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ABSTRACT Burgy is a siphovirus that was isolated from compost soil near Fremont
Township, Iowa, using Microbacterium foliorum NRRL B-24224. The genome has a length
of 17,453 bp and contains 25 total protein-coding genes, 20 of which were assigned
functions. Based on gene content, Burgy was assigned to actinobacteriophage cluster EE.

Bacteria of the phylum Actinobacteria have been identified throughout aquatic, soil, and
animal microbiomes (1). Some Actinobacteria genera, including Microbacterium, can

cause opportunistic infections (2, 3). The isolation and characterization of viruses that can
infect Actinobacteria, actinobacteriophages, not only would be valuable for understanding
the diversity and evolution of bacteriophages more generally but also may inform ongoing
efforts to develop bacteriophages as therapeutic agents against actinobacterial infections
(4). Here, we report on Burgy, a bacteriophage that infectsMicrobacterium foliorum.

Burgy was isolated from vermicompost soil near Fremont Township, Iowa (42.830758N,
92.621909W), using standard methods (5). Briefly, Burgy was isolated by washing the soil
sample with peptone-yeast extract-calcium (PYCa) medium, filtering the wash through a
0.22-mm filter, plating the filtrate with Microbacterium foliorum NRRL B-24224 in soft agar
overlay, and incubating the plate overnight at 30°C. Burgy, which forms clear plaques, was
purified through three rounds of plating (Fig. 1). Transmission electron microscopy using
negative staining revealed Burgy to possess Siphoviridae morphology, with a tail length of
113 to 119 nm and an isometric capsid 44 to 50 nm in diameter (n = 4) (Fig. 1).

DNA was isolated from Burgy using the Promega Wizard DNA cleanup kit. The genome
was sequenced using an Illumina MiSeq sequencer (v3 reagents) after the library was pre-
pared using the NEBNext Ultra II FS kit, yielding 640,328 single-end 150-bp reads, which
constituted ;5,500-fold coverage. Raw reads were assembled and checked for complete-
ness using Newbler v2.9 with default parameters and Consed v29, respectively, as
described previously (6). The resulting genome was 17,453 bp, with 39 single-stranded
overhangs and a G1C content of 68.6%, which is similar to that of the host M. foliorum
(68.7%) (7). Burgy was assigned to cluster EE based on gene content similarity of at least
35% to phages in the Actinobacteriophage Database, PhagesDB (8, 9).

The genome was initially autoannotated via Glimmer v3.02 (10) and GeneMarkS v2.5 (11)
and then manually refined using Phamerator (12), DNA Master v5.23.6 (http://cobamide2.bio
.pitt.edu/computer.htm), PECAAN (https://blog.kbrinsgd.org/), HHPRED (13), Starterator v1.2
(http://phages.wustl.edu/starterator), TMHMM v2.0 (14), TOPCONS v2.0 (15), and NCBI BLAST
v2.13.0 (16). No tRNA genes were identified by ARAGORN v1.2.41 (17) and tRNAscan-SE v2.0
(18). All software used default parameters. The annotation process revealed 25
protein-coding genes, 20 of which could be assigned a predicted function; these included
structure and assembly functions that are encoded across the first three-quarters of the ge-
nome. Within these genes, we identified a programmed translational frameshift, yielding
two isoforms of the tail assembly chaperone (gp10 and gp11). Similar to other phages of
cluster EE, as described previously, Burgy possesses a fusion gene encoding a capsid subunit,
capsid protease, and scaffolding functions (19). The rightmost 6 genes (genes 20 to 25)
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encode DNA-binding proteins as well as an HNH endonuclease. All except genes 20 to 22
are transcribed rightward. Sandwiched between these DNA metabolism genes and structure
and assembly genes is a gene encoding an endolysin (19).

Data availability. The sequencing results for Burgy are available in GenBank with
accession no. ON755188 and Sequence Read Archive (SRA) accession no. SRX14443487.
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