
sensors

Article

Simulator for Interactive and Effective Organization of Things
in Edge Cluster Computing

Woojae Kim and Inbum Jung *

����������
�������

Citation: Kim, W.; Jung, I. Simulator

for Interactive and Effective

Organization of Things in Edge

Cluster Computing. Sensors 2021, 21,

2616. https://doi.org/10.3390/

s21082616

Academic Editor: Fatos Xhafa

Received: 15 March 2021

Accepted: 6 April 2021

Published: 8 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Information and Communication Engineering, Kangwon National University,
Chuncheon 24341, Gangwondo, Korea; wjkimm@kangwon.ac.kr
* Correspondence: ibjung@kangwon.ac.kr

Abstract: Edge computing is intended to process events that occur at the endpoint of the Internet
of Things (IoT) network quickly and intelligently. Edge regions must be organized effectively to
facilitate cooperation so that the intention of edge computing can be realized. However, inevitably,
many human and material resources are required in the process of arranging things in the edge
area to confirm the appropriateness of the thing operation. To address this problem, we proposed
a simulator that created a virtual space for edge computing and provided an interactive role and
effective organization for edge things. The proposed simulator was aimed at Raspberry Pi as the
physical hardware target. To prove the accuracy of the proposed simulator, the similarity between
the proposed simulator and the physical target Raspberry Pi was evaluated based on three metrics
while executing several applications. In the experiment, several edge-computing service applications
were performed in various cluster architecture types formed by the proposed simulator. To support
effective resource usage and fast real-time response for edge computing, the proposed simulator
identified a suitable number of things in forming the edge cluster.

Keywords: edge computing; simulator; virtual things; cluster; resource usage; RaSim

1. Introduction

Cloud computing provides users with a single, logical computing space, enabling
users to store, retrieve, and process large amounts of data without restrictions on computer
platforms. In particular, because cloud computing provides a specific hardware-platform-
independent environment for information processing, it can process a large amount of data
generated from the Internet of Things (IoT), in which numerous things are interconnected
and operated. However, recent IoT services require intelligent real-time responses to events
at the endpoint station of the IoT. To satisfy these new requirements, the storage and
processing performance of cloud computing have been improved, but not the network
performance. If many people simultaneously access a cloud-computing-based IoT service,
access restrictions and delays occur. In IoT services that require intelligent real-time
responses, the delay in response time cannot be avoided, and therefore, service quality
cannot be satisfied [1,2].

Recently, the concept of edge computing has been proposed to solve the problems
that occur in cloud-computing-based IoT services. Edge computing implies that things
located at the endpoint of the IoT network directly process and store data. Edge objects are
located at the endpoint of the IoT network, and the things process data directly without
transmitting them to the cloud or through collaboration with surrounding objects in the
edge area, thus solving the problem of processing delay in cloud computing [3,4].

To provide an edge-computing-based IoT service, several things must be arranged,
and the arranged things must be horizontally or vertically connected to each other to
handle events occurring in a service space. Numerous trial-and-error attempts are required
to satisfy these requirements. In addition, testing the collaborative structure of things
and providing smooth services is expensive because it requires considerable human and

Sensors 2021, 21, 2616. https://doi.org/10.3390/s21082616 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21082616
https://doi.org/10.3390/s21082616
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21082616
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21082616?type=check_update&version=2

Sensors 2021, 21, 2616 2 of 25

physical resources. Moreover, if the installed devices do not operate as intended, it is
expensive to correct them. The cost of additional maintenance and relocation of things
is incurred after the service system is deployed. This is also a burden on IoT service
operations. To solve these problems, a simulation approach in a virtual space before
installing real smart things in a physical IoT environment is required [5].

In this study, a simulator named “RaSim” (Raspberry Pi Simulator) was developed.
This simulator can create virtual objects in an edge-computing environment and test their
interactions in the virtual space. The proposed simulator is based on a development board
called Raspberry Pi 3B+ [6]. Raspberry Pi is widely used in IoT. In particular, Raspberry
Pi is equipped with a gigabyte of memory and a quad-core central processing unit (CPU);
thus, it has better hardware specifications than existing devices in the IoT environment.
Because it is open source, Raspberry Pi has a great advantage in the sharing of development
information as numerous libraries and developers work together on joint projects.

In this study, the similarity between the proposed simulator and the physical target
Raspberry Pi was evaluated by comparing the battery, bandwidth, and CPU usages. In
addition, a comprehensive comparative evaluation was performed using several metrics si-
multaneously.

To provide various IoT services in an edge-computing environment, several things
located in an edge area form a cluster and collaborate through the interactions of the
things. Because these edge things are organized into clusters, it is possible to improve
the real-time and smart responsiveness of service applications and enhance the longevity
of IoT networks. In experiments, according to various metrics, the proposed simulator
was used to test the appropriate clustering architectures in edge computing. In addition,
methods for effective cluster organization for edge computing were suggested for executing
several service applications. These experiments demonstrated that edge clusters can be
configured for a variety of service applications in the proposed simulator. The three types
of application programs are suitable for evaluating the requirements of edge computing,
such as real-time, intelligence, and data processing power.

The remainder of this paper proceeds as follows. In Section 2, edge computing related
to this study is explained, the longevity of edges is discussed, and existing simulators
are investigated. In Section 3, the proposed RaSim simulator is described. The simulator
implementation is described in Section 4. Section 5 describes the performance similarity
between the RaSim and Raspberry Pi. In Section 6, edge cluster computing is evaluated by
running the service applications on the simulator. Finally, in Section 7, the conclusions and
future work are presented.

2. Related Work
2.1. Edge Computing

Edge computing is a concept used to solve the network bandwidth problem of existing
cloud-computing-based IoT environments. Rather than sending data to the cloud and
returning the processing result, terminal things are located at the endpoint of the IoT
network, processing events occurring in nearby areas directly or through collaboration.
As a result, the load on the cloud can be reduced, and the IoT network can guarantee
real-time performance.

Cloud computing is composed of high-performance, large-capacity storage to provide
various types of services to users, and it enables the processing, storage, management,
and analysis of a huge amount of data from the IoT. However, although there have been
significant advances in the processing performance and storage space of cloud computing,
the network bandwidth problem has not been solved. Therefore, edge computing for
urgent events in IoT local areas is a more suitable solution [7–9].

Figure 1 shows an edge-computing architecture. Requests and events occurring at the
endpoint are processed in the edge cluster rather than being delivered to the cloud data
center. Therefore, because the cloud data center does not have to process a large amount of
data generated from the endpoint things, network bandwidth usage is reduced. Because the

Sensors 2021, 21, 2616 3 of 25

events are processed in the edge cluster, the users in the edge area can receive processing
results in real time. An example of the application of edge computing is autonomous
driving. In the case of autonomous vehicles, it is necessary to grasp the changing road
and surrounding conditions as quickly as possible and to respond quickly through rapid
processing. In an edge environment in which cars are driven, safe autonomous driving
services are possible only when information on the surrounding environment returns in
real time.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Because the events are processed in the edge cluster, the users in the edge area can receive

processing results in real time. An example of the application of edge computing is auton-

omous driving. In the case of autonomous vehicles, it is necessary to grasp the changing

road and surrounding conditions as quickly as possible and to respond quickly through

rapid processing. In an edge environment in which cars are driven, safe autonomous driv-

ing services are possible only when information on the surrounding environment returns

in real time.

Figure 1. Edge-computing architecture.

Meanwhile, with the advent of such devices as Raspberry Pi and Arduino, which are

more economical than the existing devices of things and have relatively high performance,

the IoT based on edge computing is laying the foundation for providing new information

services to humans. However, even if the devices of things have better performance than

before, it is not sufficient for independently processing both the data produced by itself

and the data requested from neighboring things. Therefore, there is a need for a clustering

method to efficiently process data through the collaboration of things constituting the

edges [10,11].

2.2. Edge Longevity

In edge computing, the effective usage of battery energy is an important requirement

to sustain the longevity of IoT networks. Because things operate on batteries, limited bat-

tery power must be used as efficiently as possible. For this purpose, methods such as sens-

ing cycles, unnecessary work minimization, and collaboration can be applied in edge com-

puting. In the case of edge things that include a sensor, power is consumed for event pro-

cessing and to operate the sensor. Saving the power consumed by operating a sensor can

contribute to extending the longevity of the edge network. Sensing power consumption

can be adjusted by using a fixed period or sensing by request method. Recently, machine-

learning algorithms have been proposed for setting the optimal sensing period based on

the available battery power [12].

Since minimizing unnecessary work reduces basic power consumption, it can also

contribute to edge longevity. In particular, camera sensors and servo motors consume a

considerable amount of power. Power consumption is reduced significantly if these de-

vices are activated by events rather than continuously operating. This reduction in power

consumption can contribute to extending edge longevity [13]. In addition, as the edge

cluster architecture is introduced, events occurring in the edge area can be assigned to

multiple objects in the edge cluster. This approach can extend the longevity of the entire

IoT network because the usage of batteries is also distributed in the objects of a cluster.

However, the role of things in a cluster structure must be dynamically changed to support

a quick response to various events [14].

Figure 1. Edge-computing architecture.

Meanwhile, with the advent of such devices as Raspberry Pi and Arduino, which are
more economical than the existing devices of things and have relatively high performance,
the IoT based on edge computing is laying the foundation for providing new information
services to humans. However, even if the devices of things have better performance than
before, it is not sufficient for independently processing both the data produced by itself
and the data requested from neighboring things. Therefore, there is a need for a clustering
method to efficiently process data through the collaboration of things constituting the
edges [10,11].

2.2. Edge Longevity

In edge computing, the effective usage of battery energy is an important requirement
to sustain the longevity of IoT networks. Because things operate on batteries, limited
battery power must be used as efficiently as possible. For this purpose, methods such as
sensing cycles, unnecessary work minimization, and collaboration can be applied in edge
computing. In the case of edge things that include a sensor, power is consumed for event
processing and to operate the sensor. Saving the power consumed by operating a sensor
can contribute to extending the longevity of the edge network. Sensing power consumption
can be adjusted by using a fixed period or sensing by request method. Recently, machine-
learning algorithms have been proposed for setting the optimal sensing period based on
the available battery power [12].

Since minimizing unnecessary work reduces basic power consumption, it can also
contribute to edge longevity. In particular, camera sensors and servo motors consume
a considerable amount of power. Power consumption is reduced significantly if these
devices are activated by events rather than continuously operating. This reduction in
power consumption can contribute to extending edge longevity [13]. In addition, as the
edge cluster architecture is introduced, events occurring in the edge area can be assigned
to multiple objects in the edge cluster. This approach can extend the longevity of the entire
IoT network because the usage of batteries is also distributed in the objects of a cluster.
However, the role of things in a cluster structure must be dynamically changed to support
a quick response to various events [14].

Sensors 2021, 21, 2616 4 of 25

2.3. IoT Simulators

There are three categories of IoT simulators according to the application layer level: A
full-stack simulator capable of supporting various elements of the IoT, a simulator focusing
on big-data processing, and a network simulator [15]. In the case of network simulators,
most were not developed for the IoT but rather for specific scenarios. Subsequently, some
functions for the IoT were added. Therefore, in this study, the existing simulators for
full-stack and big-data processing are described in related works.

2.3.1. Full-Stack Simulator

The Device Profile for Web Services (DPWS) supports edge devices by providing
service description, search, communication, and connection through hosting and hosting
services on the Web. DPWSim [16] is a simulator that supports the IoT application de-
velopment. It is composed of space management, device operation, and event handling
functions, and can also test the interaction procedure in DPWS. However, DPWSim is based
on the IoT standards, so it is not possible to test new user-defined protocols or existing
protocols and technologies.

iFogSim [17] extended CloudSim [18] and was a simulator for evaluating the man-
agement and scheduling policies for edge and cloud resources under various scenarios.
iFogSim simulates the latency, energy consumption, network congestion, and operating
costs on the edges. It informs users of the simulated results based on performance metrics.
As an application model, iFogSim uses the sense–process–actuate model. When a sensor
publishes data to an IoT network, a fog device subscribes to the corresponding data and
processes. The simulation proceeds by controlling the actuators according to the processing
results. However, it is inconvenient for users to define the hardware model on the simulator,
and it is not possible to simulate multiple IoT application services.

EdgeCloudSim [19] provides an environment for the performance evaluation of edge-
computing systems. It is composed of a core simulation module, load generator module,
edge orchestrator module, networking module, and mobility module, which is based on
CloudSim [18]. Because EdgeCloudSim uses the concept of modules, it is easy to add new
features to existing code. However, EdgeCloudSim is based on a logical edge concept
instead of a physical hardware device that is currently widely used in industrial fields.
Therefore, it is insufficient in terms of risk prediction during actual implementation, which
is the basic goal of simulation testing. In addition, the real-time and longevity requirements
for edge computing are not covered.

2.3.2. Big-Data Processing Simulator

IOTSim [20] is a simulator extended from CloudSim, and it can test the big-data
processing of IoT applications. It applies the MapReduce framework to simulate big-data
processing in a cloud-computing environment. MapReduce divides data into blocks of
fixed size and processes them in parallel. In this way, IOTSim outputs information related
to the job, such as job type, size, processing start time, execution time, and completion
time. However, because IOTSim tests cloud-computing-based IoT environments, it does
not provide tools to configure edge-computing-based IoT environments, and it is difficult
to simulate distributed event processing.

SimIoT [21] is a telemedicine data analysis simulator extended from InterCloud
(SimIC) and can process events that occur in smartphones of multiple users. It can simulate
delay times and processing completion times. SimIoT controls the number of clients and
can transmit sensor data detected by IoT devices to the cloud to show the processing
results. However, SimIoT has no capabilities for resource management of IoT devices, and
no modules are provided to enable users to test various scenarios.

3. Simulator for Edge Computing (RaSim)

In this study, a simulator was proposed for testing interactive and effective cluster
organization in an edge-computing environment. The purpose of the simulator is to

Sensors 2021, 21, 2616 5 of 25

identify and respond to possible problems before actually doing anything. The proposed
simulator’s design is based on Raspberry Pi, which is a widely used physical edge hardware
for edge-computing systems. Therefore, it was named as “RaSim” (Raspberry Pi Simulator).

Because RaSim has a simulation role for edge-computing systems, it must be able to
simulate algorithms or interactions between virtual things. In addition, it must be able
to evaluate the effectiveness of the designed cluster structures. Therefore, the following
functions must be provided in the simulator:

- It must have functions such as creating, managing, and initializing virtual things;
- There must be a function to communicate with virtual things;
- It should be possible to determine the resource consumption of each virtual thing;
- It must be able to designate the locations of virtual things;
- Virtual things must be able to connect with each other;
- Connected virtual things must be able to remember each other;
- The connection structure of virtual things must be able to change dynamically.

3.1. Architecture

Figure 2 shows the architecture of RaSim as a layered model. The layered pattern
is a structure in which each layer independently processes tasks and produces results.
When developing a system, this layered model pattern has the advantage of shortening the
development time and making maintenance easier by focusing on module development
for each function. RaSim is divided into three layers: A physical layer, an interaction layer,
and a system layer.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

3. Simulator for Edge Computing (RaSim)

In this study, a simulator was proposed for testing interactive and effective cluster

organization in an edge-computing environment. The purpose of the simulator is to iden-

tify and respond to possible problems before actually doing anything. The proposed sim-

ulator’s design is based on Raspberry Pi, which is a widely used physical edge hardware

for edge-computing systems. Therefore, it was named as “RaSim” (Raspberry Pi Simula-

tor).

Because RaSim has a simulation role for edge-computing systems, it must be able to

simulate algorithms or interactions between virtual things. In addition, it must be able to

evaluate the effectiveness of the designed cluster structures. Therefore, the following func-

tions must be provided in the simulator:

- It must have functions such as creating, managing, and initializing virtual things;

- There must be a function to communicate with virtual things;

- It should be possible to determine the resource consumption of each virtual thing;

- It must be able to designate the locations of virtual things;

- Virtual things must be able to connect with each other;

- Connected virtual things must be able to remember each other;

- The connection structure of virtual things must be able to change dynamically.

3.1. Architecture

Figure 2 shows the architecture of RaSim as a layered model. The layered pattern is

a structure in which each layer independently processes tasks and produces results. When

developing a system, this layered model pattern has the advantage of shortening the de-

velopment time and making maintenance easier by focusing on module development for

each function. RaSim is divided into three layers: A physical layer, an interaction layer,

and a system layer.

Figure 2. RaSim architecture (layered model).

Physical Layer: As the lowest layer of the simulator architecture, the physical layer

is in charge of physical information about things, and it is composed of a thing manage-

ment module, a sensor management module, and a location module. The thing manage-

ment module is responsible for creating, initializing, and managing virtual things, and

users can check the state of virtual things or test their operations through the application

programming interface (API) provided by this module. In addition, it provides infor-

mation requested by the upper layer. For a thing with physical sensors, the sensor man-

agement module manages the sensor type, operation period setting, power consumption,

etc. When a data-sensing request is received, the operation is performed on the corre-

sponding modules. Whenever a sensor is added to a virtual thing, the resource usage can

be measured according to the operation of the sensors. This module is also responsible for

storing and managing the collected sensing data. The proposed simulator models the

Raspberry Pi as a physical terminal device for edge computing. This device can simulta-

neously deploy and control several types of sensors simultaneously. Owing to the various

Figure 2. RaSim architecture (layered model).

Physical Layer: As the lowest layer of the simulator architecture, the physical layer is
in charge of physical information about things, and it is composed of a thing management
module, a sensor management module, and a location module. The thing management
module is responsible for creating, initializing, and managing virtual things, and users
can check the state of virtual things or test their operations through the application pro-
gramming interface (API) provided by this module. In addition, it provides information
requested by the upper layer. For a thing with physical sensors, the sensor management
module manages the sensor type, operation period setting, power consumption, etc. When
a data-sensing request is received, the operation is performed on the corresponding mod-
ules. Whenever a sensor is added to a virtual thing, the resource usage can be measured
according to the operation of the sensors. This module is also responsible for storing and
managing the collected sensing data. The proposed simulator models the Raspberry Pi as
a physical terminal device for edge computing. This device can simultaneously deploy
and control several types of sensors simultaneously. Owing to the various sensors, devices
referred to as things can perform various roles in real edge computing. Therefore, virtual
things created in the simulation must be able to perform equivalent functions accordingly.

Sensors 2021, 21, 2616 6 of 25

The location module is responsible for the location information of a thing. It can
designate or change the location of a virtual thing created through the thing management
module. When the mobility of things is tested, it can be implemented through the location
module. All location data are stored in the data structure of the virtual thing. This module
manages the distance between virtual things and provides the distance information to the
higher layers.

Interaction Layer: The interaction layer is responsible for the interaction between
virtual things. It is composed of a message management module, a link management
module, and a discovery module. When a thing requests or receives specific data or tasks
toward the neighboring things, the message management module is used. When a message
delivery request arrives, it is stored in the message queue. Both the size of the message
and the information of the thing to be delivered are analyzed. Subsequently, the message
is delivered to the corresponding thing, and the delivered message is deleted from the
message queue. Methods for sending messages are divided into unicast, multicast, and
broadcast messages. Message types are divided into requests and responses, and specific
options such as read, write, and sensor value can be added.

The link management module is responsible for connecting virtual things. The con-
nection information is stored in a data structure to manage virtual things. Based on this
information, messages can be delivered to specific things. When the connection is broken or
the connection structure is changed, additions and deletions proceed through this module.
The thing number can be used to search for other connected things and the name of the
sensor can be used to find things that contain a specific sensor. The API provided by the
link management module makes it easy to implement complex connections.

The discovery module detects and provides information about the existence of other
virtual things around a specific thing within a preset range. Based on this information, the
necessary information for the connections between things can be obtained.

System Layer: The system layer is in charge of practical operation in the simulation. It
is composed of a scheduler module, event module, and resource management module. The
scheduler module changes the state of the operation and controls it during the operation.
The thing chosen by the scheduler module can read the received message and perform the
given task. RaSim is based on a pthread package. Thus, the scheduling method is provided
with a round robin and first-come first-serve (FCFS) scheduler. It works with round robin
and provides an API to support user-defined scheduling.

The event module manages the events generated during simulation. Events can be
defined by the user, such as failure, recovery, and load generation. Defined events can
occur for all things or specific things. The event is managed by the event manager, and
the user can configure the user-defined event manager to apply the detailed situation. If a
user defines an event manager, the default event manager provided by the simulator will
not work.

The resource management module calculates the battery usage, Bluetooth bandwidth
usage, and CPU usage of each virtual thing from creation to destruction. In the case
of battery consumption, the accumulated number of batteries consumed is calculated
according to a pre-setting method. Otherwise, this module periodically applies a method
to reduce certain battery capacity. In the simulation, the total battery usage includes the
standby state, message reception, transmission, and sensing in things.

3.2. Data Structure of a Thing

According to the characteristics of IoT service applications, not only does the edge-
computing system adjust the number of things that participate in the services, but it also
controls the interaction between things. Therefore, a data structure that can express and
manage the characteristics of things, connections between things, identification information,
and the current state is required.

Table 1 shows a thing control block (TCB), which presents a data structure for each
object. Each TCB is created in the form of a thread and consists of three types of information.

Sensors 2021, 21, 2616 7 of 25

Table 1. Thing control block (TCB) structure.

Thing Infomation

Thread ID Thing ID

Leader ID Status

Role

Message

Number of transmissions

Physical Infomation

Resource (battery, CPU, bandwidth)

Bluetooth

Sensor Location

Linked Infomation Member link

Reserve(n)

Thing Information: Thing information contains basic identification information about
a thing—information necessary for control, message, and role information. The type of
identification information consists of a thread number, thing number, and header number.
The thread number is used to obtain the thing information in the simulation, and the thing
number and leader number are used to represent the interaction between things. Control
information represents the state of a thing and is used for scheduling. The state of things
is divided into ready, running, destroyed, and error states. The event module controls
the error state, and the scheduler manages the remaining states. Message information is
the information of transmitting/receiving data when interacting with other things. The
message information includes the sender number, receiver number, transmission method,
message type, message path, and sensing value. Role information indicates how things
should behave. Currently, the roles of things are classified as init, leader, follower, and
spanner. Users can add more roles if they are needed. The basic role of a thing is init, but
when connected to another thing, it is classified as either a leader, follower, or spanner.
Data processing can vary depending on the role, so the user can specify how the role is
handled as desired.

Physical Information: Physical information represents the physical information of
each item. It is based on Raspberry Pi and is composed of resource information, wireless
communication information, owned sensor information, and location information about
the thing. Resource information includes information on battery usage, CPU usage, and
bandwidth usage. Battery usage includes sensing, communication, and idling. In the case
of wireless communication, Bluetooth information is provided as a basic option from the
Raspberry Pi version 3. In the case of a sensor, it expresses whether a thing has a sensor,
what kind of sensor it is, and how much the sensing period and power consumption of
the sensor are. The sensing data are stored here. The location information represents the
location of a thing in the virtual space of the simulator. The API for changing location
information is provided through the location module, and the thing mobility can be
simulated based on this location information.

Linked information: Linked information represents information about interconnected
things. It includes the connected thing number, distance to the connected thing, role of the
thing, and location information. These things have interactions based on this information.
The information about connected things is updated whenever the connection structure is
changed. The connection structure can vary depending on the service applications of the
user. Information on connected things can be searched, added, or deleted through the API
provided by the link management module.

4. Simulator Implementation

The proposed simulator RaSim was written in C language in a Linux (Ubuntu 16.04
LTS 64 bit) environment. The test environment was constructed in the development

Sensors 2021, 21, 2616 8 of 25

environment and Raspberry Pi OS, the official operating system of the Raspberry Pi. In the
simulator, each virtual thing is implemented through pthread [22] and can be individually
controlled, and the operation process and result can be checked. All sources of RaSim
are open (http://snslab.kangwon.ac.kr/v2/RaSim/index.html accessed on 8 April 2021)
according to open software regulations [23].

To test the interaction of things through a simulator, there were several stages that
had to be performed in common. The first stage was the setup stage of the simulator to
meet the conditions of the user. Second, virtual things were created through the creation
and initialization stages. Finally, things were connected, and a function was configured to
operate according to the role of each thing.

4.1. Simulator Setup

Table 2 shows options for the detailed setup of the simulator. The contents of Table 2
are written as constants in the “config.h” and “common.h” header files and can be changed
according to the user’s request. In this section, the most frequently used options are de-
scribed.

Table 2. Part of option for RaSim setting.

<config.h> <common.h>

#define MAP_SIZE #define DESTROYED
#define NUMBER_OF_THINGS #define LEADER

#define BOUNDARY #define FOLLOWER
#define IDLE #define SPANNER

#define USING_SENSOR #define SCHED_ROUND_ROBIN
#define USING_BLUETOOTH #define SCHED_FCFS
#define MAX_MESSAGE_SIZE #define SCHED_USER_POLICY

#define MAX_Q_SIZE #define BROADCAST
:. :.

MAP_SIZE creates a virtual two-dimensional space to test the interaction of objects
in the simulator and is an option for setting the size of the space. The value of the option
is expressed as an integer, and the unit is meter. NUMBER_OF_THINGS represents the
number of virtual things created in the simulator. BOUNDARY represents the maximum
distance when connecting with other surrounding things. IDLE, USING_SENSOR, and
USING_BLUETOOTH are options related to battery usage and can be changed and applied
according to the measured target. MAX_MESSAGE_SIZE and MAX_Q_SIZE set the maxi-
mum size of the message to be sent and maximum size of the message queue, respectively.

In “common.h” options that are generally applied are described, and the state, role,
and scheduling method of things can be set.

4.2. Virtual Thing Creation and Initialization

Figure 3 shows the pseudocode of the creation and initialization process of the thing
after the setup of the simulator was completed. In initRaSim, things were created, and all
systems were initialized. This process included creating and initializing schedulers and
resource managers, as well as allocating memory space referenced by each module. The
data input parameters included a location designation method, a reference data path, a
scheduling policy, and a user-specified scheduling policy.

InitTCB initialized the information of the created thing, the location of the thing, sensor
information, and space for the information of connected things. This information could be
dynamically changed even during the operation of the simulator.

http://snslab.kangwon.ac.kr/v2/RaSim/index.html

Sensors 2021, 21, 2616 9 of 25

Sensors 2021, 21, x FOR PEER REVIEW 9 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Figure 3. Pseudocode for “create virtual things and initialize”.

4.3. Role Function

Each thing created in the simulator was assigned a role. Because the role of a thing is

just an abstract definition of how the thing operates, a specific operation method had to

be specified in the simulator. The reasons for designating the roles of things are as follows.

First, the purpose of using the simulator was different for each user. Second, the simulator

had to be able to test various methods. Third, in the IoT environment, not all things have

a fixed role in their lifetime, and the roles of things may change depending on the current

working situation or event. Therefore, flexible coping is needed when providing the role

of things. In addition, it is necessary to test the effective operation, interaction, and coop-

eration of things according to the purpose of the simulator. To this end, role functions had

to be configured in the way the user wants, and the intended test had to be completed.

Figure 4 shows the pseudocode for the role function. Each role function was passed

to the simulator in the form of a pointer. The role function had a TCB that expresses the

thing information as a parameter, and the role function was connected according to the

role item specified in the TCB structure. Because the role function pointer had to be ap-

plied differently each time the role of a thing changed, the function pointer passed once

did not disappear, but it was separately recorded in the TCB and was replaced by a func-

tion that fit the role when the role was changed.

When things at the edge formed a cluster, a role was assigned to each object. In this

study, the role of things was divided into leaders, followers, and spanners. The leader led

the follower and the spanner things included in a cluster. The follower executed the re-

quirements given to the cluster together with the leader. Spanners belonged to several

clusters and performed different roles.

Things exist in the init state after creation and are assigned roles in cluster configu-

ration. The user can configure the cluster according to the purpose, and the process of

configuring the cluster is user-defined. Therefore, the number of leaders, followers, and

spanner varies depending on the algorithm that users want to simulate. Furthermore, the

connection structure is not fixed, so the role can change with each change in the connec-

tion structure, which is also determined by the user. In other words, each thing can be any

of the three roles and can be changed at any time.

#include “RaSim.h”

void initRaSim(char location, char path,

 char policy, void (*user_policy)()){

 createThings();

 initDistanceTable();

 ...

 initScheduler();

}

void initTCB(){

 initialize TCB;

 setLocation();

 setSensor();

 setMember();

}

Figure 3. Pseudocode for “create virtual things and initialize”.

4.3. Role Function

Each thing created in the simulator was assigned a role. Because the role of a thing
is just an abstract definition of how the thing operates, a specific operation method had
to be specified in the simulator. The reasons for designating the roles of things are as
follows. First, the purpose of using the simulator was different for each user. Second, the
simulator had to be able to test various methods. Third, in the IoT environment, not all
things have a fixed role in their lifetime, and the roles of things may change depending on
the current working situation or event. Therefore, flexible coping is needed when providing
the role of things. In addition, it is necessary to test the effective operation, interaction, and
cooperation of things according to the purpose of the simulator. To this end, role functions
had to be configured in the way the user wants, and the intended test had to be completed.

Figure 4 shows the pseudocode for the role function. Each role function was passed
to the simulator in the form of a pointer. The role function had a TCB that expresses the
thing information as a parameter, and the role function was connected according to the role
item specified in the TCB structure. Because the role function pointer had to be applied
differently each time the role of a thing changed, the function pointer passed once did not
disappear, but it was separately recorded in the TCB and was replaced by a function that
fit the role when the role was changed.

When things at the edge formed a cluster, a role was assigned to each object. In this
study, the role of things was divided into leaders, followers, and spanners. The leader
led the follower and the spanner things included in a cluster. The follower executed the
requirements given to the cluster together with the leader. Spanners belonged to several
clusters and performed different roles.

Things exist in the init state after creation and are assigned roles in cluster configu-
ration. The user can configure the cluster according to the purpose, and the process of
configuring the cluster is user-defined. Therefore, the number of leaders, followers, and
spanner varies depending on the algorithm that users want to simulate. Furthermore, the
connection structure is not fixed, so the role can change with each change in the connection
structure, which is also determined by the user. In other words, each thing can be any of
the three roles and can be changed at any time.

Sensors 2021, 21, 2616 10 of 25

Sensors 2021, 21, x FOR PEER REVIEW 10 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Figure 4. Pseudo code for role function.

4.4. Interaction between Things

Figure 5 shows the interactions between the things. During the initialization process,

the scheduler changed the state of the thing according to the specified scheduling policy.

The changed state checked whether there was a message received from the message

queue. If there was a message, the message wsas processed using the currently assigned

role function. For example, in Figure 5, in the process of interaction between Things A and

C, Thing A, whose status had changed through the scheduler, first checked the message.

If it received a message, the message was processed through the role function of Thing A.

Otherwise, after requesting specific data from Thing C, it was changed to the standby

state. When Thing C changed its state through the scheduler, it checked the message and

processed the request of Thing A through the role function. The processed result was de-

livered to Thing A through the message queue, and the above process was repeated. This

process may vary depending on the applied scheduling policy.

Figure 5. Interaction between things.

Figure 6 shows the message structure used for the interaction between things in the

simulator. The thing id is the number of the currently running thing. The sender id is the

number of the thing sending the message, and the receiver id is the number of the thing

receiving the message. Send type specifies whether to send only to specific things or all

connected things. The message type distinguishes whether the message is a request or a

response. According to each classification, detailed items, such as sensor value, resource

information, and location information, can be added. The sensor value was used when the

sensing data were requested. If the data item cannot be expressed as a number, it is trans-

mitted through the message field. Length indicates the total size of the message to be

transmitted, and message stores the contents of specific requests or responses.

void leader(TCB *tcb){

 Algorithm for leader

}

void follower(TCB *tcb){

 Algorithm for follower

}

void spanner(TCB *tcb){

 Algorithm for spanner

}

Figure 4. Pseudo code for role function.

4.4. Interaction between Things

Figure 5 shows the interactions between the things. During the initialization process,
the scheduler changed the state of the thing according to the specified scheduling policy.
The changed state checked whether there was a message received from the message queue.
If there was a message, the message wsas processed using the currently assigned role
function. For example, in Figure 5, in the process of interaction between Things A and
C, Thing A, whose status had changed through the scheduler, first checked the message.
If it received a message, the message was processed through the role function of Thing
A. Otherwise, after requesting specific data from Thing C, it was changed to the standby
state. When Thing C changed its state through the scheduler, it checked the message and
processed the request of Thing A through the role function. The processed result was
delivered to Thing A through the message queue, and the above process was repeated.
This process may vary depending on the applied scheduling policy.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Figure 4. Pseudo code for role function.

4.4. Interaction between Things

Figure 5 shows the interactions between the things. During the initialization process,

the scheduler changed the state of the thing according to the specified scheduling policy.

The changed state checked whether there was a message received from the message

queue. If there was a message, the message wsas processed using the currently assigned

role function. For example, in Figure 5, in the process of interaction between Things A and

C, Thing A, whose status had changed through the scheduler, first checked the message.

If it received a message, the message was processed through the role function of Thing A.

Otherwise, after requesting specific data from Thing C, it was changed to the standby

state. When Thing C changed its state through the scheduler, it checked the message and

processed the request of Thing A through the role function. The processed result was de-

livered to Thing A through the message queue, and the above process was repeated. This

process may vary depending on the applied scheduling policy.

Figure 5. Interaction between things.

Figure 6 shows the message structure used for the interaction between things in the

simulator. The thing id is the number of the currently running thing. The sender id is the

number of the thing sending the message, and the receiver id is the number of the thing

receiving the message. Send type specifies whether to send only to specific things or all

connected things. The message type distinguishes whether the message is a request or a

response. According to each classification, detailed items, such as sensor value, resource

information, and location information, can be added. The sensor value was used when the

sensing data were requested. If the data item cannot be expressed as a number, it is trans-

mitted through the message field. Length indicates the total size of the message to be

transmitted, and message stores the contents of specific requests or responses.

void leader(TCB *tcb){

 Algorithm for leader

}

void follower(TCB *tcb){

 Algorithm for follower

}

void spanner(TCB *tcb){

 Algorithm for spanner

}

Figure 5. Interaction between things.

Figure 6 shows the message structure used for the interaction between things in the
simulator. The thing id is the number of the currently running thing. The sender id is the
number of the thing sending the message, and the receiver id is the number of the thing
receiving the message. Send type specifies whether to send only to specific things or all
connected things. The message type distinguishes whether the message is a request or a
response. According to each classification, detailed items, such as sensor value, resource
information, and location information, can be added. The sensor value was used when
the sensing data were requested. If the data item cannot be expressed as a number, it is
transmitted through the message field. Length indicates the total size of the message to be
transmitted, and message stores the contents of specific requests or responses.

Sensors 2021, 21, 2616 11 of 25

Sensors 2021, 21, x FOR PEER REVIEW 11 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Figure 6. Message structure for interaction.

4.5. Simulator Execution and Termination

Figure 7 shows the basic pseudocode for the running simulator. In Figure 7, specific

code was omitted for the connection between things and the role of things. The generated

virtual things operated in an idle state and calculated the battery usage through the re-

source manager. The simulation results were returned at the end of the simulation accord-

ing to the preset options. The results included each virtual thing number and role, battery

usage, sensor name, number of sensing, number of message transfers, bandwidth usage,

CPU usage, location, and current state. It also printed the sum of the number of messages

sent by all things and the number of transmissions for a role. Through this process, we

could test the composition, interaction, and resource usage of edge-computing systems.

Figure 7. Pseudo code for running simulator.

5. Similarity

One reason for using a simulator is that risk management can be performed by pre-

testing and evaluating technical problems and expected costs that occur during actual im-

plementation. To meet this purpose as much as possible, the performance evaluation of

#include “RaSim.h”

void leader(TCB *tcb){

 blank

}

void follower(TCB *tcb){

 blank

}

void spanner(TCB *tcb){

 blank

}

int main(){

 initRaSim(RANDOM_LOCATION, NULL,

SCHED_ROUND_ROBIN, NULL);

 setLeaderFunction(leader);

 setFollowerFunction(follower);

 setSpannerFunction(spanner);

 startRaSim();

}

Figure 6. Message structure for interaction.

4.5. Simulator Execution and Termination

Figure 7 shows the basic pseudocode for the running simulator. In Figure 7, specific
code was omitted for the connection between things and the role of things. The generated
virtual things operated in an idle state and calculated the battery usage through the resource
manager. The simulation results were returned at the end of the simulation according to
the preset options. The results included each virtual thing number and role, battery usage,
sensor name, number of sensing, number of message transfers, bandwidth usage, CPU
usage, location, and current state. It also printed the sum of the number of messages sent
by all things and the number of transmissions for a role. Through this process, we could
test the composition, interaction, and resource usage of edge-computing systems.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Figure 6. Message structure for interaction.

4.5. Simulator Execution and Termination

Figure 7 shows the basic pseudocode for the running simulator. In Figure 7, specific

code was omitted for the connection between things and the role of things. The generated

virtual things operated in an idle state and calculated the battery usage through the re-

source manager. The simulation results were returned at the end of the simulation accord-

ing to the preset options. The results included each virtual thing number and role, battery

usage, sensor name, number of sensing, number of message transfers, bandwidth usage,

CPU usage, location, and current state. It also printed the sum of the number of messages

sent by all things and the number of transmissions for a role. Through this process, we

could test the composition, interaction, and resource usage of edge-computing systems.

Figure 7. Pseudo code for running simulator.

5. Similarity

One reason for using a simulator is that risk management can be performed by pre-

testing and evaluating technical problems and expected costs that occur during actual im-

plementation. To meet this purpose as much as possible, the performance evaluation of

#include “RaSim.h”

void leader(TCB *tcb){

 blank

}

void follower(TCB *tcb){

 blank

}

void spanner(TCB *tcb){

 blank

}

int main(){

 initRaSim(RANDOM_LOCATION, NULL,

SCHED_ROUND_ROBIN, NULL);

 setLeaderFunction(leader);

 setFollowerFunction(follower);

 setSpannerFunction(spanner);

 startRaSim();

}

Figure 7. Pseudo code for running simulator.

Sensors 2021, 21, 2616 12 of 25

5. Similarity

One reason for using a simulator is that risk management can be performed by pre-
testing and evaluating technical problems and expected costs that occur during actual
implementation. To meet this purpose as much as possible, the performance evaluation of
the proposed simulator should be conducted with hardware and physical conditions like
the actual working environment.

This study aimed to simulate an edge-computing system using Raspberry Pi as a
standard hardware platform. To evaluate the operation accuracy of the RaSim simulator, a
similarity evaluation was performed by comparing the results obtained from RaSim with
those obtained with the actual Raspberry Pi. CPU usage, network bandwidth usage, and
battery usage were selected as similarity evaluation items.

The CPU and network bandwidth usage are related items to efficiently configure an
edge-computing system. On the other hand, battery usage was chosen to evaluate the
longevity of the edge-computing systems. Although the selected measurements of the
simulator and the actual hardware device cannot be identical, the proposed simulator was
deemed excellent if the resulting measurements were highly similar.

5.1. Experimental Environment

The Raspberry Pi used in the experiment is a version of Raspberry Pi 3 Model B+,
which is a virtual thing reference model of the simulator. Detailed information about the
Raspberry Pi is provided in Table 3 [24].

Table 3. Raspberry Pi 3 Model B+ specification.

Category Description

Product Raspberry Pi 3 Model B+

CPU Cortex-A53(ARMv8)
Quad core @1.4 GHz

RAM 1 GB
Bluetooth Version 4.2, BLE

Power requirements 5 V/2.5 A DC power input

Power consumption Idle ≈ 400 mA
(Depends on use case)

In this study, the similarity between the RaSim simulator and the actual Raspberry
Pi was confirmed through three factors: CPU usage, bandwidth, and battery usage. CPU
usage was measured by running an algorithm that performs the same operation on the
simulator and Raspberry Pi. Bandwidth was measured by the number of data transmitted
per second based on the maximum bandwidth of the Bluetooth 4.2 version built into
Raspberry Pi. Battery usage was measured in a state of doing nothing (IDLE) to determine
the amount consumed while executing a specific algorithm. It was then compared with
the actual Raspberry Pi battery usage. The battery usage of Raspberry Pi varies greatly
depending on the use of external devices, such as USB ports, displays, or processes running
in the background. Therefore, in this study, the experiment was conducted without the use
of any external devices or background processes.

The three similarity factors we chose were the ones that were most considered when
serving through things with limited performance. Service providers consider compu-
tational capabilities (CPU), battery usage, and bandwidth of things to provide IoT ser-
vices [25]. Based on this, they provide services that meet the capabilities of things. Therefore,
three factors were chosen because these characteristics should be reflected in the simulation
tester and could be tested in advance.

5.2. CPU Usage

Figure 8 shows the CPU usage of the RaSim and Raspberry Pi. In the CPU usage
comparison experiment, 20,000 random values were generated, and the usages of selection

Sensors 2021, 21, 2616 13 of 25

sort and bubble sort were measured. Because the measured CPU usage could not be used
for direct comparison because of differences in clock speed, etc., it was normalized using
Equation (1). In addition, it was converted into average values for easy comparison.

xnew =
x − xmin

xmax − xmin
(1)

Sensors 2021, 21, x FOR PEER REVIEW 13 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Figure 8. CPU usage of RaSim and Raspberry Pi.

𝑥𝑛𝑒𝑤 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (1)

CPU usage data were measured using the Linux “top” command, and the data were

used as initial data. The utility “top” can monitor the operating status of the Linux system

in real time.

Here, xmax is the largest value among the measured initial data, xmin is the smallest

value, and x is the original data. Each of the measured data was converted to xnew using

Equation (1) and compared using the average of the converted values. Figure 8 shows that

RaSim used approximately 71% of the CPU for selection sort and approximately 62% for

bubble sorting. In the case of Raspberry Pi, the selection sort was approximately 60%, and

the bubble sort was approximately 53%, with differences of 11% and 9% for selection sort

and bubble sort, respectively, compared with the simulator. Comparing the CPU usage of

the platforms reveals that the usage of the simulator is 62/71 = 0.87, and that of Raspberry

Pi is 53/60 = 0.88. In terms of standard deviation, RaSim has 4.49 and 4.07 standard devia-

tions for selection and bubble sorting. On the other hand, Raspberry Pi are 7.9 and 10.8.

RaSim has a smaller standard deviation than Raspberry Pi due to simulator overhead.

Therefore, for each sorting algorithm, it was measured that the RaSim used a little more

CPU.

Normalized CPU usage does not indicate the actual use of the CPU. A new interval

of maximum xmax and minimum xmin was set, and the amount of measured value occupying

the corresponding interval was calculated. Therefore, a direct comparison is possible

through Equation (1), even though the measurement was performed on heterogeneous

CPU platforms. However, the CPU usage was slightly higher in RaSim because of the

added overhead of the simulator.

5.3. Battery Usage

Figure 9 shows the amount of battery used in 10 min when the virtual thing created

in the simulator and Raspberry Pi does nothing. The battery usage of the Raspberry Pi

was measured using a KCX-017 voltage current meter. In the case of the virtual thing of

the simulator, by referring to the Raspberry Pi battery usage benchmark website and the

Raspberry Pi official website, Equation (2) was used.

𝐵𝐼𝑑𝑙𝑒 (𝑚𝐴ℎ) = +
𝑇𝐼𝐸 × 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑑𝑙𝑒

ℎ
 (2)

Figure 9. Battery usage of RaSim and Raspberry Pi.

Figure 8. CPU usage of RaSim and Raspberry Pi.

CPU usage data were measured using the Linux “top” command, and the data were
used as initial data. The utility “top” can monitor the operating status of the Linux system
in real time.

Here, xmax is the largest value among the measured initial data, xmin is the smallest
value, and x is the original data. Each of the measured data was converted to xnew using
Equation (1) and compared using the average of the converted values. Figure 8 shows
that RaSim used approximately 71% of the CPU for selection sort and approximately 62%
for bubble sorting. In the case of Raspberry Pi, the selection sort was approximately 60%,
and the bubble sort was approximately 53%, with differences of 11% and 9% for selection
sort and bubble sort, respectively, compared with the simulator. Comparing the CPU
usage of the platforms reveals that the usage of the simulator is 62/71 = 0.87, and that
of Raspberry Pi is 53/60 = 0.88. In terms of standard deviation, RaSim has 4.49 and 4.07
standard deviations for selection and bubble sorting. On the other hand, Raspberry Pi are
7.9 and 10.8. RaSim has a smaller standard deviation than Raspberry Pi due to simulator
overhead. Therefore, for each sorting algorithm, it was measured that the RaSim used a
little more CPU.

Normalized CPU usage does not indicate the actual use of the CPU. A new interval of
maximum xmax and minimum xmin was set, and the amount of measured value occupying
the corresponding interval was calculated. Therefore, a direct comparison is possible
through Equation (1), even though the measurement was performed on heterogeneous
CPU platforms. However, the CPU usage was slightly higher in RaSim because of the
added overhead of the simulator.

5.3. Battery Usage

Figure 9 shows the amount of battery used in 10 min when the virtual thing created
in the simulator and Raspberry Pi does nothing. The battery usage of the Raspberry Pi
was measured using a KCX-017 voltage current meter. In the case of the virtual thing of
the simulator, by referring to the Raspberry Pi battery usage benchmark website and the
Raspberry Pi official website, Equation (2) was used.

BIdle (mAh) = +
TIE × currentIdle

h
(2)

Sensors 2021, 21, 2616 14 of 25

Sensors 2021, 21, x FOR PEER REVIEW 13 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Figure 8. CPU usage of RaSim and Raspberry Pi.

𝑥𝑛𝑒𝑤 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (1)

CPU usage data were measured using the Linux “top” command, and the data were

used as initial data. The utility “top” can monitor the operating status of the Linux system

in real time.

Here, xmax is the largest value among the measured initial data, xmin is the smallest

value, and x is the original data. Each of the measured data was converted to xnew using

Equation (1) and compared using the average of the converted values. Figure 8 shows that

RaSim used approximately 71% of the CPU for selection sort and approximately 62% for

bubble sorting. In the case of Raspberry Pi, the selection sort was approximately 60%, and

the bubble sort was approximately 53%, with differences of 11% and 9% for selection sort

and bubble sort, respectively, compared with the simulator. Comparing the CPU usage of

the platforms reveals that the usage of the simulator is 62/71 = 0.87, and that of Raspberry

Pi is 53/60 = 0.88. In terms of standard deviation, RaSim has 4.49 and 4.07 standard devia-

tions for selection and bubble sorting. On the other hand, Raspberry Pi are 7.9 and 10.8.

RaSim has a smaller standard deviation than Raspberry Pi due to simulator overhead.

Therefore, for each sorting algorithm, it was measured that the RaSim used a little more

CPU.

Normalized CPU usage does not indicate the actual use of the CPU. A new interval

of maximum xmax and minimum xmin was set, and the amount of measured value occupying

the corresponding interval was calculated. Therefore, a direct comparison is possible

through Equation (1), even though the measurement was performed on heterogeneous

CPU platforms. However, the CPU usage was slightly higher in RaSim because of the

added overhead of the simulator.

5.3. Battery Usage

Figure 9 shows the amount of battery used in 10 min when the virtual thing created

in the simulator and Raspberry Pi does nothing. The battery usage of the Raspberry Pi

was measured using a KCX-017 voltage current meter. In the case of the virtual thing of

the simulator, by referring to the Raspberry Pi battery usage benchmark website and the

Raspberry Pi official website, Equation (2) was used.

𝐵𝐼𝑑𝑙𝑒 (𝑚𝐴ℎ) = +
𝑇𝐼𝐸 × 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑑𝑙𝑒

ℎ
 (2)

Figure 9. Battery usage of RaSim and Raspberry Pi. Figure 9. Battery usage of RaSim and Raspberry Pi.

In general, it is not possible to simply convert a unit of current (mA) to a unit of battery
capacity (mAh) unless the used time is known. The battery usage BIdle (mAh) in the IDLE
state of Equation (2) can be obtained by multiplying the time elapsed since the virtual thing
was created with the amount of continuously used current during the time period, and
dividing by h, which is one hour.

In Figure 9, the battery usage of the simulator is measured using Equation (2). It used
approximately 66 mAh in 10 min. The measured battery usage of the Raspberry Pi was
also 66 mAh. The results indicate that RaSim used the same amount of current usage as the
Raspberry Pi battery usage benchmark on the official website.

5.4. Bandwidth Usage

The bandwidth usage was based on 1 Mbps of Bluetooth version 4.2 built into Rasp-
berry Pi 3 Model B+. The bandwidth usage of a virtual thing can be obtained using
Equation (3).

Bandwidth =
DTotal

1 Mbps × TTE
(3)

In Equation (3), DTotal is the size of the total transmitted data, and TTE is the time
required to transmit all the data. In this study, a comparison was performed using the
average bandwidth obtained through Equation (3), and the total data size was 10 MB.

Figure 10 shows the bandwidth usage of the RaSim and Raspberry Pi. It was mea-
sured at approximately 41% for RaSim and 51% for Raspberry Pi. Although Bluetooth is
a representative wireless communication protocol, the delay time may not be constant,
even when data of the same size are transmitted, owing to obstacles or interference from
radio waves. Furthermore, the distance between the communicating things affects the
delay time. However, it is difficult to predict these items in advance or calculate them
each time and apply them to a simulator. In the future, research on the conditions af-
fected by wireless communication should be conducted through experiments in various
operating environments.

DelayTransmission =
DTotal

1 Mbps
(4)

In RaSim, the delay time model of Equation (4) was applied. Equation (4) gives the
total data size divided by the standard bandwidth of 1 Mbps. The results in Figure 10 show
that the bandwidth usage of RaSim and Raspberry Pi had a difference of approximately
10%. External factors mentioned above, such as radio wave interference, are presumed to
be the cause of the bandwidth increase in real Raspberry Pi.

Sensors 2021, 21, 2616 15 of 25

Sensors 2021, 21, x FOR PEER REVIEW 14 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

In general, it is not possible to simply convert a unit of current (mA) to a unit of

battery capacity (mAh) unless the used time is known. The battery usage BIdle (mAh) in the

IDLE state of Equation (2) can be obtained by multiplying the time elapsed since the vir-

tual thing was created with the amount of continuously used current during the time pe-

riod, and dividing by h, which is one hour.

In Figure 9, the battery usage of the simulator is measured using Equation (2). It used

approximately 66 mAh in 10 min. The measured battery usage of the Raspberry Pi was

also 66 mAh. The results indicate that RaSim used the same amount of current usage as

the Raspberry Pi battery usage benchmark on the official website.

5.4. Bandwidth Usage

The bandwidth usage was based on 1 Mbps of Bluetooth version 4.2 built into Rasp-

berry Pi 3 Model B+. The bandwidth usage of a virtual thing can be obtained using Equa-

tion (3).

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =
𝐷𝑇𝑜𝑡𝑎𝑙

1 𝑀𝑏𝑝𝑠 ⅹ 𝑇𝑇𝐸

 (3)

In Equation (3), DTotal is the size of the total transmitted data, and TTE is the time re-

quired to transmit all the data. In this study, a comparison was performed using the aver-

age bandwidth obtained through Equation (3), and the total data size was 10 MB.

Figure 10 shows the bandwidth usage of the RaSim and Raspberry Pi. It was meas-

ured at approximately 41% for RaSim and 51% for Raspberry Pi. Although Bluetooth is a

representative wireless communication protocol, the delay time may not be constant, even

when data of the same size are transmitted, owing to obstacles or interference from radio

waves. Furthermore, the distance between the communicating things affects the delay

time. However, it is difficult to predict these items in advance or calculate them each time

and apply them to a simulator. In the future, research on the conditions affected by wire-

less communication should be conducted through experiments in various operating envi-

ronments.

𝐷𝑒𝑙𝑎𝑦𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =
𝐷𝑇𝑜𝑡𝑎𝑙

1 𝑀𝑏𝑝𝑠
 (4)

In RaSim, the delay time model of Equation (4) was applied. Equation (4) gives the

total data size divided by the standard bandwidth of 1 Mbps. The results in Figure 10

show that the bandwidth usage of RaSim and Raspberry Pi had a difference of approxi-

mately 10%. External factors mentioned above, such as radio wave interference, are pre-

sumed to be the cause of the bandwidth increase in real Raspberry Pi.

Figure 10. Bandwidth usage of RaSim and Raspberry Pi.

5.5. Resource Usage by Interaction between Things

Figure 11 shows the resource usage of each thing when things interact. The compar-

ison items are the CPU usage and battery usage of each item when transferring 10 MB of

data. First, in the RaSim shown in Figure 11, the cases of virtual things were divided into

sender and receiver. In the case of the sender, the measured CPU usage was approxi-

Figure 10. Bandwidth usage of RaSim and Raspberry Pi.

5.5. Resource Usage by Interaction between Things

Figure 11 shows the resource usage of each thing when things interact. The comparison
items are the CPU usage and battery usage of each item when transferring 10 MB of data.
First, in the RaSim shown in Figure 11, the cases of virtual things were divided into sender
and receiver. In the case of the sender, the measured CPU usage was approximately 34%,
and the battery usage was approximately 12 mAh. For the receiver, the measured CPU
usage was approximately 65%, and the battery usage was also approximately 12 mAh.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

mately 34%, and the battery usage was approximately 12 mAh. For the receiver, the meas-

ured CPU usage was approximately 65%, and the battery usage was also approximately

12 mAh.

Figure 11. Resource usage by interaction between things.

Raspberry Pi was also divided into the sender and receiver cases. In the case of the

sender, the measured CPU usage was approximately 50%, and the battery usage was ap-

proximately 18 mAh. The measured CPU usage of the Raspberry Pi receiver was approx-

imately 85%, and the measured battery usage was also approximately 18 mAh. The re-

ceiver CPU usage was higher for both RaSim and Raspberry Pi. This is because the method

of processing the received data was added here. When the CPU usage is compared in

terms of the sender and receiver of RaSim and Raspberry Pi individually, RaSim differs

by approximately 31%, and Raspberry Pi differs by approximately 35%. These differences

seemed to be quite large numerically; however, the ratio of the sender and receiver was

quite close, with values of 34/65 = 0.52 in RaSim and 50/85 = 0.58 in Raspberry Pi. There-

fore, the RaSim simulator reflected the characteristics of the Raspberry Pi well because

both the ratio and trend of CPU usage in the sender and receiver aspects were quite simi-

lar.

𝐵𝑇𝑜𝑡𝑎𝑙(𝑚𝐴ℎ) = 𝐵𝐼𝑑𝑙𝑒 +
𝐷𝑒𝑙𝑎𝑦𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 × 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑋

ℎ
 (5)

The battery usage of a virtual thing is measured using Equation (5). Here, BIdle is the

battery usage when the virtual thing is doing nothing, DelayTransmission is the transmission

delay time, CurrentTx is the maximum current used for one transmission, and h is one hour.

As shown in Figure 11, for RaSim, 12 mAh was measured for both the transmitter

and receiver. For Raspberry Pi, 18 mAh was measured for both the sender and receiver.

The difference of 6 mAh was the result of the accumulated delay time in transmitting data.

This means that an overhead occurs in the actual working Raspberry Pi. The overhead is

analyzed in terms of time. The Raspberry Pi took 163 s to transmit the data, whereas RaSim

transmitted the data in 144 s. Therefore, 19 s was regarded as an overhead in the Raspberry

Pi operation. If the amount of battery consumed for the IDLE status and message trans-

mission was added or subtracted, the actual trend of resource usage by Raspberry Pi and

RaSim was similar.

6. Edge Clustering

6.1. Architecture

Currently, the computing power of a single thing used in an edge area is insufficient

to satisfy various service requirements at the edge. Therefore, to meet the requirements of

edge service applications such as real-time, longevity, it is necessary to connect with other

things to form a cluster for collaboration. Figure 12 shows a cluster model formed in an

edge-computing environment using RaSim. The physical area in Figure 12 is the cluster

configuration when the actual things are deployed. The conceptual area shows that the

Figure 11. Resource usage by interaction between things.

Raspberry Pi was also divided into the sender and receiver cases. In the case of
the sender, the measured CPU usage was approximately 50%, and the battery usage
was approximately 18 mAh. The measured CPU usage of the Raspberry Pi receiver was
approximately 85%, and the measured battery usage was also approximately 18 mAh.
The receiver CPU usage was higher for both RaSim and Raspberry Pi. This is because
the method of processing the received data was added here. When the CPU usage is
compared in terms of the sender and receiver of RaSim and Raspberry Pi individually,
RaSim differs by approximately 31%, and Raspberry Pi differs by approximately 35%.
These differences seemed to be quite large numerically; however, the ratio of the sender
and receiver was quite close, with values of 34/65 = 0.52 in RaSim and 50/85 = 0.58 in
Raspberry Pi. Therefore, the RaSim simulator reflected the characteristics of the Raspberry
Pi well because both the ratio and trend of CPU usage in the sender and receiver aspects
were quite similar.

BTotal(mAh) = BIdle +
DelayTransmission × currentTX

h
(5)

The battery usage of a virtual thing is measured using Equation (5). Here, BIdle is the
battery usage when the virtual thing is doing nothing, DelayTransmission is the transmission
delay time, CurrentTx is the maximum current used for one transmission, and h is one hour.

As shown in Figure 11, for RaSim, 12 mAh was measured for both the transmitter
and receiver. For Raspberry Pi, 18 mAh was measured for both the sender and receiver.
The difference of 6 mAh was the result of the accumulated delay time in transmitting data.

Sensors 2021, 21, 2616 16 of 25

This means that an overhead occurs in the actual working Raspberry Pi. The overhead
is analyzed in terms of time. The Raspberry Pi took 163 s to transmit the data, whereas
RaSim transmitted the data in 144 s. Therefore, 19 s was regarded as an overhead in the
Raspberry Pi operation. If the amount of battery consumed for the IDLE status and message
transmission was added or subtracted, the actual trend of resource usage by Raspberry Pi
and RaSim was similar.

6. Edge Clustering
6.1. Architecture

Currently, the computing power of a single thing used in an edge area is insufficient
to satisfy various service requirements at the edge. Therefore, to meet the requirements
of edge service applications such as real-time, longevity, it is necessary to connect with
other things to form a cluster for collaboration. Figure 12 shows a cluster model formed
in an edge-computing environment using RaSim. The physical area in Figure 12 is the
cluster configuration when the actual things are deployed. The conceptual area shows that
the physical arrangement of the environment is divided into several layers. It represents
various edge-computing connection configurations to support several edge service applica-
tions. One cluster is in charge of one application. When an application is terminated, the
things of the cluster can be relocated to another cluster to run other remaining applications.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

physical arrangement of the environment is divided into several layers. It represents var-

ious edge-computing connection configurations to support several edge service applica-

tions. One cluster is in charge of one application. When an application is terminated, the

things of the cluster can be relocated to another cluster to run other remaining applica-

tions.

Figure 12. Cluster configuration in edge-computing environment.

In this figure, things are divided into leaders, followers, and spanners. To support

various edge service applications simultaneously, the things belonging to one cluster also

belonged to other clusters, and their roles could be continuously changed. The leader had

information about other things connected to itself by leading other things to provide ser-

vices to users. A follower was connected to one leader in one cluster and handled the

leader’s requirements for service provision. A spanner is a thing belonging to multiple

clusters and simultaneously plays the role of linking with other clusters and handling

events. In addition, in a specific cluster, the spanner can be a leader simultaneously, as

indicated by “L/S” in Figure 12. Because the spanner may have to perform more opera-

tions than the leader in some cases, research on the selection of the spanner was necessary.

In order to form a cluster to handle service demands occurring in the edge area, the

characteristics of the things included in the cluster and the surrounding environment had

to be considered. In addition, to satisfy the real-time processing and longevity require-

ments in edge computing, the cluster architecture had to be organized for the characteris-

tics of the service applications, and the role exchanging/sharing and resource utilization

between things had to be effectively designed.

In this study, three types of service applications were selected to evaluate the inter-

action between edge things and effective resource usage in edge cluster computing. The

key algorithms of these applications were executed using various edge cluster architecture

types. First, we selected a big-data processing application to handle the large amount of

sensing data generated in the edge area. The key algorithms of this application were sort-

ing and searching operations. Second, we selected a machine-learning application based

on a backpropagation neural network algorithm. This application provided an intelligent

response to events occurring in the edge area. Third, a diagnostic application was selected.

The key diagnostic algorithm was the fast Fourier transform (FFT) program, which was

used in various types of diagnostic service applications such as magnetic resonance im-

aging (MRI), computed tomography (CT), communication, non-destructive testing equip-

ment, aviation radar, physical exploration, and structure monitoring.

In the simulation, the cluster architectures for effective resource usage were evalu-

ated in terms of processing time, battery usage, and throughput. As a result, the most

Figure 12. Cluster configuration in edge-computing environment.

In this figure, things are divided into leaders, followers, and spanners. To support
various edge service applications simultaneously, the things belonging to one cluster also
belonged to other clusters, and their roles could be continuously changed. The leader
had information about other things connected to itself by leading other things to provide
services to users. A follower was connected to one leader in one cluster and handled the
leader’s requirements for service provision. A spanner is a thing belonging to multiple
clusters and simultaneously plays the role of linking with other clusters and handling
events. In addition, in a specific cluster, the spanner can be a leader simultaneously, as
indicated by “L/S” in Figure 12. Because the spanner may have to perform more operations
than the leader in some cases, research on the selection of the spanner was necessary.

In order to form a cluster to handle service demands occurring in the edge area, the
characteristics of the things included in the cluster and the surrounding environment had to
be considered. In addition, to satisfy the real-time processing and longevity requirements
in edge computing, the cluster architecture had to be organized for the characteristics of
the service applications, and the role exchanging/sharing and resource utilization between
things had to be effectively designed.

Sensors 2021, 21, 2616 17 of 25

In this study, three types of service applications were selected to evaluate the inter-
action between edge things and effective resource usage in edge cluster computing. The
key algorithms of these applications were executed using various edge cluster architecture
types. First, we selected a big-data processing application to handle the large amount
of sensing data generated in the edge area. The key algorithms of this application were
sorting and searching operations. Second, we selected a machine-learning application
based on a backpropagation neural network algorithm. This application provided an
intelligent response to events occurring in the edge area. Third, a diagnostic application
was selected. The key diagnostic algorithm was the fast Fourier transform (FFT) pro-
gram, which was used in various types of diagnostic service applications such as magnetic
resonance imaging (MRI), computed tomography (CT), communication, non-destructive
testing equipment, aviation radar, physical exploration, and structure monitoring.

In the simulation, the cluster architectures for effective resource usage were evalu-
ated in terms of processing time, battery usage, and throughput. As a result, the most
suitable cluster size for a given service application was suggested. In addition, we evalu-
ated the real-time and longevity properties, which are the representative requirements of
edge computing.

6.2. Big-Data Processing Application (Data Sorting/Searching)

In big-data processing applications, the key process is to quickly find the information
the user wants from the big-data location. In this experiment, to evaluate the differences
in performance according to the cluster architecture types, bubble-sorting and binary
searching were performed to find the information desired by the user.

Table 4 lists the experimental parameters of the big-data processing application. It
distributed 500,000 unsorted data to each cluster and performed sorting and searching
operations. The cluster architecture type was set to 5, and the number of items included in
each cluster type were 16, 32, 64, 128, and 256 for clusters 1, 2, 3, 4, and 5, respectively. The
total task number was set to 50, and each cluster was initially allocated a task. However,
clusters that had finished the initial task performed the remaining tasks according to the
FCFS policy.

Table 4. Experimental parameters for big-data application.

Parameter Description

Data size (set) 500,000
Cluster architecture types 5

Number of things by cluster type 16, 32, 64, 128, 256
Number of tasks 50

Time complexity of sorting algorithm O
(

N2)–Bubble Sort
Time complexity of searching algorithm O(logN)–Binary Search

6.2.1. Processing Time

Edge computing uses a cluster architecture to support fast real-time processing of
events occurring in the edge area. Figure 13 shows the average processing time measured
by cluster type. Among the clusters, cluster 1 showed the longest average processing
time of 58.5 s. Cluster 3 exhibited the shortest average processing time, with an average
processing time of 15.9 s. As shown in Table 4, the number of things used in cluster 3 was
64. In cluster 4 and cluster 5, more things participated in cluster architecture than cluster
3, but the average processing time was longer than in cluster 3. As the number of things
participating in the cluster increased, the information exchange required for the distributed
processing of tasks between things gradually increased, and as a result, the total average
processing time increased.

Sensors 2021, 21, 2616 18 of 25

Sensors 2021, 21, x FOR PEER REVIEW 17 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

suitable cluster size for a given service application was suggested. In addition, we evalu-

ated the real-time and longevity properties, which are the representative requirements of

edge computing.

6.2. Big-Data Processing Application (Data Sorting/Searching)

In big-data processing applications, the key process is to quickly find the information

the user wants from the big-data location. In this experiment, to evaluate the differences

in performance according to the cluster architecture types, bubble-sorting and binary

searching were performed to find the information desired by the user.

Table 4 lists the experimental parameters of the big-data processing application. It

distributed 500,000 unsorted data to each cluster and performed sorting and searching

operations. The cluster architecture type was set to 5, and the number of items included

in each cluster type were 16, 32, 64, 128, and 256 for clusters 1, 2, 3, 4, and 5, respectively.

The total task number was set to 50, and each cluster was initially allocated a task. How-

ever, clusters that had finished the initial task performed the remaining tasks according

to the FCFS policy.

Table 4. Experimental parameters for big-data application.

Parameter Description

Data size (set) 500,000

Cluster architecture types 5

Number of things by cluster type 16, 32, 64, 128, 256

Number of tasks 50

Time complexity of sorting algorithm O(𝑁2)–Bubble Sort

Time complexity of searching algorithm O(𝑙𝑜𝑔𝑁)–Binary Search

6.2.1. Processing Time

Edge computing uses a cluster architecture to support fast real-time processing of

events occurring in the edge area. Figure 13 shows the average processing time measured

by cluster type. Among the clusters, cluster 1 showed the longest average processing time

of 58.5 s. Cluster 3 exhibited the shortest average processing time, with an average pro-

cessing time of 15.9 s. As shown in Table 4, the number of things used in cluster 3 was 64.

In cluster 4 and cluster 5, more things participated in cluster architecture than cluster 3,

but the average processing time was longer than in cluster 3. As the number of things

participating in the cluster increased, the information exchange required for the distrib-

uted processing of tasks between things gradually increased, and as a result, the total av-

erage processing time increased.

Figure 13. Average processing time of edge clusters.

To evaluate the real-time responsiveness in edge cluster computing, we performed

the same big-data processing load on a single thing, and the average processing time was

803 s. As shown in Figure 13, the average processing time in clusters was much faster than

803 s for a single thing; thus, we confirmed that the cluster architecture can contribute to

the real-time processing requirements of edge computing.

Figure 13. Average processing time of edge clusters.

To evaluate the real-time responsiveness in edge cluster computing, we performed
the same big-data processing load on a single thing, and the average processing time was
803 s. As shown in Figure 13, the average processing time in clusters was much faster than
803 s for a single thing; thus, we confirmed that the cluster architecture can contribute to
the real-time processing requirements of edge computing.

In the experiment results, cluster 3, composed of 64 things, provided the fastest
real-time response. However, because the high-performing cluster architecture can be
changed according to the characteristics of the application, it is necessary to pre-verify the
expected performance in the simulator before implementing the application service using
real hardware such as Raspberry Pi.

6.2.2. Battery Usage

To maintain the longevity of edge computing as much as possible, it is necessary to
measure and evaluate the battery usage of things. Figure 14 shows the average battery
usage in each cluster after task execution. When the same task load was performed on a
single thing, the average battery usage was 2258 mAh. Figure 14 shows that more battery
usage is required in cluster structures than in a single thing. This is because the things
forming the cluster jointly process tasks, thereby increasing data communication for mutual
information exchange. Therefore, battery usage increases.

1

14

17

Figure 14. Average Battery Usage of Edge Clusters.

In Figure 14, among the cluster types, cluster 3 had the least average battery usage
and cluster 5 had the most average battery usage. However, the difference in battery usage
between cluster types was not significant. Based on the results shown in Figures 13 and 14,
considering both the real-time and longevity of edge computing, the most suitable edge
cluster size in the current simulation environment was cluster 3, which was composed of
64 things.

Sensors 2021, 21, 2616 19 of 25

6.2.3. Throughput

Figure 15 shows the throughput of the tasks in each cluster structure. It shows the
highest throughput was in cluster 3, which had the shortest average processing time (as
seen in Figure 13). It shows that 14 of the 50 tasks were processed in cluster 3.

Sensors 2021, 21, x FOR PEER REVIEW 18 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

In the experiment results, cluster 3, composed of 64 things, provided the fastest real-

time response. However, because the high-performing cluster architecture can be changed

according to the characteristics of the application, it is necessary to pre-verify the expected

performance in the simulator before implementing the application service using real hard-

ware such as Raspberry Pi.

6.2.2. Battery Usage

To maintain the longevity of edge computing as much as possible, it is necessary to

measure and evaluate the battery usage of things. Figure 14 shows the average battery

usage in each cluster after task execution. When the same task load was performed on a

single thing, the average battery usage was 2258 mAh. Figure 14 shows that more battery

usage is required in cluster structures than in a single thing. This is because the things

forming the cluster jointly process tasks, thereby increasing data communication for mu-

tual information exchange. Therefore, battery usage increases.

Figure 14. Average Battery Usage of Edge Clusters.

In Figure 14, among the cluster types, cluster 3 had the least average battery usage

and cluster 5 had the most average battery usage. However, the difference in battery usage

between cluster types was not significant. Based on the results shown in Figures 13 and

14, considering both the real-time and longevity of edge computing, the most suitable

edge cluster size in the current simulation environment was cluster 3, which was com-

posed of 64 things.

6.2.3. Throughput

Figure 15 shows the throughput of the tasks in each cluster structure. It shows the

highest throughput was in cluster 3, which had the shortest average processing time (as

seen in Figure 13). It shows that 14 of the 50 tasks were processed in cluster 3.

Figure 15. Throughput by cluster.

6.3. Machine Learning Application (Backpropagation Neural Network)

Figure 15. Throughput by cluster.

6.3. Machine Learning Application (Backpropagation Neural Network)

A fast response to events occurring in the edge area is also required, and edge service
applications that require smart decisions in the edge area are also increasing. In this
experiment, a backpropagation (BP) neural network algorithm was selected among several
machine-learning algorithms used for smart information processing, and its performance
was evaluated in the edge clusters. Table 5 lists the experimental parameters of the BP
neural network algorithm. The learning data were information on the sensing period and
battery usage of things deployed in the edge region and could be generated as described
in [12]. Using learning data, this algorithm learned the sensing period that optimized
battery consumption in each edge-computing environment.

Table 5. Experimental parameters for machine learning.

Parameter Description

Data size (set) 50,000
Cluster architecture types 5

Number of things by cluster type 4, 8, 16, 32, 64
Number of tasks 50

Hidden layer (number of nodes) 1 (10)
Output node 1

Hidden layer activation function ReLU
Output layer activation function Sigmoid

The number of learning data used was 50,000, and each cluster was learned by
distributing the data. In the neural network structure, 10 nodes constituted one hidden
layer, and the activation function of the hidden layer used ReLU. The output layer consisted
of one node, and the activation function used a sigmoid.

An advantage of neural network learning methods is that neural network configura-
tions can be set differently depending on hardware performance. Raspberry Pi, the physical
target of virtual things, has limited performance. Therefore, a small neural network was
constructed [12,26].

6.3.1. Processing Time

Figure 16 shows the average processing time required to complete the learning in
edge clusters. Cluster 1 showed a processing time of approximately 337 s, which is the
longest learning time. The shortest processing time was that of cluster 5, which was
approximately 38 s. Figure 16 demonstrates that as the size of the cluster increases, the

Sensors 2021, 21, 2616 20 of 25

learning completes faster. Conversely, when learning on a single thing using the same
learning data, a processing time of approximately 652 s was measured. The edge clustering
method can learn up to 17 times faster than the learning time in a single thing. This is
because as the size of the cluster increases, the size of the training data distributed to
the things participating in each cluster decreases, and thus the time required for learning
also decreases.

Sensors 2021, 21, x FOR PEER REVIEW 19 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

A fast response to events occurring in the edge area is also required, and edge service

applications that require smart decisions in the edge area are also increasing. In this ex-

periment, a backpropagation (BP) neural network algorithm was selected among several

machine-learning algorithms used for smart information processing, and its performance

was evaluated in the edge clusters. Table 5 lists the experimental parameters of the BP

neural network algorithm. The learning data were information on the sensing period and

battery usage of things deployed in the edge region and could be generated as described

in [12]. Using learning data, this algorithm learned the sensing period that optimized bat-

tery consumption in each edge-computing environment.

Table 5. Experimental parameters for machine learning.

Parameter Description

Data size (set) 50,000

Cluster architecture types 5

Number of things by cluster type 4, 8, 16, 32, 64

Number of tasks 50

Hidden layer (number of nodes) 1 (10)

Output node 1

Hidden layer activation function ReLU

Output layer activation function Sigmoid

The number of learning data used was 50,000, and each cluster was learned by dis-

tributing the data. In the neural network structure, 10 nodes constituted one hidden layer,

and the activation function of the hidden layer used ReLU. The output layer consisted of

one node, and the activation function used a sigmoid.

An advantage of neural network learning methods is that neural network configura-

tions can be set differently depending on hardware performance. Raspberry Pi, the phys-

ical target of virtual things, has limited performance. Therefore, a small neural network

was constructed [12,26]

6.3.1. Processing Time

Figure 16 shows the average processing time required to complete the learning in

edge clusters. Cluster 1 showed a processing time of approximately 337 s, which is the

longest learning time. The shortest processing time was that of cluster 5, which was ap-

proximately 38 s. Figure 16 demonstrates that as the size of the cluster increases, the learn-

ing completes faster. Conversely, when learning on a single thing using the same learning

data, a processing time of approximately 652 s was measured. The edge clustering method

can learn up to 17 times faster than the learning time in a single thing. This is because as

the size of the cluster increases, the size of the training data distributed to the things par-

ticipating in each cluster decreases, and thus the time required for learning also decreases.

Figure 16. Average learning time of edge clusters.

6.3.2. Battery Usage

Figure 16. Average learning time of edge clusters.

6.3.2. Battery Usage

Figure 17 shows the average battery usage in each cluster when the tasks are completed
in clusters. The battery usage of cluster 5 was the highest at 1104 mAh, and the remaining
clusters showed similar levels of battery usage. On the other hand, when performing on
a single thing, the battery usage was measured at 1068 mAh. In Figure 16, which is the
result of the previous experiment, cluster 5 was able to learn 17 times faster than a single
thing. However, in the case of battery usage, it was found that cluster 5 requires somewhat
more energy than a single thing. This demonstrates that to extend the longevity of edge
computing, it is more effective to select smaller cluster types than cluster 5.

1

14

17

Figure 17. Average battery usage of edge clusters.

6.3.3. Learning Accuracy

Figure 18 shows the accuracy of the model trained on each cluster type. In the case of
the edge cluster, an accuracy of 99.67% is achieved in cluster 1, which is the highest value
among the clusters. Cluster 5 achieves 98.86% accuracy and has the lowest accuracy among
the clusters. As the number of things constituting a cluster increases, the size of the data
that each thing needed to learn decreased. If the number of learning data was too small, it
was difficult to predict various cases, and thus, the accuracy was degraded. On the other
hand, when the learning model was tested on a single thing, it showed a high accuracy of
99.7%, which was higher than that of clusters.

Sensors 2021, 21, 2616 21 of 25

From these experimental results, we demonstrated that in the case of an edge service
application using backpropagation neural network machine learning, the cluster size
should be set according to the level of requirements in service applications, such as real-
time processing, longevity, and learning accuracy.

Sensors 2021, 21, x FOR PEER REVIEW 20 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

Figure 17 shows the average battery usage in each cluster when the tasks are com-

pleted in clusters. The battery usage of cluster 5 was the highest at 1104 mAh, and the

remaining clusters showed similar levels of battery usage. On the other hand, when per-

forming on a single thing, the battery usage was measured at 1068 mAh. In Figure 16,

which is the result of the previous experiment, cluster 5 was able to learn 17 times faster

than a single thing. However, in the case of battery usage, it was found that cluster 5 re-

quires somewhat more energy than a single thing. This demonstrates that to extend the

longevity of edge computing, it is more effective to select smaller cluster types than cluster

5.

Figure 17. Average battery usage of edge clusters.

6.3.3. Learning Accuracy

Figure 18 shows the accuracy of the model trained on each cluster type. In the case

of the edge cluster, an accuracy of 99.67% is achieved in cluster 1, which is the highest

value among the clusters. Cluster 5 achieves 98.86% accuracy and has the lowest accuracy

among the clusters. As the number of things constituting a cluster increases, the size of

the data that each thing needed to learn decreased. If the number of learning data was too

small, it was difficult to predict various cases, and thus, the accuracy was degraded. On

the other hand, when the learning model was tested on a single thing, it showed a high

accuracy of 99.7%, which was higher than that of clusters.

From these experimental results, we demonstrated that in the case of an edge service

application using backpropagation neural network machine learning, the cluster size

should be set according to the level of requirements in service applications, such as real-

time processing, longevity, and learning accuracy.

Figure 18. Average accuracy of edge clusters.

6.3.4. Throughput

Figure 19 shows the throughput of the clusters. As the cluster size increased, more

tasks could be processed. Cluster 1, composed of 4 things, had the smallest size among

the clusters and shows the lowest throughput. Cluster 5 was the largest among the clus-

ters, with 64 things participating and obtaining the highest throughput. Therefore, in

terms of throughput, cluster 5 was the most effective. However, as shown in Figures 17

Figure 18. Average accuracy of edge clusters.

6.3.4. Throughput

Figure 19 shows the throughput of the clusters. As the cluster size increased, more
tasks could be processed. Cluster 1, composed of 4 things, had the smallest size among the
clusters and shows the lowest throughput. Cluster 5 was the largest among the clusters,
with 64 things participating and obtaining the highest throughput. Therefore, in terms of
throughput, cluster 5 was the most effective. However, as shown in Figures 17 and 18, the
longevity and accuracy were affected by the size of the cluster, so the size of the cluster
had to be adjusted according to the requirements of the edge service application.

Sensors 2021, 21, x FOR PEER REVIEW 21 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

and 18, the longevity and accuracy were affected by the size of the cluster, so the size of

the cluster had to be adjusted according to the requirements of the edge service applica-

tion.

Figure 19. Throughput by cluster.

6.4. Diagnostic Application (FFT)

In diagnostic application programs, an FFT algorithm was used to determine the sit-

uation of generated events by converting data measured in the time domain into the fre-

quency domain. In particular, if FFT results were obtained quickly from sensing data—

indicating an emergency—an effective response was possible in diagnostic applications.

Table 6 lists the experimental parameters of the FFT program used in the experiment. A

1024 × 1024 matrix was used as an input to the FFT. The number of operations in the FFT

program varied greatly depending on the data size, and this characteristic affected the

real-time and longevity of edge computing.

Table 6. Experimental parameters for diagnostic application.

Parameter Description

Data size (set) 1024 × 1024

Cluster architecture types 5

Number of things by cluster 4, 8, 16, 32, 64

Number of tasks 50

6.4.1. Processing Time

Figure 20 shows the average processing time when performing tasks on an edge clus-

ter. Cluster 1 had the longest processing time (37.5 s), and cluster 5 had the shortest pro-

cessing time (2.1 s). When running on a single thing with the same load, a processing time

of 101 s was measured. Compared to execution on a single thing, the processing speed of

cluster 1 was 2.7 times faster and cluster 5 was 48.1 times faster. For emergency medical

applications that require emergency services, cluster 5 was a suitable structure that could

provide the fastest real-time performance.

Figure 20. Average processing time of edge clusters.

Figure 19. Throughput by cluster.

6.4. Diagnostic Application (FFT)

In diagnostic application programs, an FFT algorithm was used to determine the
situation of generated events by converting data measured in the time domain into the
frequency domain. In particular, if FFT results were obtained quickly from sensing data—
indicating an emergency—an effective response was possible in diagnostic applications.
Table 6 lists the experimental parameters of the FFT program used in the experiment. A
1024 × 1024 matrix was used as an input to the FFT. The number of operations in the FFT
program varied greatly depending on the data size, and this characteristic affected the
real-time and longevity of edge computing.

Sensors 2021, 21, 2616 22 of 25

Table 6. Experimental parameters for diagnostic application.

Parameter Description

Data size (set) 1024 × 1024

Cluster architecture types 5

Number of things by cluster 4, 8, 16, 32, 64

Number of tasks 50

6.4.1. Processing Time

Figure 20 shows the average processing time when performing tasks on an edge
cluster. Cluster 1 had the longest processing time (37.5 s), and cluster 5 had the shortest
processing time (2.1 s). When running on a single thing with the same load, a processing
time of 101 s was measured. Compared to execution on a single thing, the processing speed
of cluster 1 was 2.7 times faster and cluster 5 was 48.1 times faster. For emergency medical
applications that require emergency services, cluster 5 was a suitable structure that could
provide the fastest real-time performance.

Sensors 2021, 21, x FOR PEER REVIEW 21 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

and 18, the longevity and accuracy were affected by the size of the cluster, so the size of

the cluster had to be adjusted according to the requirements of the edge service applica-

tion.

Figure 19. Throughput by cluster.

6.4. Diagnostic Application (FFT)

In diagnostic application programs, an FFT algorithm was used to determine the sit-

uation of generated events by converting data measured in the time domain into the fre-

quency domain. In particular, if FFT results were obtained quickly from sensing data—

indicating an emergency—an effective response was possible in diagnostic applications.

Table 6 lists the experimental parameters of the FFT program used in the experiment. A

1024 × 1024 matrix was used as an input to the FFT. The number of operations in the FFT

program varied greatly depending on the data size, and this characteristic affected the

real-time and longevity of edge computing.

Table 6. Experimental parameters for diagnostic application.

Parameter Description

Data size (set) 1024 × 1024

Cluster architecture types 5

Number of things by cluster 4, 8, 16, 32, 64

Number of tasks 50

6.4.1. Processing Time

Figure 20 shows the average processing time when performing tasks on an edge clus-

ter. Cluster 1 had the longest processing time (37.5 s), and cluster 5 had the shortest pro-

cessing time (2.1 s). When running on a single thing with the same load, a processing time

of 101 s was measured. Compared to execution on a single thing, the processing speed of

cluster 1 was 2.7 times faster and cluster 5 was 48.1 times faster. For emergency medical

applications that require emergency services, cluster 5 was a suitable structure that could

provide the fastest real-time performance.

Figure 20. Average processing time of edge clusters. Figure 20. Average processing time of edge clusters.

6.4.2. Battery Usage

Figure 21 shows the average battery usage in edge clusters. Among the clusters,
cluster 1 had the lowest battery usage and cluster 5 had the most. When running on
a single thing using the same load, 2633 mAh was measured. From the battery usage
measurement results, we found that all cluster types used more batteries than a single
thing. In addition, Figure 21 shows that the larger the cluster size, the larger the number
of participating things, resulting in a slight increase in battery usage. This is because the
battery usage increased when the FFT algorithm ended the calculation of one step and all
the things had to synchronize to proceed to the next step. However, when evaluating the
experimental results, cluster 5 used approximately 1% more battery than cluster 1. In other
words, there was little difference in battery usage between cluster types.

In terms of edge-computing longevity, the cluster type did not have a significant
impact on this requirement when the diagnostic applications, including the FFT algorithm,
were running. Therefore, in emergency diagnostic applications using the FFT algorithm,
it was effective to determine the edge cluster size based on processing time rather than
battery usage.

Sensors 2021, 21, 2616 23 of 25

2

21
Figure 21. Average battery usage of edge clusters.

6.4.3. Throughput

Figure 22 shows the throughput of the clusters. In the FFT algorithm, the number
of operations varied greatly depending on the data size, so the throughput increased as
the cluster type increased. As shown in Figure 22, cluster 5 was able to process 24 out of
50 tasks.

Sensors 2021, 21, x FOR PEER REVIEW 22 of 24

Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors

6.4.2. Battery Usage

Figure 21 shows the average battery usage in edge clusters. Among the clusters, clus-

ter 1 had the lowest battery usage and cluster 5 had the most. When running on a single

thing using the same load, 2633 mAh was measured. From the battery usage measurement

results, we found that all cluster types used more batteries than a single thing. In addition,

Figure 21 shows that the larger the cluster size, the larger the number of participating

things, resulting in a slight increase in battery usage. This is because the battery usage

increased when the FFT algorithm ended the calculation of one step and all the things had

to synchronize to proceed to the next step. However, when evaluating the experimental

results, cluster 5 used approximately 1% more battery than cluster 1. In other words, there

was little difference in battery usage between cluster types.

Figure 21. Average battery usage of edge clusters.

In terms of edge-computing longevity, the cluster type did not have a significant im-

pact on this requirement when the diagnostic applications, including the FFT algorithm,

were running. Therefore, in emergency diagnostic applications using the FFT algorithm,

it was effective to determine the edge cluster size based on processing time rather than

battery usage.

6.4.3. Throughput

Figure 22 shows the throughput of the clusters. In the FFT algorithm, the number of

operations varied greatly depending on the data size, so the throughput increased as the

cluster type increased. As shown in Figure 22, cluster 5 was able to process 24 out of 50

tasks.

Owing to the characteristics of the FFT algorithm, the larger the cluster size, the

higher the throughput. Considering the real-time and longevity of edge computing based

on the results of Figures 20 and 21, cluster 5 was the most suitable structure under current

working conditions.

Figure 22. Throughput by cluster.

Figure 22. Throughput by cluster.

Owing to the characteristics of the FFT algorithm, the larger the cluster size, the higher
the throughput. Considering the real-time and longevity of edge computing based on
the results of Figures 20 and 21, cluster 5 was the most suitable structure under current
working conditions.

7. Conclusions and Future Work

In this paper, a simulator called RaSim was proposed to support effective cluster
organization of things for edge cluster computing. RaSim can simulate the Raspberry
Pi as a real hardware platform model, which is usually adopted to implement IoT edge
service applications. Through experiments, the similarity between the simulator RaSim
and the real Raspberry Pi was evaluated, and the real-time, longevity, and throughput
requirements were tested on various types of edge cluster architectures.

For similarity evaluation, CPU usage, battery usage, bandwidth usage, and resource
usage by interaction between things were measured for both RaSim and Raspberry Pi.
CPU usage was measured using selection-sorting and bubble-sorting with 20,000 data
points. It was determined that there was a difference of 11% for selection sorting and 9%
for bubble sorting between RaSim and Raspberry Pi. There was no difference in battery
usage, as both RaSim and Raspberry measured battery usage was 66 mAh in the IDLE state
for 10 min. The bandwidth usage was measured while transmitting and receiving 10 MB
of data, and it was found to be 41% for RaSim and 51% for Raspberry Pi. In both RaSim
and Raspberry Pi, the receiver CPU usage was higher, and the usage trends of the sender
were quite similar. In the similarity experiment, depending on the workload, the resource

Sensors 2021, 21, 2616 24 of 25

usage measured in RaSim and Raspberry Pi both increased and decreased in the same
trend. In addition, there was only a small difference between increasing and decreasing
resource usage. Similarity evaluation results showed that RaSim can serve as a simulator
for edge-computing systems.

Based on the similarity evaluation, edge clusters were constructed using the RaSim
simulator, and performance evaluation was conducted by selecting three types of applica-
tions. The selected applications were big-data processing applications, machine-learning
applications, and diagnostic applications. The key algorithms of these applications were
executed in various edge cluster architecture types to measure the processing time, battery
usage, and throughput. In particular, in machine-learning applications, the accuracy of the
learning results was added as a metric for performance evaluation. By executing the appli-
cations, it was confirmed that the real-time and longevity requirements of edge computing
can be improved by finding suitable edge cluster types to reflect the characteristics of the
applications. Before launching an edge service application directly on-site, key algorithms
can be pre-evaluated using the RaSim simulator. Through this role, RaSim can contribute
to the selection of a suitable cluster architecture for various edge service applications, as
well as verifying the expected performance and effective resource use in the edge cluster.

Because the things in edge computing are placed at the endpoint of the IoT, they
suffer from unstable operating environments, such as wireless communication interference,
uncertainty in energy supply, unbalanced work distribution, restoration of dead things,
and maintenance of changed software consistency. These problems cause a variety of
requirements, so it is necessary to analyze them in terms of the architecture drivers of edge
computing. Therefore, we intend to proceed with future research to evaluate real-time,
longevity, availability, reliability, etc. in advance through the RaSim simulator. Furthermore,
to simulate interactions between various things, we will analyze the behavior of things
such as Raspberry Pi 4 and Arduino and apply it to the simulator.

Author Contributions: W.K. proposed the initial idea, designed the simulator architecture, and wrote
the text of the manuscript. All the studies in the manuscript were performed under the supervising
of I.J. All authors have read and agreed to the published version of the manuscript.

Funding: Ministry of Science and ICT, South Korea: 2019R1F1A1058835.

Institutional Review Board Statement: Not application.

Informed Consent Statement: Not application.

Data Availability Statement: Not application.

Acknowledgments: This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (No. 2019R1F1A1058835).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, S.; Da, L.; Xu, L.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [CrossRef]
2. Zhang, Q.; Cheng, L.; Boutaba, R. Cloud computing: State-of-the-art and research challenges. J. Internet Serv. Appl. 2010, 1, 7–18.

[CrossRef]
3. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646.

[CrossRef]
4. Ge, Y.; Liang, X.; Zhou, Y.C.; Pan, Z.; Zhao, G.T.; Zheng, Y.L. Adaptive Analytic Service for Real-Time Internet of Things

Applications. In Proceedings of the 2016 IEEE International Conference on Web Services (ICWS), San Francisco, CA, USA, 27
June–2 July 2016; pp. 484–491.

5. Shi, W.; Dustdar, S. The Promise of Edge Computing. Computer 2016, 49, 78–81. [CrossRef]
6. Raspberry Pi. Available online: https://www.raspberrypi.org (accessed on 8 April 2021).
7. Foster, I.T.; Zhao, Y.; Raicu, I.; Lu, S. Cloud Computing and Grid Computing 360-Degree Compared. In 2008 Grid Computing

Environments Workshop; IEEE: Austin, TX, USA, 2008; pp. 1–10.
8. Mastelic, A.T.; Oleksiak, H.; Claussen, I.; Brandic, J.; Pierson, M.; Vasilakos, A.V. Cloud computing: Survey on energy efficiency.

ACM Comput. Surv. 2014, 47, 1–36. [CrossRef]

http://doi.org/10.1007/s10796-014-9492-7
http://doi.org/10.1007/s13174-010-0007-6
http://doi.org/10.1109/JIOT.2016.2579198
http://doi.org/10.1109/MC.2016.145
https://www.raspberrypi.org
http://doi.org/10.1145/2656204

Sensors 2021, 21, 2616 25 of 25

9. Aazam, M.; Huh, E.-N. Fog Computing and Smart Gateway Based Communication for Cloud of Things. In Proceedings of the
2014 International Conference on Future Internet of Things and Cloud, Barcelona, Spain, 27–29 August 2014; pp. 464–470.

10. Yi, S.; Hao, Z.; Qin, Z.; Li, Q. Fog Computing: Platform and Applications. In Proceedings of the 2015 Third IEEE Workshop on
Hot Topics in Web Systems and Technologies (HotWeb), Washington, DC, USA, 12–13 November 2015; pp. 73–78.

11. Arduino. Available online: https://www.arduino.cc/ (accessed on 8 April 2021).
12. Kim, W.; Kim, M.; Jung, I. A Smart Sensing Period Control on Back propagation Neural Network in IoT. KIISE Trans. Comput.

Pract. 2019, 25, 377–388. (In Korean) [CrossRef]
13. Kim, G.; Lee, W.; Jung, I. Energy Efficient Edgy Camera System for Smart Mobile Objects in IoT Edge Computing. KIISE Trans.

Comput. Pract. 2020, 26, 377–388. (In Korean)
14. Lee, C.; Jeon, S.; Jung, I. Cluster Property based Data Transfer for Efficient Energy Consumption in IoT. J. KIISE 2017, 44, 966–975.

(In Korean) [CrossRef]
15. Chernyshev, M.; Baig, Z.; Bello, O.; Zeadally, S. Internet of Things (IoT): Research, Simulators, and Testbeds. IEEE Internet Things

J. 2018, 5, 1637–1647. [CrossRef]
16. Han, N.S.; Lee, G.M.; Crespi, N.; Heo, K.; Van Luong, N.; Brut, M.; Gatellier, P. DPWSim: A simulation toolkit for IoT applications

using devices profile for web services. In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul,
Korea, 6–8 March 2014; pp. 544–547.

17. Gupta, H.; Dastjerdi, A.V.; Ghosh, S.; Buyya, R. iFogSim: A toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing environments. Softw. Pract. Exp. 2017, 47, 1275–1296. [CrossRef]

18. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.F.; Buyya, R. CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 2010, 41, 23–50. [CrossRef]

19. Sonmez, C.; Ozgovde, A.; Ersoy, C. EdgeCloudSim: An environment for performance evaluation of edge computing systems.
Trans. Emerg. Telecommun. Technol. 2018, 29, e3493. [CrossRef]

20. Zeng, X.; Garg, S.K.; Strazdins, P.; Jayaraman, P.P.; Georgakopoulos, D.; Ranjan, R. IOTSim: A simulator for analysing IoT
applications. J. Syst. Arch. 2017, 72, 93–107. [CrossRef]

21. Sotiriadis, S.; Bessis, N.; Asimakopoulou, E.; Mustafee, N. Towards Simulating the Internet of Things. In Proceedings of the 2014
28th International Conference on Advanced Information Networking and Applications Workshops, Victoria, BC, Canada, 13–16
May 2014; pp. 444–448.

22. Pthread. Available online: https://pubs.opengroup.org/onlinepubs/9699919799 (accessed on 8 April 2021).
23. RaSim. Available online: http://snslab.kangwon.ac.kr/v2/RaSim/index.html (accessed on 8 April 2021).
24. Bluetooth. Available online: https://www.bluetooth.com/ (accessed on 8 April 2021).
25. Samie, F.; Bauer, L.; Henkel, J. IoT technologies for embedded computing: A survey. In Proceedings of the 2016 International

Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), Pittsburgh, PA, USA, 2–7 October 2016;
pp. 1–10.

26. Razafimandimby, C.; Loscri, V.; Vegni, A.M. A Neural Network and IoT Based Scheme for Performance Assessment in Internet of
Robotic Things. In Proceedings of the 2016 IEEE First International Conference on Internet-of-Things Design and Implementation
(IoTDI), Berlin, Germany, 4–8 April 2016; pp. 241–246.

https://www.arduino.cc/
http://doi.org/10.5626/KTCP.2019.25.8.377
http://doi.org/10.5626/JOK.2017.44.9.966
http://doi.org/10.1109/JIOT.2017.2786639
http://doi.org/10.1002/spe.2509
http://doi.org/10.1002/spe.995
http://doi.org/10.1002/ett.3493
http://doi.org/10.1016/j.sysarc.2016.06.008
https://pubs.opengroup.org/onlinepubs/9699919799
http://snslab.kangwon.ac.kr/v2/RaSim/index.html
https://www.bluetooth.com/

	Introduction
	Related Work
	Edge Computing
	Edge Longevity
	IoT Simulators
	Full-Stack Simulator
	Big-Data Processing Simulator

	Simulator for Edge Computing (RaSim)
	Architecture
	Data Structure of a Thing

	Simulator Implementation
	Simulator Setup
	Virtual Thing Creation and Initialization
	Role Function
	Interaction between Things
	Simulator Execution and Termination

	Similarity
	Experimental Environment
	CPU Usage
	Battery Usage
	Bandwidth Usage
	Resource Usage by Interaction between Things

	Edge Clustering
	Architecture
	Big-Data Processing Application (Data Sorting/Searching)
	Processing Time
	Battery Usage
	Throughput

	Machine Learning Application (Backpropagation Neural Network)
	Processing Time
	Battery Usage
	Learning Accuracy
	Throughput

	Diagnostic Application (FFT)
	Processing Time
	Battery Usage
	Throughput

	Conclusions and Future Work
	References

