRISM software (Graph pad, La Jolla, CA, USA).

resUlTs

Young (n = 10, 5 male and 5 female, 20–30 years old) and old 
(n = 12, 6 male and 6 female, 80–100 years old) individuals were 
evaluated. Table 1 shows some metabolic parameters that high-
light the health status of the old population evaluated. In agree-
ment with Helmersson-Karlqvist et al. (37), our old population 
may be considered healthy for most of the parameters evaluated 
in spite of great variability observed. Only one female (100 years) 
presented glucose (162 mg/dL) higher than the reference values 
established by Helmersson-Karlqvist et al. (37).

Figure 1 shows that old individuals (80–100 years) presented 
a significantly high percentage of MDSC (%MDSC). However, 
as this group had a significantly lower number of leukocytes, the 
absolute cell number of MDSC (leukocytes cell number × per-
centage of MDSC) was not different compared to young indi-
viduals (20–30  years). There was significant predominance of 
granulocytic MDSC in individuals older than 80 years, while the 
subtype monocytic was statistically higher in young individu-
als. The percentage of T CD4+ lymphocytes was similar in both 
groups while there was a trend toward lower percentage of CD8+ 
T cells in old individuals (p = 0.0572). The CD4/CD8 ratio was 
significantly higher in old individuals except in a woman (96 years) 
with the CD4/CD8 ratio inverted (0.542) (Figure 2).

The evaluation of T  cells phenotypes showed a significantly 
lower percentage of CD4+ central memory in elderly individuals 
(Figure 3). In the CD8 compartment, Naive cells were statisti-
cally less expressed in old individuals and CD8+ EMRA T cells 
presented significantly higher expression in old individuals 
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FigUre 3 | Representative flow cytometry plots showing gate strategy for the frequency of CD4+ T cells phenotype. Gate in live lymphocytes (FSC-A × SSC-A), 
doublets exclusion (SSC-H × SSC-W), gate in CD3+CD4+ T cells, gate in CD45RA+CD27+ (Naïve) T cells, gate in CD45RA−CD27+ (central memory) T cells, gate in 
CD45RA−CD27− (effector memory), gate in CD45RA+CD27− (effector memory re-expressing CD45RA) T cells (a). Percentage (%) of CD4+ T cells phenotypes: Naïve 
(b), central memory (c), effector memory (D), effector memory RA re-expressing CD45RA (e) in 20–30 and 80+ years old individuals.
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(Figure  4). Considering the functions of T  cells after stimula-
tion in culture with PHA, the percentage of proliferation was 
lower in old individuals both in the compartment CD4+ and 
CD8+ (Figure  5). The production of cytokines was reduced in 
old individuals with statistical difference for IL-6 and TNF-α 
(Figure 6). As cytomegalovirus infection/latency has been related 
to immunosenescence, we evaluated IgM and IgG against CMV 
in serum of old (80–100 years) individuals (Table 2) and the pos-
sible correlation with immune parameters (Table 3).

Table 2 shows that in 12-old individuals evaluated, only one 
male (88 years old) can be considered negative for cytomegalovirus 
as the IgM level was <0.7 (0.158) and IgG level was <0.5 (<0.25). 
In addition, only one male (90 years old) could be considered as 
recently infected by CMV as the IgM level was >1.0 (1.240) and 
the IgG level was relatively low (55.85) in comparison to other old 
individuals studied. Levels of IgG >500 U/mL were observed in 
four individuals (3 females and 1 male).

The levels of IgG against CMV were negatively correlated 
(p = 0.027) with the percentage of Naïve CD8+T cells. There was 
a trend of negative correlation (p = 0.06) between the percentage 
of CD4+ central memory T cells and IgG levels (CMV). A trend of 

positive correlation (p = 0.055) between the percentage of CD8+ 
EMRA T cells and IgG levels (CMV) was observed (Table 3).

The next question was whether total vitamin D levels were 
different in the studied groups (Figure  7). Vitamin D levels 
were lower in old individuals (p = 0.050). In 50% (n = 6) of aged 
individuals vitamin D levels were <20 ng/mL (deficiency) and in 
90% (n = 9) of young individuals vitamin D levels were greater 
than 20 ng/mL. Insufficiency (21–29 ng/mL) was present in 25% 
(n = 3) of old individuals and 50% (n = 5) of young individu-
als. Sufficient levels (30 ng/mL or more) were observed in 25% 
(n = 3) of aged and 40% (n = 4) of young individuals.

It was analyzed whether total vitamin D was correlated with 
the immunological parameters evaluated previously. We observed 
correlation of vitamin D levels only for the CD8 compartment 
(Table  4). The percentage of total CD8 T  cells was positively 
correlated (p = 0.006) with vitamin D levels in old individuals, 
whereas there was a trend toward positive correlation (p = 0.074) 
in young individuals. CD8+ effector memory T cells were posi-
tively correlated with vitamin D levels in young individuals and 
CD8+ EMRA T cells were negatively correlated (p = 0.05) with 
vitamin D levels in old individuals.
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FigUre 4 | Representative flow cytometry plots showing gate strategy for the frequency of CD8+ T cells phenotype. Gate in live lymphocytes (FSC-A × SSC-A), 
doublets exclusion (SSC-H × SSC-W), gate in CD3+CD8+ T cells, gate in CD45RA+CD27+ (Naïve) T cells, gate in CD45RA−CD27+ (central memory) T cells, gate in 
CD45RA−CD27− (effector memory), gate in CD45RA+CD27− (effector memory re-expressing CD45RA) T cells (a). Percentage (%) of CD8+ T cells phenotypes: Naïve 
(b), central memory (c), effector memory (D), effector memory RA re-expressing CD45RA (e) in 20–30 and 80+ years old individuals.
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DiscUssiOn

Morbidities associated with aging contribute to organ failure that 
leads to a pathway of poor quality of life and/or death. In addi-
tion, the impairment in the protective functions of the immune 
system promoting infections and tumors, and the increase of 
inflammatory factors causing tissue damage and contributing for 
age-related diseases have also been reported in old individuals.

In our study, it was observed that old individuals presented 
metabolic parameters consistent with healthy aging except for a 
female (100 years) with blood glucose higher than 126 mg/dL.  
Our data are in agreement with the report of Helmersson-
Karlqvist et  al. (37) who have developed reference intervals of 
metabolic parameters adjusted for very old (80 years) individuals.

Despite our studied population could be considered healthy, 
we observed characteristics reported as immune senescence.

Myeloid-derived suppressor cells were only recently described 
as potential markers of the aging process, since these cells were 
initially associated with tumor development (12). We observed 
in old individuals that MDSC were present in high percentage 
with predominance of the granulocytic subtype. It has been 

reported that the accumulation of MDSC with aging may 
contribute to some of the immune disorders and pathologies 
observed in older adults (12). In aging individuals, Verschoor 
et al. observed a significant increase in the frequency of MDSC 
compared to young adults in addition to the higher number of 
MDSC in older individuals with frailty and previous history of 
cancer (11). In addition to the increased percentage of MDSC, 
our old population presented decreased number of circulating 
leukocytes, reduced percentage of total CD8+ and CD8+ Naïve 
T cells, and increase in the percentage of terminally differentiated 
CD8+ EMRA T cells. Significant changes in the phenotype and 
function occurred mainly in CD8+ T  cells in these individuals 
and are in agreement with the literature (38–43). In addition, it 
has been shown that the homeostatic proliferation is less effective 
for CD8 than for CD4 Naïve T cells (44).

In old individuals, it has been shown that many aspects of immu-
nosenescence are related to the seropositivity for cytomegalovirus 
(CMV). However, it seems that the effects of CMV in the immune 
system of healthy old individuals are dependent on the increased 
latency of the virus (45, 46). In our study, 11 out of 12 old indi-
viduals were seropositive for CMV and four individuals presented 
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FigUre 5 | Representative flow cytometry plots showing gate strategy for the frequency of proliferation in CD4+ and CD8+ T cells after stimulus with 
phytohemagglutinin (PHA) in culture. Gate in live cells (FSC-A × SSC-A), doublets exclusion (SSC-H × SSC-W), gate in CD3+CD4+ T cells, gate in the decrease of 
CFSE, gate in CD3+CD8+ T cells, gate in the decrease of CFSE (a). Percentage of CD3+CD4+ and CD3+CD8+ T cells proliferation after stimulus with PHA according 
to age: 20–30 and 80+ years old (b).
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IgG levels >500 U/mL. The seropositivity to CMV was correlated 
with the decrease of Naïve CD8+ T cells and with a trend toward 
decrease in CD4+ central memory T cells and increase in CD8+ 
EMRA T cells. The impact of CMV infection/latency in immunity 
can exacerbate the features of immunosenescence. However, some 
of the features reported in literature were not in agreement with 
our studied old individuals such as the decrease in Naïve CD4+ 
T cells and CD4/CD8 ratio in addition to the increase in CD4+ and 
CD8+ central memory, CD8+ effector memory T cells, and pro-
inflammatory cytokines (39, 47, 48). These differences may be due 
to the small number of individuals and great variability observed 
in the frequency of cell subtypes and cytokine production in our 
study population. Nonetheless, it cannot be ruled out by the pos-
sibility that the features preserved in immune system and observed 

in the old individuals studied are the key to achieve the longev-
ity (13, 49, 50). Arai et  al. (49) found in two different Japanese 
cohorts (n = 1,554) evaluating very old individuals (85–99 years), 
centenarians, and individuals ≥105 years that the lowest levels of 
inflammation correlated with the main indicators markers of suc-
cessful aging, such as survival, capability, and cognition.

In old individuals, we observed lower rates of proliferation in 
CD4 and CD8 compartments in addition to the reduced levels of 
cytokines after stimulation with PHA. In association, we found 
lower percentage of CD4+ central memory T cells, which have 
been described as highly proliferative, and producers of IL-2  
(13, 49–53). Corroborating with our data, Whisler et  al. (51) 
showed that in in  vitro there were diminished proliferative 
capacity and decreased production of IL-2 after stimulation with 
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FigUre 6 | Cytokines produced by cells in culture under phytohemagglutinin stimulus according to age: 20–30 and 80+ years old.

Table 2 | Serum levels of IgM and IgG to cytomegalovirus in old (80–100 years) 
individuals.

age gender igM igg

100 F 0.159 >500
90 F 0.296 240.60
90 F 0.164 >500
93 M 0.237 316.30
93 F 0.160 31.36
88 M 0.158 <0.25
94 M 0.436 153.90
90 M 1.240 55.85
90 M 0.189 >500
94 M 0.157 180.60
91 F 0.488 >500
90 F 0.428 87.39

IgM cutoff index negative: <0.7; indeterminate: 0.7–0.99; positive: ≥1.0.
IgG negative <0.5 U/mL; indeterminate: 0.5–0.99 U/mL; positive: ≥1.0 U/mL.
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PHA in 7 out of 12 old individuals evaluated (mean age 78 years) 
in association with deficient activation of transcriptional factor 
AP-1 and nuclear factor of activated T cells.

Others have reported that age interferes negatively with the 
expansion of T cells due to telomere erosion (52, 53). On the other 
hand, after vaccination with live attenuated virus varicella zoster 
Qi et al. (54) observed that the majority of activated T cells were 
CD4+ and age (50–70  years) did not interfere with the expan-
sion of antigen-specific T cells. However, the long-lived memory 
T cells (production of IFN-γ in vitro) decreased from day 14 to 
28 post-vaccination.

The study of Shahid et al. (55) showed reduced expression of 
IFN-γ and granzyme B in CD8+ T cells of older adults vaccinated 
against influenza.

Our findings show that despite the common features of 
immune senescence presented by old individuals, they managed 
to achieve longevity.

Health professionals have proposed alternatives to circumvent 
age-associated diseases, such as physical activity, diet control, 
supplements, and probiotics (22–24). Vitamin D has been 
recommended due to its action on the immunity, but data from 
literature are inconclusive regarding the benefits of supplementa-
tion with vitamin D.
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FigUre 7 | Vitamin D [25(OH)D3] levels in young (n = 10; 20–30 years) and 
old (n = 12; 80–100 years) individuals.

Table 3 | IgG levels against cytomegalovirus and correlation with parameters of 
the immune system in old (80–100 years) individuals.

Parameters r spearman p

Cell number × 105 −0.164 0.6054
% Myeloid-derived suppressor cells (MDSC) 
(CD33+CD11b+)

0.071 0.8267

MDSC absolute cell number × 105 0.046 0.883
% CD15 MDSC −0.267 0.397
% CD14 MDSC −0.377 0.225
% CD3+CD4+ −0.209 0.532
% CD3+CD8+ 0.107 0.753
CD4/CD8 −0.191 0.566
% Proliferation CD4+ 0.259 0.410
% Proliferation CD8+ 0.085 0.792
% CD4+ Naïve −0.135 0.673
% CD4+ central memory −0.559 0.06
% CD4+ effector memory 0.295 0.347
% CD4+ effector memory RA 0.499 0.100
% CD8+ Naïve −0.648 0.027
% CD8+ central memory −0.420 0.174
% CD4+ effector memory 0.085 0.792
% CD8+ effector memory RA 0.573 0.055
IL-1α −0.346 0.276
IL-2 0.025 0.941
Interleukin-6 0.143 0.652
IFN-γ 0.110 0.731
Tumor necrosis factor-alpha 0.075 0.818
Vitamin D 0.302 0.336
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deficiency, while the insufficiency was observed in 50% of 
young individuals.

In innate immunity, macrophages and dendritic cells can 
convert vitamin D3 on biological active 1,25OH (60). In addition, 
immune cells also express the vitamin D receptor (VDR) and thus 
1,25OH can act on immune microenvironment in paracrine and 
autocrine pathways (61).

Human monocytes activated through TLR upregulate the 
expression of genes associated with the conversion of 25OH 
to 1,25OH (Cyp27B1) and VDR. The addition of vitamin D to 
monocytes in culture leads to upregulation of VDR downstream 
genes, such as the antimicrobial cathelicidin (62–64). In oppo-
sition, it was observed that in adaptive immunity, vitamin D 
added in culture abolished the production of IFN-γ and IL-17 by 
CD4+ memory T cells co-cultured with activated dendritic cells 
(pneumococci products) (65). Accordingly, Rode et al. (66) found 
that human CD4+ T cells stimulated with CD3/CD28 beads in 
the presence of 25OH or 1,25OH present reduced production of 
IFN-γ.

In this study, there was a trend toward negative correlation 
between the absolute number of MDSC and vitamin D levels 
(r = −0563 p = 0.089) in young individuals. This is an impor-
tant finding, since there was a higher percentage of MDSC 
in old individuals with predominance of the granulocytic 
phenotype (CD33+CD11b+CD15+) that has been associated 
with some types of cancer in humans. In addition, these cells 
have recently been associated with frailty and Alzheimer’s 
disease (11, 67).

Interventions to circumvent the MDSC increase have been 
proposed such as the use of vitamin D to induce the differen-
tiation of non-mature suppressive myeloid cells into mature 
effector non-suppressive cells (68). In patients (49–71  years 
old) with head and neck cancer, vitamin D3 (20, 40, 60  μg/
day) decreased the number of progenitor cells with suppressive 
phenotype, promoted the proliferation of T cells after in vitro 
stimulation, and increased the levels of effector cytokines (IL-
12 and IFN-γ) (69).

Regarding to the CD4+ T cell compartment there was no cor-
relation with the levels of vitamin D which is in agreement with 
literature data showing that for young adults, vitamin D levels (70), 
or supplement (71, 72) previously to vaccination did not cause 
enhanced humoral immunity that is dependent of CD4+ T cells 
help. However, Khoo et al. (73) showed that during winter the 
level of vitamin D decreases and is associated with lower percent-
age of Naive CD4+ T cells suggesting a role played by vitamin D  
in this cell compartment.

Our data points for correlation of vitamin D levels with some 
parameters of CD8+ T  cells. In old individuals, vitamin D had 
a positive correlation with total CD8+ T cells. Considering that 
we observed a trend toward lower percentage of CD8+ T  cells 
in old individuals (Figure 2), vitamin D could be beneficial in 
preventing the decrease of this cell subtype. In young individuals, 
vitamin D levels correlated positively with the frequency of CD8+ 
effector memory T cells.

Another important result was the negative correlation between 
vitamin D and CD8 EMRA T  cells in old individuals suggest-
ing that higher levels of vitamin D would be linked to less 

The US Endocrine Society defined vitamin D levels of 
20 ng/mL or less as deficiency, 21–29 ng/mL as insufficiency, 
and 30  ng/mL or more as sufficiency (56). However, sub-
optimal levels of vitamin D have been reported worldwide 
and depending on the lifestyle and environmental conditions, 
hypovitaminosis D could be observed in all age groups (57). 
In old adults, the diminished sun exposure, skin atrophy with 
decreased amounts of the precursor 7-dehydrocholesterol, and 
the reduced content of vitamin D in the diet leads to lower 
serum levels of vitamin D (58, 59). In accordance, blood 
samples were collected in summer and yet we observed that 
50% of individuals older than 80  years showed vitamin D  
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Table 4 | Vitamin D [25(OH)D3] levels and correlation with parameters of the immune system in young (20–30 years) and old (80–100 years) individuals.

Parameters r spearman 20–30 years p r spearman 80–100 years p

Cell number × 105 0.012 0.973 −0.182 0.571
% Myeloid-derived suppressor cells (MDSC) (CD33+CD11b+) −0.527 0.117 0.370 0.235
MDSC absolute cell number × 105 −0.563 0.089 0.181 0.571
% CD15 MDSC 0.281 0.431 0.167 0.602
% CD14 MDSC −0.176 0.626 0.168 0.602
% CD3+CD4+ 0.442 0.200 0.190 0.574
% CD3+CD8+ 0.588 0.074 0.764 0.006
CD4/CD8 −0.090 0.803 −0.547 0.082
% Proliferation CD4+ 0.345 0.328 −0.238 0.457
% Proliferation CD8+ 0.236 0.511 −0.126 0.697
% CD4+ Naïve CD3+CD4+CD45RA+CD27+ −0.109 0.764 −0.027 0.931
% CD4+ central memory CD3+CD4+CD45RA−CD27+ −0.079 0.829 0.287 0.366
% CD4+ effector memory CD3+CD4+CD45RA−CD27− −0.042 0.907 0.028 0.931
% CD4+ effector memory RA CD3+CD4+CD45RA+CD27− 0.150 0.701 −0.192 0.548
% CD8+ Naïve CD3+CD8+CD45RA+CD27+ −0.297 0.405 0.378 0.269
% CD8+ central memory CD3+CD8+CD45RA−CD27+ 0.236 0.511 0.462 0.131
% CD8+ effector memory CD3+CD8+CD45RA−CD27− 0.697 0.025 0.260 0.467
% CD8+ effector memory RA CD3+CD8+CD45RA+CD27− 0.188 0.603 −0.552 0.050
IL-1α (pg/mL) −0.472 0.169 0.505 0.094
IL-2 (pg/mL) 0.030 0.934 −0.266 0.404
Interleukin-6 (pg/mL) −0.151 0.676 −0.246 0.442
IFN-γ (pg/mL) −0.491 0.150 −0.014 0.966
Tumor necrosis factor-alpha (pg/mL) 0.212 0.556 −0.133 0.681

accumulation of cells that have been described as a marker of 
senescence (74, 75).

There was no correlation of vitamin D levels and proliferation 
of T  cells (CD4+ and CD8+) or production of cytokines after 
stimulation with PHA. In agreement, the addition of vitamin D 
to culture of T cells stimulated with CD3 and CHO-CD80 cell line 
did not increase the proliferative capacity (individuals from 32 to 
57 years old) (76). In addition, PBMCs stimulated in vitro in the 
presence of vitamin D showed diminished IFN-γ and increased 
IL-4 production in culture supernatant (77).

Aging has been related to chronic low-grade inflammation 
(inflammaging) with increased levels of circulating C-reactive 
protein (CPR), IL-6, and TNF-α. The InCHIANTI study found 
that individuals (n = 867, mean age 75.1 years) with vitamin D 
levels lower than 31.4 nmol/L presented high circulating IL-6, but 
not TNF-α, IL-1α, and IL-18 (78).

The English Longitudinal Study of Aging assessed community-
dwelling individuals (n = 5,870, 50–80 years) and reported that 
low levels of 25OH (≤30 nmol/L) were negatively associated with 
CPR (79). A follow-up of old individuals (n = 23, 55–86 years) 
for 12  months showed that vitamin D levels were significantly 
lower in the winter with an increase in the number of individuals 
presenting deficiency. In the same season, there was a significant 
increase of circulating IL-6, IL-8, IL-β-1, MCP-1, and TNF-α 
(80). The low-grade chronic inflammation has been associated 
with aging-related diseases, and suboptimal levels of vitamin D 
have been related to chronic diseases/overall mortality (81–84), 
suggesting that adequate levels of vitamin D could benefit the 
aging population.

Despite the size of the sample be a limitation of the study 
and not allow more detailed statistical analyses, after testing 
the variables for normality and applying the adequate statistics, 

we obtained some important results. We found that the old 
population evaluated could be considered healthy based on the 
metabolic parameters. In this sample, 11 out of 12 were CMV+ 
and still maintained preserved some features of immunity such as 
CD4/CD8 ratio, and low production of inflammatory cytokines 
after stimulus. On the other hand, we observed increased fre-
quency of MDSC, reduced number of circulating leukocytes, 
reduced percentage of total CD8+ and Naïve CD8+ T cells, and 
increased percentage of terminally differentiated CD8+EMRA 
T cells. CMV+ was correlated with the decrease of CD8+ Naïve 
T cells and increase in CD8+ EMRA T cells. Vitamin D levels were 
insufficient in 50% of old individuals and correlated positively 
with total CD8+ T cells and negatively with CD8 EMRA T cells. 
Our next step is to develop an ex vivo model to study the action 
of vitamin D in CD4+ and CD8+ T cells, associated phenotypes, 
proliferation, and cytokines production.

cOnclUsiOn

In the studied population, longevity was correlated to mainte-
nance of some immune parameters. Considering the limitations 
of the study as size of the sample and lack of functional assays 
showing the direct effect of vitamin D in immunity, it was found 
that vitamin D in old individuals was correlated to some features 
of the immune system, mainly in the CD8 compartment.

eThics sTaTeMenT

This study was carried out in accordance with the recommenda-
tions of “UNIFESP CEP Committee of Ethics in Research” with 
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written informed consent in accordance with the Declaration of 
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