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The budding yeast Saccharomyces cerevisiae alters its gene expression profile in response to a change in nutrient
availability. The PHO system is a well-studied case in the transcriptional regulation responding to nutritional changes in
which a set of genes (PHO genes) is expressed to activate inorganic phosphate (Pi) metabolism for adaptation to Pi
starvation. Pi starvation triggers an inhibition of Pho85 kinase, leading to migration of unphosphorylated Pho4
transcriptional activator into the nucleus and enabling expression of PHO genes. When Pi is sufficient, the Pho85 kinase
phosphorylates Pho4, thereby excluding it from the nucleus and resulting in repression (i.e., lack of transcription) of
PHO genes. The Pho85 kinase has a role in various cellular functions other than regulation of the PHO system in that
Pho85 monitors whether environmental conditions are adequate for cell growth and represses inadequate (untimely)
responses in these cellular processes. In contrast, Pho4 appears to activate some genes involved in stress response and
is required for G, arrest caused by DNA damage. These facts suggest the antagonistic function of these two players on a
more general scale when yeast cells must cope with stress conditions. To explore general involvement of Pho4 in stress
response, we tried to identify Pho4-dependent genes by a genome-wide mapping of Pho4 and Rpo21 binding (Rpo21
being the largest subunit of RNA polymerase Il) using a yeast tiling array. In the course of this study, we found Pi- and
Pho4-regulated intragenic and antisense RNAs that could modulate the Pi signal transduction pathway. Low-Pi signal is
transmitted via certain inositol polyphosphate (IP) species (IP;) that are synthesized by Vip1 IP¢ kinase. We have shown
that Pho4 activates the transcription of antisense and intragenic RNAs in the KCST7 locus to down-regulate the Kcs1
activity, another IP¢ kinase, by producing truncated Kcs1 protein via hybrid formation with the KCST mRNA and
translation of the intragenic RNA, thereby enabling Vip1 to utilize more IP¢ to synthesize IP; functioning in low-Pi
signaling. Because Kcs1 also can phosphorylate these IP; species to synthesize IPg, reduction in Kcs1 activity can ensure
accumulation of the IP; species, leading to further stimulation of low-Pi signaling (i.e., forming a positive feedback
loop). We also report that genes apparently not involved in the PHO system are regulated by Pho4 either dependent
upon or independent of the Pi conditions, and many of the latter genes are involved in stress response. In S. cerevisiae, a
large-scale cDNA analysis and mapping of RNA polymerase Il binding using a high-resolution tiling array have identified
a large number of antisense RNA species whose functions are yet to be clarified. Here we have shown that nutrient-
regulated antisense and intragenic RNAs as well as direct regulation of structural gene transcription function in the
response to nutrient availability. Our findings also imply that Pho4 is present in the nucleus even under high-Pi
conditions to activate or repress transcription, which challenges our current understanding of Pho4 regulation.
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control are extensively characterized by conventional genetic

Introduction
and biochemical analyses and, more recently, expression

When environmental conditions change, the budding yeast
Saccharomyces cerevisiae, like other microorganisms, makes a
decision about growth, cell division, and which responses to
elicit in a coordinated fashion. Starvation for nutrients,
alterations in temperature or salt concentration, and the
presence of toxic agents are critical stresses for yeast cells and
elicit signals that evoke cellular responses favoring survival
under the new conditions. Nutrient status is probably the
most important condition that must be accurately and
rapidly sensed and responded to in order to ensure cell
survival. In this process, nutrient-sensing kinases including
cyclic-adenosine-monophosphate-dependent kinase, Snfl,
Tor, and Pho85 kinases play important roles in regulation
at levels ranging from transcription to the activity of
individual enzymes [1,2]. Transcriptional regulation is the
most fundamental process in the nutritional response, and
DNA-binding transcription factors and genes under their
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Author Summary

How does a microorganism adapt to changes in its environment?
Phosphate metabolism in the budding yeast Saccharomyces
cerevisiae serves as a model for investigating mechanisms involved
in physiological adaptation. The nutrient inorganic phosphate (Pi) is
essential for building nucleic acids and phospholipids; when yeast
cells are deprived of Pi, genes required for scavenging the nutrient
are activated. This activation is mediated by the Pho4 transcription
factor through its migration into or out of nucleus. The Pi-starvation
(low-Pi) signal is transmitted by a class of inositol polyphosphate (IP)
species, IP7, which is synthesized by one of two IP¢ kinases, Vip1 or
Kcs1. However, the IP; made primarily by Vip1 is key in the signaling
pathway. Here we report that under Pi starvation Pho4 binds within
the coding sequence of KCST to activate transcription of both
intragenic and antisense RNAs, resulting in the production of a
truncated Kcs1 protein and the likely down-regulation of Kcs1
activity. Consequently Vip1 can produce more IP; to enhance the
low-Pi signaling and thus form a positive feedback loop. We have
also demonstrated that Pho4 regulates, both positively and
negatively, transcription of genes apparently uninvolved in cellular
response to Pi starvation and that it sometimes does so
independently of Pi conditions. These findings reveal mechanisms
that go beyond the currently held model of Pho4 regulation.

pitation (ChIP)-on-chip analysis. The PHO system is a well-
studied case in which a set of genes (PHO genes) is expressed
to activate inorganic phosphate (Pi) metabolism for adapta-
tion to Pi starvation [3]. The Pho4 transcription factor that
activates PHO genes is regulated by phosphorylation to alter
its cellular localization: under high-Pi conditions, the Pho85
kinase phosphorylates Pho4, thereby excluding it from the
nucleus and resulting in repression (i.e., lack of transcription)
of PHO genes. Pi starvation triggers an inhibition of Pho85
kinase, leading to the migration of unphosphorylated Pho4
transcriptional activator into the nucleus and enabling
expression of PHO genes [4-6]. Transcriptional regulation
responding to nutrient change is also extensively studied in
glucose repression and in amino acid starvation, cases in
which a complex interplay between activators and repressors
acting on the structural genes involved in the respective
process is well documented [7,8].

Recent studies on transcriptional regulation have revealed
the participation of novel regulators in addition to protein
factors, specifically, an involvement of RNA in the regulation
of protein expression responding to external signals includ-
ing nutrient changes [9,10]. Prokaryotic mRNAs that change
their conformation upon binding of specific metabolites can
alter transcription elongation or translation initiation and
are called riboswitches [11]. Noncoding (nc) RNAs including
small inhibitory (si), micro (mi), and small nucleolar (sno)
RNAs modify RNA species to regulate gene expression: siRNA
and miRNA target mRNA to cause mRNA cleavage and
inhibition of translation, respectively, whereas snoRNA
targets TRNA. Numerous ncRNAs, however, have been found
that do not show these known functions, including antisense
(AS) RNAs and transcribed pseudogenes [10]. In S. cerevisiae,
several ncRNAs involved in transcriptional regulation are
reported: SRGI intergenic RNA functions in repression of
SER3 [12,13], and an AS RNA in the PHOS5 locus appears to
facilitate PHO5 transcription upon activation [14], whereas
those in PHO84 and IME4 function in gene silencing in aging
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cells [15] and inhibition of transcription [16], respectively
(Accession numbers for genes described in this article are
listed in Table S1). Recent large-scale cDNA analysis [17,18]
and mapping of RNA polymerase II binding using a high-
resolution tiling array [19] have identified a large number of
intergenic, intragenic, and AS RNA species whose functions
are yet to be clarified.

The Pho85 kinase has a role in various cellular functions
other than regulation of the PHO system via Pho4; these
functions include nutrient sensing, cell cycle progression,
stress response, and control of cell morphology [20-23].
Pho85 monitors whether environmental conditions are
adequate for cell growth and represses inadequate (untimely)
responses in these cellular processes [1]. When nutrient is
sufficient, the kinase phosphorylates Gsy2, a glycogen
synthase [24], and represses the expression of UGPI, which
encodes an enzyme that catalyzes the production of UDP-
glucose for glycogen synthesis [25]. Both of these events lead
to the down-regulation of glycogen synthesis. Pho85 also
facilitates the degradation of Gen4, a transcription factor that
activates genes involved in amino acid metabolism when
amino acids are depleted [26].

In contrast, the known cellular function of Pho4 seems
rather limited to the PHO system [3]. Recent microarray
analysis, however, has demonstrated that some genes involved
in stress response and various other metabolic functions are
activated under Pi-limiting conditions [27], implying that
Pho4 may activate these genes. Indeed, Pho4 is required for
G arrest caused by DNA damage [28]. These observations
suggest that Pho4 facilitates stress response by activating
genes involved in the process. The fact that overproduction
of Pho4 causes growth arrest of yeast cells in the absence of
Pho85 [29] supports the antagonistic function of these two
players on a more general scale when yeast cells must cope
with stress conditions. To explore the general involvement of
Pho4 in stress response, we tried to identify Pho4-dependent
genes by a genome-wide mapping of Pho4 and Rpo21 binding
(Rpo21 being the largest subunit of RNA polymerase II) using
a yeast tiling array. In the course of this study, we found that
Pho4- and Pi-dependent AS and intragenic RNAs modulate
Pi signaling, leading to stimulation of expression of PHO
genes, which demonstrates that nutrient-regulated RNA
species other than mRNA are functioning in nutrient-
responsive pathways in yeast cells. We also found that Pho4
was involved in transcriptional regulation of stress-responsive
genes, either positively or negatively, and in some cases
independently of environmental Pi conditions, which chal-
lenges the current model of Pho4 regulation [4,5].

Results
ChlIP-on-Chip Analysis Revealed Novel PHO-Type Genes

To analyze the Pho4 binding sites in the yeast genome, we
used two kinds of oligo-DNA arrays, an Affymetrix high-
density oligo-DNA array harboring 25-mer oligonucleotides
with 4-nucleotide spatial resolution (high-resolution [HR]
chip) and an Agilent yeast whole genome 44K array that had
60-mer oligos with ca. 270-nucleotide spatial resolution (low
resolution [LR] chip). The complete datasets of the HR chip
analysis are found in the NCBI GEO database (http:/lwww.
ncbi.nlm.nih.gov/geo/) under accession number GSE13350.
Analysis with the HR and LR arrays revealed that Pho4 bound
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Figure 1. Phosphate Condition-Dependent Pho4 Binding and Pho4-Dependent Expression of Genes

(A) Localization of Pho4 around the PHO8 and PST1 loci. Schematic representations of the regions of these genes (adopted from the results of pattern
matching analysis provided by Saccharomyces Genome Database [SGD], http://www.yeastgenome.org/ATContents.shtml) showing prospective Pho4
binding sites (X) are at the top. The next two rows show Pho4 localization to these regions in the wild-type (WT) cells grown under high (H)- or low (L)-
phosphate (Pi) conditions analyzed with high- and low-resolution (HR and LR) chips. Localization of Rpo21, the largest subunit of RNA polymerase I, to
these regions in the WT or a Apho4 mutant analyzed with HR chip is shown in the bottom two rows. Yeast cells containing Pho4-Flag X 3 or Rpo21-Flag
X 3 were processed for chromatin immunoprecipitation (ChIP) as described in Methods, and enrichment in the immunoprecipitated fraction relative to
whole genome DNA is shown in each panel. Blue bars above and below the x-axis represent genes on the Watson and Crick strands, respectively. The y-
axis scales are log,(signal ratio) and normalized ratio for HR and LR chips, respectively. In HR chip panels, brown bars represent signals that are judged
as significant binding, whereas gray bars are not. The normalized ratio values of the peaks are shown in the LR chip panels.

(B) Northern analysis of genes showing Pho4- and Pi-dependent expression. Total RNA was isolated from the wt, Apho4, or Apho85 cells grown under
high (H)- or low (L)-Pi conditions, subjected to northern blot analysis, and probed with a digoxigenin (DIG)-labeled probe for each gene as designated.
(C) Enrichment of promoter regions in the chromatin-immunoprecipitated (ChIPed) DNA fragments dependent on Pi conditions analyzed by gene-
specific PCR. Total DNA in the whole cell extract (input) or ChIPed DNA fragments prepared from the wt cells grown under high- or low-Pi conditions
were amplified by PCR for 25 or 30 cycles using primer pairs specific to the promoter regions of the genes designated on the left-hand side of the panel.
The AIR2 ORF is the negative control for Pho4 binding.

doi:10.1371/journal.pbio.0060326.g001

to 51 and 57 genes, respectively, under low- but not high-Pi
conditions (Table S2). Thirty-five genes were common in the
two analyses, and all but two of these (KCSI and SHEY) had a
prospective Pho4 binding sequence (CACGTG/T or
CTGCAQ) in their upstream regions. For the two exceptions,
a binding sequence was present within the ORF (Table S2).
Among the 35 genes, 16 had already been reported as PHO
genes, that is, genes regulated by Pho4 in a Pi-dependent
manner, by genetic, biochemical, and microarray analyses
[30,31]. Our results demonstrated that Pho4 actually binds to
the upstream regions of these genes depending on Pi
conditions. In addition to the known PHO genes, our analyses
identified 19 genes as possible novel PHO-type genes. Among
them, eight genes, PSTI, MNN1, HOM3, HOR7, PTK2, CBFI,

a Pi-dependent in vivo binding of Pho4 to their promoter
regions by gene-specific PCR of a chromatin-immunopreci-
pitated (ChIPed) fragment (Figure 1C). Pi- and Pho4-depend-
ent transcription of MNNI, PTK2, CBFI, and PSTI was
demonstrated by northern analysis (Figure 1B). In vivo
binding of Pho4 to the upstream regions of these genes
depending on Pi conditions was demonstrated by PCR using
ChIPed DNA as a template and primers specific to the
respective gene, which was in good accordance with the
results of ChIP-on-chip analysis (Figure 1C and Table S2).
AIR2 serves as a negative control for Pho4 binding, because it
has no prospective Pho4 binding sites in its ORF and its
expression is not affected by Pi conditions or Pho4. ARO9Y

SURI, and GLNI, showed the expected pattern of Rpo2l-
binding (Table S2). Representative results for PHOS and PST1I
are shown in Figure 1A: Pho4 binding to the upstream
regions of these two genes depending upon Pi condition is
demonstrated by the two different ChIP-on-chip analyses
(Figure 1A), Pi- and Pho4-dependent transcription by Rpo21
binding (Figure 1A) and by northern analysis (Figure 1B), and
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shares a divergent promoter with SPL2, a known PHO-gene.
Expression of ARO9 appeared dependent on both Pi and
Pho4 (Figure 1B), and Pho4 bound to its promoter in a Pi-
dependent fashion (Figure 1C). Binding of Pho4 to the CYC3-
CDC19 region appeared to be Pi-dependent (Table S2), but
CDC19 expression appeared independent of Pi conditions or
Pho4 (Figure 1B and 1C), indicating that Pho4 binding to the
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Figure 2. Phosphate-Independent Localization of Pho4 to the Intergenic Region or ORF of Yeast Genes

(A) Localization of Pho4 around the ILV3, ASN1, CIS3, and YPS3 loci. Prospective Pho4 binding sites (X) in each region are shown in the schematic
representation of the regions containing these genes at the top. Next two rows show Pho4 localization to these regions in the wild-type (WT) cells
grown under high (H)- or low (L)-phosphate (Pi) conditions analyzed with high- and low-resolution (HR and LR) chips. The bottom two rows show
Rpo21 localization to these regions analyzed with an HR chip.

(B) Northern analysis of genes showing Pi-independent but Pho4-dependent expression, as in the legend to Figure 1B. Pho4 dependency was either
positive (ILV3 and ASNT) or negative (CIS3 and YPS3) for expression. ACT1 is the loading control.

(C) Enrichment of promoter regions in the ChIPed DNA fragments independent of Pi conditions analyzed by gene-specific PCR. Conditions for PCR are
as described in the legend to Figure 1.

(D) A schematic representation of the ASNT promoter showing Pho4 and Gcn4 binding sites (AACGTG and TGACTC, respectively) and activities of the wt
and mutant (ASNTmut; lacking Pho4 binding site) promoters represented by B-galactosidase activity. The wt, Apho85, Apho4, or Agcn4 cells harboring
respective reporter plasmids were grown to the mid-log phase under high-Pi conditions before the preparation of cell extracts. The values are an
average of three different assays, each of which contains measurements with three independent clones.

doi:10.1371/journal.pbio.0060326.9g002

upstream region of CDCI9 did not play a major role in genes by ChIP-on-chip analysis using the two different

transcriptional regulation of CDCI9. platforms are shown in Figure 2A. Although the binding

profiles of Rpo2l in the wild-type (wt) or Apho4 mutant
Pho4 Can Either Activate or Repress Gene Expression exhibited some inconsistency with those expected from Pho4
Independent of Phosphate Conditions binding profiles, northern analysis demonstrated Pi-inde-

ChIP-on-chip analyses with the HR and LR arrays revealed pendent but Pho4-dependent expression, either a decrease
that 140 and 30 genes, respectively, showed Pi-independent (ILV3 and ASNI) or an increase (CIS3 and YPS3) in the
binding of Pho4, and among them, nine genes (URA3, MUCI, absence of Pho4 (Figure 2B). Gene-specific PCR demonstra-
CIS3, ILV3, PDCI1, YPS3, YLR137W, HPFI, and ASNI) were ted that Pho4 bound to the upstream region of these genes in
commonly detected. Fach of these nine genes has the vivo irrespective of Pi conditions (Figure 2C). These results
prospective Pho4 binding site in its promoter or ORF (Table raise possibilities that Pho4 can bind to a promoter under
S3). We focused on ILV3, ASNI, CIS3, and YPS3 for further high-Pi conditions and that Pho4 binding can lead to
analysis. Analyses of the binding profiles of Pho4 to these transcriptional activation (ASNI and ILV3) or repression
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(CIS3 and YPS3). The former hypothesis challenges the
current model of Pho4 regulation in which, under high-Pi
conditions, Pho4 is excluded from the nucleus through
phosphorylation by Pho85-Pho80 [5]. Therefore, we further
analyzed whether the activity of the ASNI promoter was
dependent on Pho4 under high-Pi conditions by measuring
reporter activity in cells grown in a high-Pi medium. The wt
promoter was active under high-Pi conditions (Figure 2D),
and its activity level decreased to almost 50% when a
prospective Pho4 binding site (at —451 with A of ATG as
+1) in the promoter was mutated (ASNImut). In the absence
of Pho85 where Pho4 became active, the activity of the wt
promoter was stimulated by 1.3-fold compared to that in the
wt strain, but the ASNImut promoter showed a level of the
activity similar to that observed in the wt strain. In the
absence of Pho4 (Apho4), the activity of the wt ASNI promoter
decreased to 50% whereas that of the mutant promoter
showed a similar level of the activity in the wt cells. Gecn4
activates ASNI under amino-acid-starvation conditions [32],
and in the absence of Gen4 (Agen4), the promoter activity was
decreased drastically (Figure 2D). These results further
demonstrated that Pho4 can activate ASNI regardless of Pi
conditions, which requires the Pho4 binding sequences in its
promoter.

Phosphate- and Pho4-Regulated Antisense and Intragenic
RNAs in the KCST Locus

Our ChIP-on-chip analyses using two different platforms
demonstrated the binding of Pho4 within the KCSI and SHE9
ORFs depending on Pi conditions (Figure 3A and Table S2).
Because, to our knowledge, gene transcription mediated by
the binding of a yeast transcription factor within an ORF is
very rare with only three precedents [33-35], we further
analyzed the regulation of KCSI by Pho4. Whereas gene-
specific PCR using a primer set specific to the KCSI promoter
(—908 to 470) failed to detect an enrichment of the Pho4-
bound fragment (Figure 3B, top panel), the ORF-specific
primer (+36 to +1102) could detect an enrichment of the
Pho4-bound fragment prepared only from cells grown in low-
Pi medium (Figure 3B, second panel from the top). In the
absence of Pho85 where Pho4 became active, Pho4 binding to
the ORF was detected under both high- and low-Pi conditions
(Figure 3B, bottom panel) whereas that to the upstream
region was not (Figure 3B, second panel from the bottom).
These results demonstrated that Pho4 binding within the
KCS1 ORF depends on Pi conditions. We also analyzed Rpo21
binding by ChIP-on-chip and found that Rpo21 was localized
to the KCSI locus in Pi- and Pho4-dependent manners
(Figure 3A, bottom two panels). This result indicated the
presence of Pi- and Pho4-dependent transcription in the
KCS1 locus. To examine whether binding of Pho4 within the
ORF could direct KCSI mRNA transcription, initiation of
transcription within the ORF (intragenic RNA), or synthesis
of AS RNA, we carried out northern analysis using RNA
probes specific to the sense or antisense strands of KCSI
(Figure 3C). With an RNA probe hybridizing with the KCSI
mRNA (Figure 3E), a transcript of ca. 3,200 nucleotides (nt),
approximately the size of the KCSI ORF (3,150 nt; Figure 3E),
was detected, which was not dependent on either Pho4 or Pi
conditions (Figure 3C, top panel, lanes 1 to 4, designated by
upper arrow). Judging from its size, this RNA species is highly
likely to be the KCSI mRNA, because this band was not
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detected in Akesl cells (unpublished data). In the absence of
Pho85, a transcript with a smaller size (ca. 2,600 nt) was
detected (Figure 3C, top panel, lanes 5 and 6, designated by
lower arrow), together with the KCSI mRNA and short
transcripts ranging from 2,300 to 1,800 nt in length (lanes 2,
5, and 6, designated by a vertical bar). These short sense
transcripts were also detected in the wt cells under low-Pi
conditions, though weakly (lane 2), but not observed in a
Apho4 (lanes 3 and 4) or Apho4 Apho85 double mutant (lane 7).
These results indicated that Pho4 binding within the KCSI
ORF can activate the transcription of RNAs shorter than the
KCS1I mRNA in both Pi- and Pho4-dependent manners. It
should be noted that the KCS1 mRNA level appeared reduced
when these short RNA species were abundant in Apho85 cells
(lanes 5 and 6). On the other hand, an AS RNA probe
covering from —715 to 4295 of the KCSI gene (Figure 3E)
could detect a short transcript of ca. 500 nt, which was
dependent on both Pho4 and Pi conditions (Figure 3C,
middle panel, lanes 1 to 7), whereas that covering from —715
to —228 failed to do so (unpublished data). Therefore, the AS
RNA was highly likely to be encoded between +295 and —228.
The presence of AS RNA in PHO genes is reported in PHO5
[14] and PHOS84 [15], and in both cases, RRP6 affects the
stability of the AS RNA. We tested the effect of a Arrp6
mutation and found that the mutation also stabilized the AS
RNA in the KCSI locus while not significantly affecting the
amount of sense RNAs (Figure 3D).

To examine whether the 2,600 nt transcript is a processing
product and to confirm the presence of the AS RNA, we
determined transcriptional start points of the sense and AS
RNAs in the Apho85 strain by the 5" rapid amplification of
cDNA ends (RACE) method and found that the sense RNAs
started mainly at —14 and +537 and that the AS transcription
started at +235 (Figure 3E). The sense RNA starting at —14 is
highly likely to be the KCSI mRNA, because the transcription
start points of the sense RNA in the wt were also mapped
mainly to this point (unpublished data). The one starting at
+537 can be ca. 2,600 nt in length when transcribed through
the ORF, the size of which coincides well with the estimated
size of the short transcript detected by northern analysis
(Figure 3C, top panel, designated by lower arrow). This result
supported the conclusion that the 2,600 nt RNA is not a
processing product but is transcribed from within the KCSI
coding sequence.

Three prospective Pho4 binding sites (at +406, +1127, and
+1193) are present in the 5’ half of the KCSI ORF (Figure 3E),
and the one closest to the 5 end is sandwiched by the
transcription start points of the intragenic (+537) and AS
RNAs (+235), which suggests a possibility that binding of Pho4
to the +406 site activates both of the 2,600 nt sense and AS
RNAs. We constructed the KCSI mutant (KCSImut) in which
three prospective Pho4 binding sites were mutated while
keeping the amino acid sequence intact and analyzed the wt
or KCSImut in a low copy (YCp) plasmid in Akesl cells. We
found that the KCS1 mRNA was normally produced (Figure
4A, top panel, lanes 1 to 4), whereas the AS and intragenic
RNAs were produced from wt KCSI but not from KCSImut
under low-Pi conditions (second panel, lanes 2 and 4). Both
the AS and truncated sense RNAs were synthesized from wt
KCSI in AkesI Apho85 cells (lanes 5 and 6) whereas KCSImut
produced RNA of the wt size but not the intragenic or AS
RNAs (lanes 7 and 8). These results indicated that the
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Figure 3. Pi- and Pho4-Dependent Antisense and Intragenic RNA Species in the KCST Locus

(A) The positions of possible Pho4 binding sites within the KCS7 ORF (X) and Pi-dependent localization of Pho4 within the KCS7 ORF detected by HR-
and LR-chip analyses are shown in the top two panels. In this case, the results using an HR chip bearing chromosome 3, 4, 5, and 6 sequences are shown
for better resolution. Pi- and Pho4-dependent localization of Rpo21 to the KCST locus in the wt and Apho4 strains under high- or low-Pi conditions using
the HR chip is shown in the bottom two panels. The slight difference in the data processing programs between the chromosome 3-6 chip and the
whole genome chip caused the different appearance of the figures as compared to Figures 1A and 2A.

(B) Demonstration of Pi-dependent enrichment of the KCS7 ORF fragment but not the 5’-upstream region by gene-specific PCR. Total DNA in the whole
cell extract (input) or ChIPed DNA fragments prepared from the wt or Apho85 cells grown under high- or low-Pi conditions were subjected to PCR using
the primer set specific to the 5’-upstream region or ORF of KCST as designated. The conditions for PCR are the same as those described in the legend to
Figure 1.

(C) Northern analysis of KCST sense and AS RNA expression in the wt and various pho mutant strains as designated under high (H)- or low (L)-Pi
conditions using strand-specific DIG-RNA probes. For detection of KCST sense transcripts, an RNA probe specific to the 3’ region of KCST was employed
(see Figure 3E). The arrows on the left-hand side of the panel indicate the positions of the KCS7 sense (the top panel) and AS transcripts (the middle
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panel), respectively. The vertical bar on the left-hand side of the top panel designates short KCS1 sense transcripts ranging from 2,300 to 1,800 nt. The
positions of RNA size markers are shown on the right. ACT1 is the loading control.

(D) Effect of a Arrp6 mutation on the levels of the KCS7 sense and AS RNA expression. Total RNA was isolated from the wt or Arrp6 mutant cells grown
under different Pi conditions as described above and subjected to northern analysis using strand-specific DIG-RNA probes as designated. The positions

of RNA size markers are shown on the right. ACT1 is the loading control.

(E) A schematic representation of the structure of the KCS7 gene showing the positions of the ATG codon at +1 and +676, taking A of the initiating ATG
as +1. The blank bar represents the promoter region, and the shaded one is the coding region. The white boxes in the coding region are the
prospective Pho4 binding sites at +406, 41127, and +1393. The arrows on the bar designate the major transcription start points of the sense RNA in the
5'-upstream region (at —14) and in the ORF (at +537), and that below the bar is that of the AS RNA (+235), determined by the 5'-RACE method. The
boxes below the bar indicate the positions of the strand-specific probes used for northern analysis: the blank box is a sense-strand-specific probe

(43150 to +1875), and the black one is the AS strand (715 to +295).
doi:10.1371/journal.pbio.0060326.g003

generation of the 2,600 nt intragenic as well as AS RNAs are
activated by Pho4, which requires the presence of at least one
of the prospective Pho4 binding sites. Short sense transcripts
around 2,000 nt (Figure 4A, lanes 2, 5, and 6, designated by a
vertical bar) decreased to below detectable levels with
KCSImut (lanes 7 and 8), which suggested that these
transcripts are also dependent on Pho4.

Antisense RNA Can Cause Production of Truncated Kcs1
Protein

Antisense RNA functions in cis to inhibit sense RNA
transcription by transcriptional collision as reported in the
IME4 case [16] and in trans to form a hybrid with sense RNA
to inhibit its function [9,10]. To reveal the role of the KCSI
AS RNA that is regulated by Pho4 and Pi conditions, we first
asked whether the AS RNA could affect the synthesis of the
Kcsl protein by immunoblotting. Kcsl protein whose C-
terminus was tagged with the c-myc epitope was produced
from the wt KCSI or KCSImut gene in a YCp plasmid
(Figure 4A, second panel from the bottom). Kcs1 protein of
the wt size (1,143 amino acids including the myc tag) was
detected in all cases (lanes 1 to 8), and Akesl Apho85 cells
harboring the wt KCSI plasmid produced a truncated
protein together with the normal one (Figure 4A, second
panel from the bottom, lanes 5 and 6). The band observed
between 83 and 62 kDa markers was nonspecific staining
with anti-myc antibody because it was also detected in the
absence of Kcsl-myc protein in the extract (unpublished
data). Because both the AS and truncated sense RNAs were
produced in AkesI Apho85 cells, the AS RNA hybridizing to
the 5 region of the KCSI mRNA might inhibit normal
translation initiation or the truncated sense RNA might be
translated, either of which could use the in-frame initiation
codon at +676 (Figure 3E) to produce truncated Kcsl
protein composed of 825 amino acids plus 93 amino acids
from the c-myc tag. To examine whether the AS RNA could
act in trans, for example, by hybridizing to the 5’ region of
the KCSI mRNA, we constructed a plasmid in which the AS
RNA was produced from the GALI promoter by placing a
KCS1 fragment covering +295 to —950 downstream of the
promoter and introduced it into a Akesl strain harboring
the KCSImut gene, so that the AS RNA was provided only in
trans and the short sense transcripts including the 2,600 nt
intragenic RNA were not produced (Figure 4A, top panel,
lane 7). The truncated Kcsl protein was observed only when
transcription of the AS RNA was induced from the plasmid
in galactose medium (Figure 4B, second panel from the
bottom, lanes 9 and 10). As expected, the short sense
transcripts were not detected when the AS RNA was
overproduced in trans (Figure 4B, top panel). These results
indicated that the AS RNA can act in trans (i.e., inhibition of
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the normal translation initiation, possibly by hybrid for-
mation with the KCSI mRNA). To test hybrid formation, we
tried to detect the presence of the double-stranded (ds) RNA
in the total RNA sample by RNase protection analysis using
single-stranded RNA-specific RNase, followed by reverse
transcription (RT) and PCR amplification of the protected
fragments. Reverse transcription was carried out using
either sense- or antisense-strand-specific primers, hybridiz-
ing to from +243 to +223 and from —16 to +5 (sense and AS
in Figure 4C, respectively). As shown in Figure 4C, dsRNA of
ca. 250 bp in length protected from RNase digestion was
detected in Apho85 cells in which both sense and AS RNAs
were present (Figure 4C, second panel from the top, lanes
13, 14, 17, and 18). When the RNA sample was not digested
with RNase, the sense strand was successfully amplified,
whereas the AS strand was not (lanes 16 and 20), indicating
that the KCSI mRNA was present but the AS RNA was not
in the RNA sample tested. In Apho85 cells in which both
sense and AS RNAs were present (Figure 4C, lane 14),
dsRNA of ca. 260 bp in length protected from RNase
digestion was detected (Figure 4C, second panel from the
top, lanes 13, 14, 17, and 18). The AkesI mutant cells do not
produce the KCSI sense or AS RNAs, and accordingly the
sense or AS primer failed to synthesize cDNA (Figure 4C,
bottom panel). When KCSImut was expressed in Akesl cells
under low-Pi conditions, the sense RNA was produced but
not the AS (Figure 4A, lane 4; Figure 4C, the middle panel,
lanes 16 and 20), and therefore dsRNA was not detected
(lanes 13, 14, 17, and 18). Reciprocally, when the AS RNA
was expressed in Akesl cells, only the AS was detected
(Figure 4C, second panel from the bottom, lanes 16 and 20),
and the protected dsRNA fragments were, if any, below the
detectable level (lanes 13, 14, 17, and 18). To confirm that
the protected dsRNA was specifically amplified, we carried
out the RT reaction using primers hybridizing upstream of
the transcription start points of the sense or AS RNAs (at
—14 and 4235, respectively, in Figure 3E, and those
designated by asterisks in Figure 4C). The RNA samples
prepared from the strains producing the KCSI mRNA (wt,
Apho85, and Akcs] + KCSImut) could generate cDNA of ca.
430 bp in length when amplified with the sense*/AS primer
pair only in the absence of RNase digestion (Figure 4C, lanes
21 and 23). Similarly, the AS*/sense primer pair could
synthesize cDNA when the RNA samples containing the AS
RNA were not digested by RNase (lanes 24 and 26). These
results indicated that the protected dsRNA fragment was
specifically transcribed and amplified by the RT-PCR
reaction and therefore strongly suggested that the AS RNA
can form a hybrid with the KCSI mRNA in vivo. Such a
hybrid may inhibit normal translation initiation, leading to
the generation of the truncated Kcsl protein.
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Figure 4. Requirement of Pho4 Binding Sites for the Expression of the KCST Intragenic and AS RNAs and for the Production of the Truncated Kcs1
Protein

(A) Expression of the KCST sense and AS RNAs from the wt or mutant (Mut; lacking the three Pho4 binding sites) KCS7 gene in a YCp plasmid in Akcs1 or
Akcs1 Apho85 strain under high (H)- or low (L)-Pi conditions was analyzed by northern blotting with strand-specific RNA probes. Positions of the KCS1
sense (top panel) and AS RNA (second panel from the top) are designated by arrows and a vertical bar on the left-hand side of the panels. The positions
of RNA size markers (nt) are on the right. ACT1 is the loading control. The Kcs1 protein tagged with the c-myc epitope at its C terminus was detected by
western blotting using anti-myc antibody. The full-length and truncated Kcs1 proteins are designated by two arrows on the left-hand side of the second
panel from the bottom. The positions of marker proteins are on the right. Actin is the loading control for western analysis. The faint band between 83
and 62 kDa markers observed in all lanes is nonspecific staining of yeast protein by the anti-myc antibody.

(B) Heterologous KCST AS RNA expression and production of the truncated Kcs1 protein. A Akcs1 strain harboring KCSTmut-myc in a YCp vector and
PGALT-AS RNA in a YEp vector or vector alone was analyzed for KCST sense and AS RNA expression by northern blotting as designated. AS RNA
expression was induced by incubating the transformants in galactose medium for 6 h (Gal) or repressed in glucose medium (Glc). Production of Kcs1-
myc protein was detected as described above.

(C) An RNA hybrid formation of the KCST mRNA with the AS RNA detected by RNase protection assay and RT-PCR. A schematic representation of the
KCST gene of interest is shown at the top. The arrows on the bar designate the major transcription start points of the mRNA (at —14) and of the AS RNA
(+235). The boxes below the bar indicate the positions of the strand-specific primers used for the detection of dsRNA: the blank boxes are sense-strand-
specific primers (sense, 4243 to 4223, and sense*, 4415 to +395), and the black ones are primers for the AS strand (AS, —16 to +5, and AS*, —68 to —48).
Total RNA was isolated from the wt, Apho85, Akcs1, Akcs1 harboring KCSTmut, or AkcsT expressing the AS RNA under the TDH3 promoter, grown in
high-Pi medium, except that Akcs7 harboring KCSTmut was in low-Pi medium. About 10 png of each RNA sample was incubated with (+) or without (-)
RNase ONE. For negative control (-RNA), total RNA was replaced by yeast tRNA. The digestion products were then used as templates for first-strand
cDNA synthesis with strand-specific primers as designated, and the cDNA products were subjected to PCR amplification with the appropriate reverse
primer. The sense-strand-specific (sense) primer, from 4243 to +223; antisense-strand-specific (AS), from —16 to +5; sense¥, from 4415 to +395; and AS¥,
from —68 to —48. For lanes 14, 16, 18, 20, 23, and 26, one-tenth of the amount of the cDNA template was used for PCR compared to those in the other
lanes. The PCR products were analyzed by electrophoresis on a 5% polyacrylamide gel, and 10-fold dilutions of the PCR products were loaded in lanes
16, 20, 23, and 26. The positions of DNA size markers are shown on the right-hand side of each panel.

(D) Pho4-directed and Pi-dependent transcription within the KCST ORF. The N-terminally truncated wt or mutant (Mut) KCS7 ORF (4105 to +3150) placed
in a YCp plasmid was introduced into Akcs1 or Akcs1 Apho4 strain, and transcription of sense RNA under high (H)- or low (L)-Pi conditions was detected
by northern blotting using a strand-specific probe (top panel). The positions of RNA size markers are shown on the right and ACTT is the loading control.
(E) The intragenic RNA also can encode the truncated Kcs1-myc protein. The truncated wt or Mut KCST ORF (+105 to +3150) tagged with c-myc at its C
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terminus was introduced into the Akcs1 strain, and the production of Kcs1-myc protein was analyzed by western blotting. WT* designates the full-
length wt KCST gene tagged with c-myc, which produced the normal and truncated Kcs1-myc protein (lane 39) as in lane 5 of Figure 4A. Actin is the

loading control for western analysis.
doi:10.1371/journal.pbio.0060326.g004

Intragenic RNA Can Produce the Truncated Kcs1 Protein

Although we demonstrated that the truncated Kcs1 protein
could be generated independently of the short sense RNAs, it
is still possible that the truncated protein is translated from
the 2,600 nt intragenic RNA. To test this possibility, we
constructed plasmids harboring N-terminally truncated KCSI
or KCSImut ORF fragments (+105 to +3150) and introduced
them into AkesI or AkesI Apho4 mutants. Because these KCS1
fragments lack the KCSI promoter, the plasmids are unable
to produce the full-length KCSI mRNA. With a strand-
specific RNA probe (Figure 3E), we could detect Pi- and Pho4-
dependent transcripts of ca. 2,600 nt in length (Figure 4D,
lanes 27, 28, 31, and 32). This transcript was not observed in
the KCSImut (lanes 29, 30, 33, and 34), indicating that the
presence of the Pho4 binding sites is required for the
production of this RNA species. Thus Pho4 could activate
transcription from downstream of its binding site in the KCS1
ORF. Although this downstream transcription was plasmid-
borne, the observed similarity in the size of transcript and its
regulation strongly indicate that the 2,600 nt transcript is
actually transcribed in the chromosomal KCSI locus in a
Pho4-dependent fashion and not a processing (or limited
degradation) product. This plasmid-derived transcript could
produce protein that had a size similar to that of the
truncated Kcsl protein (Figure 4E, lanes 36 and 39),
indicating that the 2,600 nt intragenic RNA can encode the
truncated Kcsl protein. Taken together, these results
indicated that Pho4 binding within the KCSI ORF provokes
transcription of both of the AS and the 2,600 nt intragenic
RNAs, which may lead to production of the truncated Kcsl
protein by alteration of translation initiation through the
formation of a hybrid with the KCSI mRNA and by
translation of the 2,600 nt intragenic transcript.

Pho4 Modulates Phosphate-Signaling Pathway via
Antisense and Intragenic RNAs

What is the biological relevance of Pi- and Pho4-dependent
production of the AS and intragenic RNAs and consequently
of the truncated Kcsl protein? KCSI codes for inositol
hexakisphosphate (IPg) kinase synthesizing 5-diphospho
myoinositol pentaphosphate (5-PP-IP;) [36]. The same sub-
strate is used by another yeast IPg kinase, Vipl1, to synthesize
IP; isomers, 4- or 6-PP-IP; that function in Pi signaling in the
PHO system [37,38]. Therefore, it is conceivable that a
decrease in the Kcsl activity can supply more substrate for
Vipl, thereby enhancing Pi signaling. The fact that over-
production of Kcsl reduces the extent of PHO5 derepression
whereas a deletion of KCSI derepresses PHOS5 under high-Pi
conditions [39] supports this model. Although the levels of
normal Kcsl protein did not appear to be altered signifi-
cantly in the presence of the AS RNA and 2,600 nt intragenic
transcript (Figure 4A), the formation of a hybrid RNA could
affect the normal level of the KCST mRNA, which may cause a
slight difference in the level of the Kcsl protein not
detectable by western analysis. In addition, the presence of
the truncated Kcs1 may perturb normal function of Kcsl. To
test these hypotheses, we analyzed the effects of the AS RNA
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and the intragenic sense transcript on PHO84 and PHO5
expression by northern analysis (Figure 5). PHO84 responds
more quickly to a change in Pi conditions than PHO5 [40]. In
the wt cells, PHO5 and PHOS84 were expressed only under low-
Pi conditions (Figure 5, lanes 1 and 2) but not in the absence
of Pho4 (lanes 5 and 6). The two genes were expressed under
high-Pi conditions in AkesI cells (Figure 5, lanes 7 and 8) as
reported [39], which was suppressed by the wt KCSI in a YCp
plasmid (lanes 9 and 10). This result indicated that the
plasmid-borne Kcsl is functional. KCSImut that produced
neither the AS RNA nor the intragenic transcript (Figure 4A)
showed a decreased expression level of the two genes under
low-Pi conditions (Figure 5, lane 12), suggesting that the low-
Pi signal was not transmitted sufficiently to activate Pho4. On
the other hand, overexpression of the AS RNA in the wt cells
resulted in a significant derepression of the two genes under
high-Pi conditions (lanes 1 and 13), suggesting that the low-Pi
signal was transmitted to activate Pho4 under high-Pi
conditions in this case. This stimulatory function of the AS
RNA was dependent on the presence of Vipl IP¢ kinase (lane
19) that functions in low-Pi signal transmission [38]. This
result further supported the conclusion that the AS RNA
functions in the low-Pi signal transduction pathway. We also
overproduced a truncated Kcsl protein (dKcsl, +670 to
+3150) in the wt cells, which caused derepression of PHOS84,
albeit weakly, and barely detectable expression of PHO5
under high-Pi conditions (lane 15). The different expression
levels of PHO84 and PHO5 can be attributed to different
responsiveness of the two genes against the change in the
environmental Pi level [40]. We also assayed the activity of
acid phosphatase encoded by PHO5 in the strains with a
combination of various plasmids as tested in northern
analysis and found that the levels of the enzyme activities
correlated with the mRNA level (unpublished data). These
results indicated that the presence or absence of the AS RNA
and the 2,600 nt intragenic RNA cause altered regulation of
PHO5 and PHO84 responding to Pi conditions, and therefore
it is likely that the Kcs1 activity was modulated by the RNAs,
the truncated Kcsl protein, or both. The apparently weak
effect on Pi signaling of dKcsl compared to that of the AS
RNA suggests that the truncated protein is not solely
responsible for the stimulation of the low-Pi signaling. The
AS RNA could play a certain role in this stimulation process,
possibly through modulation of the KCSI mRNA and protein
levels. Thus, Pho4 appears to enhance low-Pi signaling by
expressing the AS and the intragenic RNAs from within the
KCS1 ORF, thereby constituting the positive feedback loop in
the Pi signaling pathway.

Discussion

In this paper, we reported three novel findings derived
from the ChIP-on-chip analyses of Pho4 and Rpo21 binding
throughout the entire yeast genome: (i) the finding of novel
PHO-type genes, (ii) the ability of Pho4 either to activate or to
repress transcription independently of environmental Pi
conditions, and (iii) the presence of Pi-regulated AS and
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Figure 5. Effect of KCS1 and VIP1 on PHO84 and PHO5 Expression Analyzed by Northern Blotting

The wt, various mutants, or those harboring plasmids expressing KCS1, KCSTmut, AS RNA, or a truncated Kcs1 protein (dKcs1) were incubated for 5 h in
high (H)- or low (L)-Pi media before isolation of total RNA as described in Methods. ACTT is the loading control.

doi:10.1371/journal.pbio.0060326.9005

intragenic RNAs that modulate Pi signal transmission. We
demonstrated that 18 genes that had not been classified
previously as involved in the PHO system showed Pho4
binding in a Pi-dependent fashion (Table S2 and Figure 1),
and at least four of them, viz., MNNI1, CBF1, PSTI, and PTK2,
clearly showed Pho4 binding to their promoters in vivo
dependent on Pi conditions and consequently transcription
that was dependent on both Pi conditions and Pho4 (Figure
1B and 1C). Harbison et al. reported Pho4 binding profiles
under low-Pi conditions [41], and their results share MNNI1
and PTK2 out of our 18 novel PHO-type genes. Gonze et al.
predicted ARO9 and PSTI1 as PHO-type genes by computa-
tional analysis [42]. KCSI expression is reported to increase
under Pi-limiting conditions [27] and in the absence of Pho85
by microarray analysis [43], probably because of the use of an
oligo-DNA array bearing 3'-nested probes that detects Pi-
and Pho4-dependent intragenic RNA. Cross-regulation of
phosphate and sulfate metabolism has been suggested [44],
and in this context, it is noteworthy that we found CBFI,
which encodes a transcription factor that regulates MET
genes under the control of Pi conditions and Pho4.

Pho4 and Stress Response in Yeast

Judging from the Gene Ontology terms of these 18 newly
recognized PHO-type genes (Saccharomyces Genome Data-
base [SGD], http:/lwww.yeastgenome.org/), they apparently do
not have any functional relationship to either Pi metabolism
or Pi signaling and are not categorized in a specific functional
group (Table S4). Their expression profiles by global analysis,
however, showed some similarities in that 12 of them are
induced by either nitrogen depletion or amino acid starva-
tion [32,45] and 9 of them are induced in the stationary phase
[45]. This raises the possibility that Pho4 is involved in the
regulation of a certain set of genes that responds to these
nutrient-limiting or stress conditions. Pho4 is also reported
to activate the transcription of genes involved in G, arrest
caused by DNA damage [28]. Thus, Pho4 appears to activate
the transcription of genes responding to various stress
conditions. This notion implies possible cross talk between
Pi starvation and other stress conditions, the requirement of
function of some, if not all, of these 18 genes in the
adaptation of yeast cells to Pi starvation, or both.

Pho4 Can Function Independent of Pi Conditions
The results in this paper imply that Pho4 is present in the
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nucleus even under high-Pi conditions to activate or repress
transcription (Figure 2), an implication that challenges our
current understanding of Pho4 regulation. If the current
model were correct, then Pho4 should somehow avoid
phosphorylation by Pho85, or if phosphorylated, then the
modified Pho4 should have much less affinity to the Msnb
exportin to remain in the nucleus. Recently, Zappacosta et al
reported Pi-dependent phosphorylation of Pho4 at Ser242
and Ser243 by a kinase other than Pho85 [46]. Phosphor-
ylation of these two sites, however, appears less dependent on
Pi than that at those sites modified by Pho85 (i.e., Ser at 100,
114, 128, 152, and 223) [46]. We could imagine that, under
high-Pi conditions, prior phosphorylation of the Ser242,
Ser243, or both by this unknown kinase could prevent
phosphorylation of the other Ser residues by Pho85, thereby
decreasing the affinity of Pho4 for Msnb while increasing the
affinity to the target promoter, including ASNI. Alternatively,
Pho4 modified at Ser242, Ser243, or both might have more
affinity to a yet unknown factor than to the exportin, and the
resulting complex might be recruited to the target promoter
regardless of phosphorylation by Pho85.

The Pho4 transcription factor appeared to repress CIS3
and YPS3, both cell wall constituents. Expression of CIS3 is
repressed by nitrogen starvation and in the stationary phase,
implying that Pho4 can function as both an activator and a
repressor under these stress conditions. The functioning of a
yeast transcription factor as both an activator and a repressor
has precedents (e.g., Rapl and Abfl) [47,48]. Transcriptional
repression by the two factors is often accompanied by silent
chromatin structure. In a separate paper, we have reported
that Pho4 negatively regulates the expression of SNZI, a
stationary phase-specific gene, and that this regulation is
accompanied by alterations in chromatin structure evoked by
Pho4 binding [49]. The mechanism underlying transcriptional
repression of CIS3 and YPS3 by Pho4 is yet to be clarified, but
we suppose that a similar mechanism with the SNZI may
apply in these cases.

Biologically Functional Yeast Antisense and Intragenic
RNAs

We demonstrated the presence of Pi-regulated AS RNA in
the KCS1 locus. A large-scale cDNA sequencing by Miura et al.
revealed the presence of many AS RNA species [17], including
an AS RNA in the KCSI locus transcribed from +293 to —43.
Although its start point is different a little from our result by
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5-RACE analysis (Figure 3E), we think it highly likely that this
AS RNA coincides with the Pi-regulated AS RNA that we have
reported here. The Pi-regulated AS RNA in KCSI, however,
did not appear to be coregulated with the KCSI mRNA in the
wt cells (Figure 3C), and this contrasts with the observation in
higher eukaryotes that sense and AS pairs are frequently
coregulated [50]. Although Miura et al. did not describe the
regulation of the KCSI AS RNA, they claim coregulation
between the sense and AS RNA in the GALI0 locus. However,
the fact that the fold induction of the AS RNA is much less
compared to that of the GALI0 mRNA when cells are grown
in galactose medium and that Gal4 dependency of the GALI0
AS RNA was not analyzed points out that more work is
necessary to establish coregulation of the sense and AS RNA
at the GALI0 locus.

With respect to biological function of ncRNA in yeast, a
noncoding intergenic transcript (SRGI), originating from
upstream of SER3 on the same strand and activated by Cha4
transcription factor in the presence of serine [13], inhibits
the binding of activators to the SER3 upstream activating
sequence and of TATA-binding protein to its TATA box,
leading to repression of SER3 [12]. Yeast AS RNA has been
reported in the IME4 locus, which is expressed only in the
haploid state to inhibit the IME4 mRNA transcription by
transcriptional collision and thereby determines cell fate
(i.e., the entry into meiosis) [16]. The AS RNA at the PHO5
locus is constitutively expressed at a low level from ca. 1,400
bp downstream of the PHO5 TATA box through its
promoter and is proposed to increase chromatin plasticity
to enhance histone eviction upon a shift to low-Pi conditions
[14]. Those in the PHO84 locus are suggested to recruit and/
or stimulate Hdal histone deacetylase for silencing of PHO84
in aging yeast cells [15]. Although these AS RNA species are
found in PHO genes, they have not been reported to be
regulated by environmental Pi conditions to facilitate the
activation of PHO genes. The KCS1 case presents a different
situation from them in that the AS and intragenic RNAs are
activated by Pho4 in response to Pi starvation and may
modulate the level of Kcs1 IPg kinase to enhance Pi signaling,
thereby stimulating the activation of PHO genes. We
observed a decrease in the KCSI mRNA level when Pho4
binds to the KCSI ORF under low-Pi conditions or in a
Apho85 mutant (Figure 3C, lanes 2, 5, and 6). This
observation suggests a possibility that transcriptional elon-
gation of KCSI mRNA is inhibited directly by Pho4 binding
within the ORF. However, the scenario may not be so simple,
because the KCSI mRNA transcription itself can interfere
with Pho4 binding, as reported in the SER3ISRGI case [12].
Alternatively, the AS RNA could cause transcriptional
collision with the mRNA, and hybrid formation of the AS
RNA with the mRNA could lead to degradation of the
mRNA. Both of these events could lead to a reduction in the
KCS1 mRNA level.

The stimulation of low-Pi signaling by Pho4-dependent
intragenic and AS RNA represents an autoregulation
(induction) or positive feedback loop responding to Pi
limitation that can be envisioned as follows. Upon Pi
limitation, the low-Pi signal is transmitted to Pho81, leading
to inhibition of Pho85-Pho80 and thereby stimulating Pho4
migration into the nucleus [6]. Pho4 then activates tran-
scription of the AS and intragenic RNAs in the KCSI locus:
the AS RNA could reduce the KCSI mRNA level by hybrid
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formation and possible transcriptional collision, which can
lead to stabilization of Pho4 binding, resulting in the
production of more AS and intragenic RNAs and con-
sequently of more truncated Kcsl protein using the down-
stream ATG codon at +676. These events could lead to
down-regulation of Kcs1 activity, enabling Vip1 IP¢ kinase to
utilize more IP¢ to synthesize 4- or 6-PP-IP5 functioning in
low-Pi signaling. Because Kcsl also can phosphorylate these
IP; species to synthesize 4,5- or 5,6-PPo-IP5 (IPs) [37],
reduction of the Kcsl level can ensure accumulation of the
IP; species to further stimulate low-Pi signaling, leading to
complete inhibition of Pho85-Pho80. When Pi becomes
sufficient, this loop runs in an opposite way for efficient
inactivation of Pho4 and consequent repression of PHO
genes. Though putative Pho4 binding sequences are present
at —464 and —154 in its promoter, VIPI expression was
dependent on neither Pi condition nor Pho4 (unpublished
data), as in the case of the KCSI mRNA. Inositol poly-
phosphate (IP) plays an important role in intracellular signal
transduction as second messengers. The absence of Kcsl and
Vipl causes abnormal vacuolar function and cell morphol-
ogy, respectively, suggesting that they bear important
cellular function [37,51]. Therefore, it is reasonable that
the genes involved in IP synthesis are not regulated directly
by individual nutrients (in this case, Pi) but indirectly by AS
and intragenic RNAs responding to the nutrient, so that
signal transduction and normal cellular function are not
easily perturbed by fluctuation in the status of an individual
nutrient.

Positive feedback in the PHO system is also suggested to
function in switching of Pi transporters [52], in which Spl2,
activated by Pho4, down-regulates low-affinity Pi trans-
porters, Pho87 and Pho90, whereas high-affinity Pi trans-
porter Pho84 is activated by Pho4. When the intracellular Pi
level increases via the high-affinity transporter, Pho4 is
inactivated to switch the transporters.

PHO System To Explore Intimately Wired Transcriptional
Regulation System

Our finding expands the role of the Pho4 transcription
factor beyond the regulation of the PHO system. The current
consensus view is that it is the master regulator of the genes
involved in the system, in that Pho4 activates transcription of
the structural genes composing the PHO system to coor-
dinate cellular response to Pi starvation [3]. Our findings
indicate that Pho4 can modulate the activity levels of the
products of apparently non-PHO genes by activating anti-
sense and intragenic RNA expression to stimulate low-Pi
signal transduction. A Apho85 deletion causes pleiotropic
mutant phenotypes [1], some of which could be based on
otherwise dormant transcriptional initiation, either inter-
genic or intragenic, or on the AS strand, caused by
hyperactive Pho4. In fact, we have also found Pi- and
Pho4-regulated AS RNA in the GTO3 locus and intragenic
sense transcript in the SHEY locus (unpublished data). GTO3
encodes an omega class glutathione-S-transferase having
glutaredoxin activity, which is suggested to maintain an
adequate redox state of specific target proteins, not in the
general defense against oxidative stress [53]. SHEY, also
known as MDM33, encodes a mitochondrial inner membrane
protein functioning to maintain mitochondrial morphology
[54]. Although, at present, we are unable to elucidate
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whether the GTO3 AS RNA or the SHE9 intragenic transcript
can affect the annotated function of the respective gene
product, this line of work will lead us to uncover yet
unknown protein functions in the cellular response to Pi
starvation.

Regulation of gene expression and function by these
nonconventional RNA species that are regulated by nutrient
signals need not be restricted to the PHO system. Other
inducible systems including GAL, glucose repression, and
various stresses may well have these RNA species regulated by
corresponding signals. High-throughput cDNA sequencing by
Miura et al. and other works using microarrays [17-19] have
revealed the presence of many intergenic, intragenic, and
antisense RNAs in the yeast transcriptome. The finding of
nutrient-regulated RNAs that are not coding annotated
proteins adds more complexity to the intimately wired
transcriptional regulation system by which yeast cells adapt
to alterations in environmental conditions. High-resolution
mapping of transcription factor and RNA polymerase II
binding and very recent development of DNA-RNA hybrid-
ization techniques [55] will help to identify these regulatory
RNAs. The yeast system, which can be manipulated by an
array of genetic tools and for which there exists a substantial
body of genetic information, will be the best resource to
explore the complexity of the genetic network, including
ncRNA species that function in responding to external
signals.

Materials and Methods

Yeast strains and molecular biology. Standard yeast genetics and
media were used as described [56]. For phosphate-limited medium,
Yeast Nitrogen Base (YNB) without phosphate (Q-Biogene) was used
instead of normal YNB (SD medium) and was supplemented with
0.2 uM or 2 mM sodium phosphate to make low- and high-Pi media,
respectively. The yeast strains used in this work are listed in Table S5.

DNA manipulation. Standard Escherichia coli and yeast protocols
were employed [56,57]. Plasmids and primers used in this work are
listed in Tables S5 and S6, respectively. A Apho85::URA3 fragment [25]
was used to disrupt the PHOS85 locus of the BY4741 (MFY371) strain,
and successful disruption was confirmed by PCR and constitutive
expression of acid phosphatase (unpublished data). To disrupt the
PHO4 locus, Pho4A-F and -R primers were used to amplify the LEU2
marker having PHO4 sequences (from +1 to +100 and from +830 to
929 with A of ATG as +1) at its termini, and the resulting fragment
was introduced into MFY371. Successful disruption was confirmed by
PCR and failure to express PHO5. For disruption of the VIPI and
RRP6 loci, the adaptamer-mediated PCR method was employed to
prepare the DNA fragments for disruption [58]. The detailed
methods are described in Text S1. Disruption of GCN4 is described
elsewhere [49]. To construct PHO4-tagged strains, MFY376 and
MFY377, a fragment containing PHO4 tagged with His X 6 and Flag
X 8 was amplified using primers Pho4-Flag-F and -R and pUG6H3Flag
plasmid as a template [59], followed by transformation of MFY371
and MFY373, respectively. Rpo21 fragments tagged with His X 6 and
Flag X 3 (Rpo21-Flag-F and -R) were used to construct MFY378 and
MFY379.

To mutagenize the prospective Pho4 binding site in the ASNI
promoter and in the KCSI ORF, a QuickChange II site-directed
mutagenesis kit (Stratagene) and appropriate primers were used. The
detailed methods are described in Text S1. Successful mutagenesis
and the whole sequence of the mutant ASNI promoter and of the
mutant KCSI ORF were confirmed by DNA sequencing. The
promoter (920 to —1) and ORF (-1 to +-3143) of KCSI were amplified
by PCR using MN1132/1133 and MN1134/1135 pairs, respectively, so
that EcoRI-Ncol and Ncol-Xhol fragments containing the respective
sequences were generated. The two fragments were then ligated
through the Ncol site and introduced into pRS313 to generate the
pMF1530 plasmid. The wt Ncol-BamHI (+1875) fragment had been
replaced by the mutant fragment that lacked the three prospective
Pho4 binding sites prior to incorporation of the EcoRI-Xhol KCSI
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fragment into pRS313 to generate the pMF1531 plasmid. To
construct plasmids pMF1527 and pMF1529 producing the wt and
mutant Kcsl protein tagged with six copies of the c-myc epitope at
their C-termini, respectively, the EcoRI-Xhol fragment containing
the wt or mutant KCSI sequence was introduced into pRS316
containing a 6 X myc sequence. Plasmids pMF1540 and pMF1560
overexpressing the KCSI AS RNA were constructed by placing the
Kpnl-EcoRI ({291 to —920) fragment downstream of the TDH3 and
GALI promoters in the pRS323 plasmid, respectively. Plasmid
pPMF1563 overproducing N-terminally truncated Kcsl protein
(dKcs1) was constructed by placing the Ncol-Xhol fragment (+676
to +3150) that had been cloned by PCR downstream of the TDH3
promoter in pRS326.

ChIP-on-chip analysis. Yeast cells producing tagged protein were
cultivated in high- or low-Pi medium as described above to a cell
density of Aggp = 1.0-1.2, and chromatin immunoprecipitation was
carried out as described [60]. ChIPed fragments were amplified by the
T7 RNA polymerase-mediated method (T7RPM) followed by cDNA
synthesis and the ligation-mediated PCR (LM-PCR) method for HR
and LR analysis, respectively, essentially as described [41,61]. For
T7RPM, ChIPed DNA (about 100 ng) was dephosphorylated in the
reaction mixture (30 pl) containing 2 units of CIAP and 0.2 units of
BAP at 37°C, followed by incubation at 50°C for 15 min each. DNA
was purified using a MinElute Reaction CleanUp kit (Qiagen) and
eluted from the column with 10 pl of elution buffer (10 mM Tris.HCI,
pHB8.0). This cleanup method was used throughout the following
procedure except for the cleanup of reactions containing RNA.
Dephosphorylated DNA was then subjected to poly(dT) tailing
reaction in a reaction mixture (20 pl) containing terminal transferase
buffer (Roche), 1.25 mM CoCly, 2.5 uM dNTP, and 20 units of
terminal transferase by incubating at 37°C for 15 min. T7A18B
primer (GCATTAGCGGCCGCGAAATTAATACGACTCACTA-
TAGGGAGI[A]18B, where B refers to C, G, or T) was then annealed
to the dT-tailed DNA by incubating at 94°C for 2 min, at 35°C for 2
min, and at 25°C, followed by extension reaction in a 50 pl reaction
mixture containing 1 ng/ul tailed DNA, 0.5 mM dNTP, 1 unit of
Klenow enzyme, and 5 units of Sequenase at 37°C for 60 min. DNA
was then subjected to in vitro transcription using a T7 Megascript kit
(Ambion) in 20 pl of reaction mixture at 37°C for 4 h, followed by
cleanup with an RNEasy Mini kit (Qiagen). One microliter of 100 pM
T7 degenerate primer (GGATCCTAATACGACTCACTATAGGAA-
CAGACCACCNNNNNNNNN) was added to the RNA product, which
was incubated at 70°C for 10 min, then on ice for 2 min, followed by
cDNA synthesis. About 500 ng of cDNA was subjected to a second
round of in vitro transcription and subsequent cDNA synthesis,
followed by labeling using an in vitro transcription labeling kit
(Affymetrix). Labeled cRNA was hybridized to Affymetrix high-
density oligonucleotide arrays of S. cerevisiae whole genome (Watson
strand) or of chromosomes 3, 4, 5, and 6, which were processed and
analyzed as described [62]. For LM-PCR, phosphorylation of 5’
termini of ChIPed DNA fragments by T4 polynucleotide kinase and
ATP was performed prior to the blunt-end reaction, followed by
ligation of annealed linkers (MN974 and MN975) at 15°C for 16 h. The
resulting fragments were amplified by PCR using MN974 primer,
followed by PCR labeling with Cy3-dUTP and Cy5-dUTP for ChlPed
and whole cell extract DNA, respectively. The data were analyzed with
ChIP Analytics 3.0 software (Agilent).

Analytical methods. The procedures for RNA isolation, northern
and immunoblot analyses, and assay for P-galactosidase were as
described [25,43]. DNA probes were prepared by PCR using
digoxigenin (DIG)-PCR labeling mix (Roche). RNA probes were
prepared by transcribing DNA fragment cloned in pSP72 or pSP73
(Promega) with T7 RNA polymerase and a DIG-RNA labeling mix
(Roche). Gene-specific PCR was performed using primers listed in
Table S6 and ChlPed DNA fragments or DNA in the whole cell
extract (WCE) fraction as template under cycling condition as
described [49]. A 5'-Full-RACE kit (TaKaRa) was used to determine
the transcription start points in the KCSI locus with total RNA from
Apho85 cells grown in high-Pi medium. Phosphorylated primers
MN915 and MN1190 were used as a reverse transcription primer for
the start points upstream of the initiating codon and within the ORF,
respectively, and MN1134 for the start point of AS RNA. Amplified
fragments were cloned using a TOPO TA cloning kit (Invitrogen)
according to the manufacturer’s protocol, and the transcription start
points were determined by DNA sequencing. RNase protection assay
and RT-PCR were carried out essentially as described [57]. Total RNA
was digested with RNase ONE (Promega) at 30°C for 1 h and was
recovered by precipitation in the presence of ethanol. First-strand
cDNA was then synthesized using a primer specific to the sense or
antisense strand, followed by PCR amplification after inactivation of
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reverse transcriptase and addition of appropriate reverse primer.
The PCR products were separated by electrophoresis on a 5%
polyacrylamide gel.
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