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Abstract: PM2.5 pollution has produced adverse effects all over the world, especially in fast-
developing China. PM2.5 pollution in China is widespread and serious, which has aroused widespread
concern of the government, the public and scholars. This paper evaluates the evolution trend and
spatial pattern of PM2.5 pollution in China based on the data of 281 prefecture-level cities in China
from 2007 to 2017, and reveals the pollution situation of PM2.5 and its relationship with industrial
restructuring and technological progress by using spatial dynamic panel model. The results show
that China’s PM2.5 pollution has significant path dependence and spatial correlation, and the indus-
trial restructuring and technological progress have significant positive effects on alleviating PM2.5

pollution. As a decomposition item of technological progress, technical change effectively alleviates
PM2.5 pollution. Another important discovery is that the interaction between industrial restructuring
and technological progress will aggravate PM2.5 pollution. Finally, in order to effectively improve
China’s air quality, while advocating the Chinese government to pursue high-quality development,
this paper puts forward a regional joint prevention mechanism.

Keywords: PM2.5 pollution; industrial restructuring; technological progress; spatial dynamic panel
model; prefecture-level cities

1. Introduction

In recent years, the development model at the expense of the environment has weak-
ened the sustainability of China’s economy. The emission of particulate pollutants in China
has increased rapidly [1]. Among them, PM2.5 can significantly reduce the visibility of the
atmosphere and is one of the main pollutants that lead to the decline of air quality.

PM2.5 refers to particles with an aerodynamic diameter of 2.5 µm or less, of which
1 µm is equal to 1 × 10−6 m [2]. In 2013, nearly 80 million people in China deviated from
the normal life and production track due to PM2.5 pollution, and the social order was
impacted [3]. Some studies have confirmed that PM2.5 can directly reach human lungs,
thus causing great harm to human health [4]. Alleviating PM2.5 pollution and reducing
the health hazard of PM2.5 on public health have become primary tasks for the Chinese
government.

Out of the responsibility to the public and the need of scientific research, scholars
carried out a series of related studies. Since the 21st century, with the rapid deterioration
of global air quality, a large number of related studies on PM2.5 pollution have emerged.
Scholars have studied the diffusion and influence of PM2.5 from the meteorological per-
spective in the past time [5–7]. In recent years, more and more attention has been paid to
the expected role of socioeconomic factors in PM2.5 pollution. Ji et al. (2018) conducted a
study of 79 developing countries. The results based on the data from 2001 to 2010 show
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that the increase in income level has a positive impact on PM2.5 pollution, and this im-
pact is different in stages under the influence of the level of urbanization [8]. Wang et al.
(2018) explored the driving factors of PM2.5 pollution in G20 countries. The empirical
results show that political globalization has a significant impact on high-and low-polluting
countries, while the existence of democracy has a weak impact on low-polluting countries.
Furthermore, the results based on the mediating effect test show that the per capita GDP
is the bridge between the above two indicators on PM2.5 pollution [9]. Mania et al. (2020)
used an air sampler to quantitatively monitor the concentration of PM2.5 in Pacific island
countries. At the same time, the results of factor analysis show that the increase in the
number of second-hand cars and lax emission restrictions are the main factors contributing
to the aggravation of PM2.5 pollution in Pacific island countries [10]. Aiming at the serious
fine particulate pollution in North China, Zhang et al. (2020) explored the impact of a
series of socioeconomic indicators on PM2.5 pollution. The results show that the social
transformation characterized by urbanization and intensive traffic network significantly
aggravates the development of PM2.5 pollution, and the development of service industry
can effectively alleviate PM2.5 pollution [11]. The situation of PM2.5 pollution in provincial
and municipal areas has also attracted more and more attention. For example, in a study
on Beijing, Xu et al. (2020) captured the positive impact of government regulation on
improving PM2.5 pollution, providing a basis for the rationality and effectiveness of gov-
ernment control of air pollution [12]. Lin et al. (2020) took 255 cities in China as the study
samples and collected data from 2000 to 2015, exploring the relationship between forest and
PM2.5 pollution. The results show that increasing forest area can alleviate PM2.5 pollution,
specifically, 1% increase in forest area can reduce PM2.5 concentration by 2.53% [13].

On the other hand, the methodology of PM2.5 pollution research is also worthy
of attention. The existing quantitative research paradigm can be roughly divided into
two categories. One is to judge the influencing factors of PM2.5 pollution based on the
correlation test. For example, Zhang et al. (2015) used multifractal asymmetric detrended
cross-correlation analysis to measure the correlation between various meteorological factors
and PM2.5 pollution. The results show that the increase of temperature, air pressure, relative
humidity and wind speed can significantly reduce the local PM2.5 concentration [14].
Based on annual cross-sectional data and correlation analysis, Huang et al. (2019) judged
that the increase of household income and education level can effectively alleviate PM2.5
pollution [15]. The second kind of analysis path is quantitative analysis based on the
parameterized econometric regression model. For example, Zhao et al. (2019) used the
ordinary least squares (OLS) method to explore the impact of various socioeconomic
indicators on PM2.5 pollution [16]. In addition, panel quantile regression model [9], multi-
objective ensemble model [17] and STIRPAT model [18,19] are widely used. By using the
above research methods, the influence of a certain index on PM2.5 pollution can be obtained
from different angles, and the degree of fitting of fit is high. However, this is not enough to
explain the complex mechanism of the development of PM2.5 pollution. According to the
first law of geography, everything is related to other things, and neighboring things are
more closely related [20]. PM2.5 is easy to diffuse [21], and PM2.5 pollution in neighboring
areas may have spatial correlation. If the spatial relationship of data is not extracted and
processed, it will lead to the potential spatial autocorrelation problem, which will eventually
lead to the distortion of the model results [22]. In other words, the macro impact analysis
of PM2.5 needs to be improved by spatial methods. In reality, due to the slow adjustment of
emission reduction technology, environmental policy and inertia of other economic factors,
the adjustment of pollution emission is often a continuous and slow dynamic process. The
static model will lead to estimation deviation due to ignoring the dynamics of the target
variable, which will eventually affect the authenticity of the economic explanation of the
estimation coefficient of the explanatory variable [23]. Considering that PM2.5 pollution
may have the above two properties, a method combined with time and space dynamics is
needed to better simulate the actual situation of PM2.5 pollution.
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At the present stage, for China, industrial structure adjustment and technological
progress are the fundamental driving force to alleviate PM2.5 pollution. The Chinese
government is committed to adjusting the industrial structure at the present stage, and
these reform measures have been proved to affect the air quality [13,20]. At present, most
scholars focus on the relationship between industrial restructuring and PM2.5 pollution in
China. The general view of existing research is the upgrading the industrial structure from
the secondary industry to the tertiary industry is a valid path to solve the problem of PM2.5
pollution [11,24,25]. During the 12th five-year Plan and 13th five-year Plan period, Chinese
governments at all levels actively advocated strengthening technological transformation
and upgrading in the fields of production and consumption, developing new technologies,
processes and equipment for energy conservation and environmental protection, and
giving full play to the leading role of scientific and technological innovation in green
development [26,27]. Up to now, the research on the impact of technological progress
on atmospheric environment has focused on energy consumption and greenhouse gas
emissions [28,29]. In recent years, the diffusion intensity of PM2.5 pollution in Chinese
mainland region has been restrained to a certain extent, which is intrinsically related to
the changes in technology and industry. However, from the perspective of quantitative
analysis, the specific effects of technical factor and industrial factor on alleviating PM2.5
pollution have not been deeply explored.

Do technological progress and industrial structure adjustment restrain PM2.5 pollu-
tion? Considering the relevance and compatibility of production and technology, what
is the combined effect of the two on PM2.5 pollution? Meanwhile, prefecture-level cities
are administrative divisions in China, which rely on huge energy consumption to main-
tain their development and support a large number of people. At the same time, energy
consumption has been proved to be the main driver of deteriorating PM2.5 pollution [30].
Therefore, cities are both producers and main victims of PM2.5 pollution [31]. Therefore, in
order to answer the above two questions, this paper selects the data of 281 prefecture-level
cities, explores the dynamic evolution characteristics and geographical distribution pattern
of China’s PM2.5 pollution, and focuses on the effect of industrial structure adjustment
and technological progress on PM2.5 pollution. The marginal contributions that may be
made in this paper are as follows: (1) From the research perspective, this paper takes both
technological factor and industrial factor as the core part of the PM2.5 pollution research
framework; (2) In terms of research methods, taking the dynamic characteristics and spa-
tial correlation characteristics of PM2.5 pollution diffusion as the entry point, this paper
establishes the spatial dynamic panel model to explore how technological progress and
industrial structure adjustment affect PM2.5 pollution.

The rest of this paper is arranged as follows: Section 2 introduces the methodology
and data sources of this paper. Section 3 contains the development of PM2.5 pollution
in China. Section 4 is the results of quantitative analysis based on the model. Section 5
contains the main conclusion and related discussion.

2. Methodology and Materials
2.1. Model Derivation

Grossman and Krueger put forward an analytical framework for the environmental
effects of trade, and decomposed the environmental effects of international trade into three
aspects: structural effects, technological effects and scale effects [32]. This paper improves
the above framework to identify the influencing factors of PM2.5 pollution. The improved
benchmark framework is as follows:

PMit= f (ISUit, ISRit, TPit, Zit) (1)

In this framework, i stands for prefecture-level city, t stands for year, and the inter-
preted variable PM stands for PM2.5 concentration, which is used to measure the degree
of PM2.5 pollution. ISU stands for upgrading of industrial structure, ISR stands for ratio-
nalization of industrial structure, TP stands for technological progress, and Z is the set
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of control variables. Considering that PM2.5 pollution in prefecture-level cities may have
temporal dynamics, this paper establishes the following regression model:

PMit= A + τPMi(t−1)+β1 ISUit+β2 ISRit+β3TPit+αZit+εit (2)

Equation (2) is a general dynamic panel model, A is a constant term, β1-β3 represent
the estimated coefficients of the core explanatory variables, and α includes the estimated
coefficients of the control variables, and ε is a random interference term. τ is the first-order
lag estimation coefficient of the explained variable, which can reflect the influence of
previous PM2.5 pollution on current PM2.5 pollution. It is worth noting that the research
unit of this paper is the city, which forms a spatial relationship that cannot be ignored with
the flow of elements as the link. Focus on the spatial correlation of PM2.5 pollution, this
paper establishes the following regression model:

PMit= A + β1 ISUit+β2 ISRit+β3TPit+αZit+ρ
n
∑

j=1
WijPMjt+εit+νi+ηt

εit= λ
n
∑

j=1
Wijε jt + θjt

(3)

Equation (3) is a spatial static panel model. Both ρ and λ are estimated coefficients of
spatial correlation, which reflect the spatial lag effect and spatial error spillover effect of
regional PM2.5 pollution. Wij is a geo-spatial inverse distance matrix based on the spatial
distance relation of geographic units. We use the reciprocal of Euclidean distance between
prefecture-level city i and prefecture-level city j to calculate Wij, that is, Wij = 1/dij. ν stands
for regional non-observed effect and η stands for time unobservable effect. In summary, if
the dynamic effect and spatial effect of PM2.5 pollution are considered at the same time, the
first-order lag term and spatial lag term of PM2.5 pollution can be included in the equation,
and the following compound model can be established:

PMit= A + τPMi(t−1)+β1 ISUit+β2 ISRit+β3TPit+αZit+ρ
n
∑

j=1
WijPMjt+εit+νi+ηt

εit= λ
n
∑

j=1
Wijε jt + θjt

(4)

Equation (4) is a spatial dynamic panel model, which is essentially a combination of
Equations (2) and (3). Seen from the model components, it can control both the dynamic
characteristic and spatial characteristic of PM2.5 pollution.

2.2. Variables Description and Data
2.2.1. Core Explanatory Variables

(1) Industrial structural upgrading (ISU): The international community usually divides
various industries into three categories. This paper takes the proportion of the added
value of the tertiary industry as the indicator of the upgrading of the industrial
structure [33].

(2) Industrial structure rationalization (ISR): Theil introduced the concept of entropy in
information theory into economics, and used it to measure income inequality, which
better reflects the uneven distribution of income factors in regions [34]. Therefore, the
Theil index can be used to evaluate the rationalization of the industrial structure. The
calculation method of Theil index is as follows:

Theil index =
n

∑
i=1

Wi
W

ln(
Wi
Pi

/
W
P
) (5)

In this formula, W represents regional GDP, P represents employed population, i rep-
resents specific industry, and n represents the grouping of industrial structure. The smaller
Theil index is, the higher the rationalization degree of industrial structure is. In order to
realize the consistency between ISR numerical change and rationalization change direction
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of industrial structure, this paper carries out reciprocal transformation of Theil index, that
is, ISR = 1/Theil index, the higher ISR, the higher rationalization of industrial structure.

(3) Technological progress (TP): This paper takes the change of total factor productivity
(TFPCH) as the indicator of TP. Because there is no need to estimate parameters in
advance, data envelopment analysis (DEA) can effectively reduce errors and avoid the
influence of subjective factors, and is suitable for evaluating the relative effectiveness
of multi-input decision-making units [35]. Therefore, DEA-Malmquist productivity
index method is used to calculate the TFPCH. At the same time, this method can
further decompose TFPCH into technical change (TC) and efficiency change (EC) [36].
All the calculation work is based on the index database with the time span from
2006 to 2017 and DEAP 2.1 platform. The input indicators set in this paper include
capital, energy and labor. Specifically, this paper uses capital stock to represent capital
investment. The former is calculated based on the price level in 2006 and the perpetual
inventory method [37]; Convert all kinds of energy consumed by prefecture-level
cities into standard coal and characterize energy input by this; Using the scale of
employed persons to represent labor input. In this paper, the price index of 2006 is
used to offset the GDP, and the processed GDP is used to characterize the output.

2.2.2. Control Variables

(1) Economic development (ED): Most of the related researches on the correlation between
economic development and PM2.5 pollution are based on the EKC (environmental
Kuznets curve) theory [32]. This paper uses per capita GDP to measure the economic
status of cities.

(2) Urbanization (UR): The urbanization process has changed the original natural and
social conditions, and therefore, cities have become spatial containers of PM2.5 pollu-
tion [18]. Many studies have confirmed the positive impact of urbanization on PM2.5
pollution [38–40]. This paper uses the proportion of urban population to the total
population to measure the urbanization level.

(3) Energy intensity (EI): The general view is that pollutants emitted by energy consump-
tion constitute the important supplement of PM2.5 [41,42]. Considering the difference
of city scale, energy intensity has a higher explanatory power for PM2.5 pollution. In
this paper, all kinds of energy consumed by cities are converted into standard coal,
and the energy intensity is measured by the amount of standard coal consumed per
10,000 yuan of GDP.

(4) Temperature (TE): Tai et al. (2010) analyzed the impact of climate change on PM2.5
pollution, and found that high air temperature made PM2.5 pollution situation wors-
ening [43]. In this paper, the annual average temperature is used to measure the
temperature of each city [9,44].

(5) Precision (PR): The precipitation process is an important way to remove particulate
pollutants [45]. In this paper, the average value of annual precipitation recorded by
urban meteorological monitoring stations is used to measure urban precipitation.

2.3. Data Source

The PM2.5 data used for analysis in this paper is the product provided by Dalhousie
University Atmospheric Composition Analysis Group, and is widely used in global, na-
tional and regional multi-scale research [46,47]. Based on the ArcGIS platform, this paper
analyzes the original data to obtain the PM2.5 concentration level of each city. Socioeco-
nomic data comes from various issues of China City Statistical Yearbook, and statistical
bulletins issued by prefecture-level cities and other public data. The energy use data
of each city is based on the decomposition of provincial energy consumption data and
night lighting data. Individual missing data were processed by means of imputation. The
temperature and precipitation data are obtained from meteorological monitoring stations
set up in various cities. In view of the completeness and continuity of the data and the
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adjustment of administrative divisions, this paper finally selected 281 prefecture-level cities
in China as the research objects.

Table 1 shows the statistical results of the variables. In the model estimation process,
in addition to the variables measured in percentage units, this paper performs logarithmic
transformation on all other variables to reduce the damage caused by heteroscedasticity to
the accuracy of the estimation results. Multicollinearity is ubiquitous, which will increase
the variance of regression coefficient and reduce the reliability of model estimation. Before
the regression of the three models, the multicollinearity test was carried out in this paper.
On the one hand, the correlation coefficient matrix shows that there is no highly correlated
set of variables (Figure 1). On the other hand, the VIFs are all less than 5, which indicates
that there is no serious multicollinearity problem. Therefore, it can be considered that the
model regression carried out by large samples in this paper is in line with the standard of
econometric analysis.

Table 1. Variable statistics results.

Variables Mean Std.
Dev Min Max Units Sample

Size

PM2.5 Concentration (PM) 44.63 18.09 3.64 104.30 µg/m3 3091
Industrial Structural
Upgrading (ISU) 37.93 9.43 8.58 80.81 % 3091

Industrial Structure
Rationalization (ISR) 0.14 1.40 −0.08 50.13 % 3091

Technological Progress (TP) 1.00 0.09 0.15 1.94 % 3091
Technical Change (TC) 1.01 0.08 0.59 1.31 % 3091
Efficiency Change (EC) 1.00 0.09 0.13 1.66 % 3091
Economic Development (ED) 41,169.61 28,456.11 3418.00 224,147.00 yuan 3091
Urbanization (UR) 49.78 17.89 12.00 98.70 % 3091

Energy Intensity (EI) 1.05 0.64 0.08 7.67 t/104

yuan 3091

Temperature (TE) 15.15 0.64 1.10 26.80 ◦C 3091
Precipitation (PR) 1006.06 571.28 41.80 3202.50 mm 3091
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3. Temporal-Spatial Characteristic of PM2.5 Pollution
3.1. Dynamic Evolution of PM2.5 Pollution

In order to explore the development trend of PM2.5 pollution, this paper calculates
the annual average value of PM2.5 pollution and the number of cities above average in the
study area from 2007 to 2017 (Figure 2). The average concentration of PM2.5 pollution has
fluctuation and stage. From 2007 to 2012, the concentration showed a downward trend.
Then, the concentration increased from 40.73 µg/m3 in 2012 to 46.64 µg/m3. Then, the
concentration decreased between 2013 and 2016, however, it showed an upward trend
at the end of the study period. Overall, the degree of PM2.5 pollution in the study area
has been alleviated, although the data show that the concentration has only decreased by
7.66%. In addition, the number of above-average cities fluctuates over time, but the number
is limited. During the study period, higher-than-average cities accounted for 42.35% to
48.04% of the total sample.
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Figure 2. China’s PM2.5 pollution status from 2007 to 2017.

According to the “Ambient Air Quality Standard” (GB3095-2012) issued by the Chi-
nese government, this paper divides the PM2.5 concentration into six intervals (Figure 3).
Overall, the number of cities with PM2.5 concentrations lower than 15 µg/m3, 55~75 µg/m3,
and 75~95 µg/m3 all decreased significantly, while the remaining two categories increased.
China’s PM2.5 pollution problem has improved slightly in the past ten years. According
to the distribution situation, in 2007, the high-value areas of PM2.5 concentration were
mainly located in the border areas of North China, Central China and East China and
Shandong Peninsula. Since then, the distribution of high-value regions has shown re-
markable dynamic changes, and the development trend of local contraction has appeared
in recent years. Low-value areas are scattered, which can be roughly divided into three
zones: northeast, southwest and southeast coastal areas. An important message shown in
Figure 3 is that PM2.5 pollution has obvious path-dependent characteristics. For a single
city, this path dependence is reflected in the time series correlation of the average annual
PM2.5 concentration.
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3.2. Spatial Autocorrelation of PM2.5 Pollution

Studies have proved that spatial autocorrelation analysis is scientific and available
for atmospheric environment research [48]. Moran’s I is one of the spatial autocorrelation
measures [49]. This paper first obtains the overall spatial distribution pattern of PM2.5
pollution based on the Global Moran’s I. The calculation method of Global Moran’s I is
as follows:

I =

n
n
∑

i=1

n
∑

j=1
Wij(p i − p)

(
pj − p

)
(

n
∑

i=1

n
∑

j=1
Wij

)
n
∑

i=1
(p i−p)2

, (i 6= j) (6)
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In the formula, I represent Global Moran’s I. pi and pj represent PM2.5 concentration
values of cities i and j, respectively, n is the total number of cities. The significance test of
Global Moran’s I can be realized by using standardized statistics Z(I):

Z(I) =
I − E(I)√

Var(I)
(7)

In which E(I) and Var(I) are the expectation and variance of the global Moran’s I,
respectively. Global Moran’s I and Z(I) results of PM2.5 pollution are shown in Table 2.
Measured value is greater than 0.49 and Z statistic are significantly positive in each year,
which indicates that PM2.5 pollution has significant spatial correlation and aggregation.
From 2007 to 2017, Global Moran’s I declined, which indicated that the aggregation of
PM2.5 pollution in China was weakened at the prefecture-level cities level.

Table 2. Results of global spatial autocorrelation.

Year I Z(I) Year I Z(I)

2007 0.583 58.272 *** 2013 0.560 55.926 ***
2008 0.494 49.410 *** 2014 0.529 52.913 ***
2009 0.491 49.125 *** 2015 0.565 56.465 ***
2010 0.531 53.017 *** 2016 0.588 58.720 ***
2011 0.539 53.877 *** 2017 0.499 49.872 ***
2012 0.507 50.692 ***

Note: The symbols *** indicates p < 1%.

We use Local Moran’s I to analyze the correlation degree between PM2.5 pollution
in one city and PM2.5 pollution in neighboring cities. The method for calculating Local
Moran’s I is as follows:

Local Moran′s I =

n(pi − p)
m
∑

j=1
Wij
(

pj − p
)

n
∑

i=1
(p i − p)2

, (i 6= j) (8)

In which pi, pj, n and Wij have the same meanings as above, and m is the number of
cities geographically adjacent to city i. Figure 4 shows the local autocorrelation results
of PM2.5 concentration. The results of local autocorrelation are highly consistent with
the geographical distribution pattern of PM2.5 concentration. High-High clustering is
mainly located in the area of Central China and Shandong Peninsula. Northeast China,
Southwest China and Southeast Coast are the concentrated areas of Low-Low clustering.
There are fewer High-Low clustering and Low-High clustering. The results of local spatial
autocorrelation indicate that the spatial heterogeneity of PM2.5 pollution distribution is
small, and the regional integration of PM2.5 pollution is obvious.
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4. Impacts of Influencing Factors on PM2.5 Pollution
4.1. Model Recognition

We find that PM2.5 pollution in China has significant temporal dynamics and spatial
correlation. Therefore, compared with the two other non-general models, spatial dynamic
panel model has theoretical advantages. In order to verify whether the advantages of
spatial dynamic panel model can be continued in practice, this paper estimates the three
models and compares the results.

It should be noted that in this study, the first-order lag term of the dependent variable
is regarded as one of the explanatory variables, and the panel data has cross-sectional de-
pendency. Therefore, using traditional estimation methods to estimate dynamic panel data
will inevitably lead to the bias and inconsistency of parameter estimation, which will distort
the economic meaning of inference based on parameters. In order to get consistent estima-
tors, the widely used estimation method in related research is the difference generalized
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moment estimation (Difference-GMM) proposed by Arellano and Bond [50]. Unfortunately,
when the steady-state level adjustment speed of the explained object is slow, the lag level
tool variable used by Difference-GMM will become very weak. Blundell and Bond pro-
posed system generalized moment estimation (System-GMM) based on Difference-GMM,
which solved the above problems well [51]. In this paper, System-GMM is used to estimate
the general dynamic panel data model. Kukenova and Monteiro compared many estima-
tion methods when studying the spatial effects of dynamic panel models, and found that
System-GMM has the best estimation effect among different methods. They developed
the generalized moment estimation of spatial system (Spatial System-GMM) based on
system-GMM [52]. Based on this, this paper uses Spatial System-GMM to estimate the
spatial dynamic panel model. In addition, in order to weaken the influence of heteroscedas-
ticity, the standard error of parameter estimation of system GMM adopts robust estimation.
Finally, for the spatial static panel model, this paper uses ML method [53] to estimate. So
far, this paper specifies specific estimation methods for three non-general panel models.
Table 3 shows the detailed estimation results of the three models, including two different
specifications of model estimation.

Table 3. Estimation results based on three models.

General Dynamic Panel Models Spatial Static Panel Models Spatial Dynamic Panel Models

Model (a) Model (b) Model (c) Model (d) Model (e) Model (f )

τ 0.7388 *** 0.7197 *** 0.3271 *** 0.3337 ***
(0.0407) (0.0687) (0.0310) (0.03184)

ρ 0.4639 *** 0.4657 *** 0.4966 *** 0.5008 ***
(0.0239) (0.0240) (0.0195) (0.0208)

ISU 0.0041 * −0.0542 ** 0.0009 −0.0037* −0.0009 −0.0078 ***
(0.0029) (0.0274) (0.0009) (0.0027) (0.0009) (0.0027)

ISR −0.0226 −2.2674 −0.0015 *** −0.0794 ** −0.0011 * −0.1112 ***
(0.0548) (2.6874) (0.0006) (0.0190) (0.0006) (0.0158)

TP −2.0470 ** −0.1801 ** −0.2250 **
(0.9172) (0.0887) (0.0916)

TP × ISU 0.0518** 0.0040 * 0.0060 ***
(0.0260) (0.0023) (0.0022)

TP × ISR 2.1332 0.0743 *** 0.1047 ***
(2.5335) (0.0178) (0.0151)

TC 0.5328 *** −0.0591 * −1.1204 **
(0.1086) (0.0320) (0.0543)

EC 1.2548 *** 0.0216 0.0666 **
(0.2211) (0.0263) (0.0262)

ln ED 0.0124 0.3708 *** −0.0758 *** −0.0779 *** −0.1064 *** −0.1082 ***
(0.0359) (0.0783) (0.0143) (0.0145) (0.0294) (0.0293)

UR −0.0039 −0.0076 −0.0022 *** −0.0021 *** −0.0010* −0.0010 *
(0.0048) (0.0051) (0.0007) (0.0007) (0.0006) (0.0005)

ln EI 0.0167 0.3049 ** 0.0704 *** 0.0732 *** 0.0517 *** 0.0493 ***
(0.0700) (0.1296) (0.0201) (0.0201) (0.0148) (0.0145)

ln TE 0.2362 *** 0.2495 *** 0.0958 0.0987 0.1777 * 0.1758 *
(0.0589) (0.0789) (0.0956) (0.0956) (0.0933) (0.0952)

ln PR −0.2280 *** −1.1394 *** −0.0248 *** −0.0244 ** −0.0207 ** −0.0185 *
(0.0330) (0.0459) (0.0092) (0.0091) (0.0098) (0.0097)

Obs 2810 2810 3091 3091 2810 2810
LM–Error (0.129) (0.128) (0.123) (0.122)

Robust LM–Error (0.144) (0.150) (0.138) (0.145)
LM–Lag (0.018) (0.013) (0.016) (0.011)

Robust LM–Lag (0.037) (0.025) (0.032) (0.020)
AR (1) (0.000) (0.000) (0.000) (0.000)
AR (2) (0.798) (0.356) (0.472) (0.307)

Hansen over-
Identification test (0.195) (0.187) (0.213) (0.218)

Note: The symbols *, ** and *** indicate p < 10%, p < 5% and p < 1%, respectively.
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Specifically, for the core explanatory variables, only their independent effects on PM2.5
concentration are considered in the model (a), model (c) and model (e). model (b), model (d)
and model (f ) consider the interaction between technological progress and industrial
structure upgrading and rationalization. This can achieve intra-group comparison of the
estimation results of the same model, which is a method of robustness test.

In order to judge whether the System-GMM method is specified correctly, it is neces-
sary to carry out two sets of specification tests. First, over-recognition test should be used
to judge the overall effectiveness of tool variables in GMM framework. Sargan statistics
and Hansen statistics can be used for over-recognition test, but the former is not robust to
heteroscedasticity [54]. Therefore, this paper only reports the Hansen statistics. The test
values are all greater than 0.10, and the original hypothesis is not rejected, which indicates
that there is no over-identification problem in GMM estimation of the system. Secondly,
the consistency of System-GMM estimator requires that the error term of the original hori-
zontal equation has no sequence correlation, so this paper uses AR test to test the sequence
correlation of residual term. The results of AR test show that the random disturbance
term has first-order sequence correlation but no second-order sequence correlation, which
satisfies the requirement of moment constraint. Reasonable screening of different spatial
models the key step to estimate spatial panel data. Based on the results of LM and Robust
LM statistics, this paper use SAR model to estimate spatial models.

By observing Table 3 as a whole, it can be found that the estimation coefficients of
models (e) and (f ) are more significant than those of models (a)–(d). This is mainly because
model (e) and model (f ) control the spatial effect of PM2.5 concentration and weaken the
partial deviation in the estimation process of model (a) and model (b). In the same way,
model (e) and model (f ) consider the dynamic effect of PM2.5 concentration ignored by
model (c) and model (d), which makes the estimation result better. In conclusion, the spatial
dynamic panel model shows its advantages in theory and practice. Therefore, this paper
chooses model (e) and model (f ) as the final interpretation models.

4.2. Analyses of Results

According to the estimation results of models (e) and (f ), the estimation coefficients
of the first-order lag terms are both significantly positive at 1% significance level, which
indicates that the formation and adjustment of PM2.5 is indeed a continuous and cumu-
lative process. Path dependence of PM2.5 pollution indicates that it is urgent to carry out
regional PM2.5 pollution control work decisively. The spatial regression coefficients are
greater than 0.46, and have passed the significance level of 1%, which indicates that PM2.5
pollution in China has spatial diffusion effect. The Chinese government should adopt a
joint prevention and control strategy in the process of PM2.5 pollution control; otherwise,
the local control work may be in vain, and the PM2.5 pollution crisis may come back after a
period of improvement.

The estimation result of model (e) shows that the coefficient of industrial structure
rationalization is significantly negative after controlling ED, UR, EI, TE and PR. This dis-
covery highlights the importance of rationalizing industrial structure to alleviate PM2.5
pollution in China. The coefficient of technical change is negative at 5% significance level,
while the coefficient of efficiency change is significantly positive. At the same time, the
coefficient of technical change is greater than the coefficient of efficiency change. This
indicates that technical change is essential for alleviating PM2.5 pollution. The negative
effect of efficiency changes in mitigating PM2.5 pollution deserves Chinese government’s
attention. For a long time, in order to achieve rapid economic development, China’s devel-
opment model pays more attention to quantity rather than efficiency. This has led to serious
problems of low production efficiency and overcapacity in China’s steel, construction and
cement industries. The double effects of lack of effective administrative measures and
lagging market reform make the problem of overcapacity in China’s industries always
exist, and eventually lead to negative environmental effects.
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The estimation results of the model (f ) show that the estimation results become more
complicated after considering the technological progress and the interactive terms of
the core explanatory variables. First, the coefficient of industrial structure upgrading
has changed from insignificant to significant, and the coefficient of industrial structure
rationalization is more significant. From the perspective of regression parameters, for unit
increase in industrial structure upgrading and industrial structure rationality, the PM2.5
concentration will decrease by 0.78% and 11.12%, respectively. The empirical results of
Zhang et al. (2020) show that for 1% increase in the output value of the tertiary industry,
the concentration of PM2.5 decreases by an average of 0.99% [11]. In addition, the research
results of Zhang et al. (2019) show that the increase in the proportion of output value of the
secondary industry will lead to the aggravation of PM2.5 pollution, that is, for 1% increase
in proportion, the concentration of PM2.5 will increase by 1.03% [18]. In a word, the realistic
possibility that the shift of the focus of industrial development from the secondary industry
to the tertiary industry will improve air quality has been confirmed again in this study.
Although the role of PM2.5 emission reduction of industrial structure rationalization has
not been discussed in previous studies, in this study, the environmental improvement effect
of industrial structure rationalization is more than ten times that of industrial structure
upgrading. Therefore, full attention should be paid to the positive environmental effects
contained in the process of industrial structure rationalization. Secondly, the regression
coefficient of technological progress is less than 0 and has passed the significance test of
5%. This indicates that technological progress has a significant positive effect on alleviating
PM2.5 pollution in China. If the technological progress increases by one unit, the decrease
of PM2.5 concentration will reach 22.50%. This is similar to the empirical results of Yi et al.
(2020), which affirmed the positive role played by technological progress in alleviating
PM2.5 pollution, and pointed out that the average concentration of PM2.5 decreased by
about 20% for every 1% increase in neutral technological progress [55]. Thirdly, the results
of model (f ) show that the interaction between technological progress and industrial
restructuring promotes the development of PM2.5 pollution. The joint item of technological
progress and industrial structure upgrading increased by 1 unit, and the average increase
in PM2.5 concentration was 0.60%. As for the rationalization of industrial structure, it will
also worsen the situation of air pollution when combined with technological progress.

In terms of control variables, economic development has a significant negative impact
on PM2.5 pollution, which indicates that the positive externalities of economic scale have
been brought into full play, and sustained economic development is conducive to improv-
ing PM2.5 pollution. Economic development level measured by currency can quantify the
final results of urban social and economic activities, but it is difficult to show more details.
In fact, there is a possibility that the upgrading of industrial structure, the improvement
of energy-saving technology and the overall effect of public awareness of environmental
protection offset the negative environmental effects caused by economic development. Just
as EKC theory states, environmental quality will deteriorate first and then improve with
economic development. The above reasons make economic development play a negative
role in the development of PM2.5 pollution in China. According to the regression results,
urbanization is beneficial to alleviate PM2.5 pollution, which is different from most existing
studies. Urbanization plays a positive and negative role in environmental quality. The
normal operation of the city needs energy maintenance. In addition, the destruction of
natural environment and industrial dust caused by urban construction and expansion are
also important ways for urbanization to damage environmental quality. However, what
cannot be ignored is that the rapid development of large-scale production and pollution
control, increasingly perfect environmental laws and regulations and high-quality citizens’
awareness of environmental protection have promoted the improvement of urban air
quality. In this paper, if the inhibition effect of urbanization process on PM2.5 pollution
deterioration exceeds the promotion effect of other factors, urbanization can show positive
environmental effects. Higher energy intensity will make PM2.5 pollution worse. The im-
provement of energy intensity means the increase of power consumption. Considering the
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fact that most cities in China still rely on coal for power generation, the increase of power
consumption indirectly leads to the generation of dust and fine particles, which makes
PM2.5 pollution worse. The effects of natural factors on PM2.5 pollution are consistent with
most existing research results. Under high temperature conditions, it is easier to form a
stable inversion layer over cities, which leads to PM2.5 stably and muchly suspended in
the air. Precipitation can promote the wet deposition of aerosol and realize the scouring of
PM2.5 particles.

5. Discussion and Conclusions
5.1. Main Conclusions

Since the reform and opening up, China has made remarkable achievements. However,
China’s extensive development model has led to ecological destruction, environmental
scarcity and environmental pollution. In particular, a large number of fine particles emitted
from the production process have caused great trouble to people’s health and normal social
order. The mitigation effect of industrial structure adjustment and technological progress
on PM2.5 pollution is obvious, but the specific effect has not been quantified. Based on
the panel data set of 281 prefecture-level cities in China from 2007 to 2017 and the theory
of spatio-temporal dynamics, this paper uses the spatial dynamic panel model to reveal
the contribution of industrial restructuring and technological progress to PM2.5 pollution.
The results show that PM2.5 pollution in China has obvious path dependence and spatial
diffusion effects. On the whole, industrial restructuring and technological progress have
effectively alleviated PM2.5 pollution. The decomposition term of technological progress,
technical change, has played a significant positive effect on alleviating PM2.5 pollution,
while efficiency change has played a positive role. Another important finding of this paper
is that the combined effect of technical change and industrial restructuring will aggravate
PM2.5 pollution.

The empirical research carried out in this paper has multiple significance. First of all,
this study confirms that technological progress and industrial structure adjustment have
played a positive environmental effect in the prevention and control of PM2.5 pollution,
which fills the research gap in the field of environmental management to a certain extent.
Secondly, the empirical results of this paper can inspire China’s PM2.5 pollution control
and green development, that is, adhere to the ongoing industrial structure adjustment and
innovation incentives at the present stage. Thirdly, China has a vast land area and carries a
large population. Alleviating China’s PM2.5 pollution is an important part of achieving
the goal of global sustainable development. It is of global significance to improve China’s
air quality.

5.2. Policy Implications

The normal operation of the secondary industry requires a large amount of energy
supply, and a large number of fine particles emitted from the production process make
the pollution situation of PM2.5 worse. A considerable part of the tertiary industry is
high-tech industry and service industry, which has far less negative effect on atmospheric
environment than the secondary industry. Therefore, the upgrading of industrial structure
can achieve positive environmental effects. Rationalization of industrial structure is to
realize the adaptation of industrial structure to energy and raw material structure, tech-
nical structure and demand structure. The improvement of the rationalization degree of
industrial structure provides internal power for reducing emission of particulate pollutants.
At the present stage and for a period of time in the future, the Chinese government should
not only attach importance to the upgrading of the industrial structure, but also take into
account the rationality and coordination of the industrial structure, so as to achieve the
sound development of the industry.

Since the implementation of reform and opening up, China has been enjoying the
technological dividend brought by trade globalization. In this process, China has carried
out a large number of independent innovation activities. At the same time, through
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the introduction of advanced technology, industrial processes and equipment, China’s
technology has been steadily improved in a low-risk and low-cost environment. In other
words, China has achieved technological progress in the production process, forming a
path of “technological progress-production improvement-pollutant emission reduction”,
which has contributed to improving air quality. In recent years, with the narrowing of
the technological gap between China and the world powers, more risks are derived from
the above path. For example, due to the deepening of capital, if the advanced equipment
introduced in the process of industrial development does not match the local resource
allocation, the negative environmental effect associated with the above path will dominate,
and the combined effect of technological progress and industrial structure adjustment will
cause damage to the environment. In the actual process of technology upgrading, attention
should be paid to improving the fit between new technologies and resource allocation in
order to achieve positive environmental benefits.

Considering the spatial diffusion effect of air pollution, regional joint prevention
has profound meaning for alleviating China’s PM2.5 pollution. Starting from the top-
level design, air pollution control is regarded as an overall and long-term development
strategy, and a policy system and governance mechanism from the central to the local
level are established. The industrial layout should be rationally planned to avoid excessive
concentration of polluting industries and reduce the negative external effects caused
by industrial undertaking during industrial transfer. In the process of governance, the
cooperation mechanism among different provinces, regions and even cities is formed, and
the spatial synergy is formed, and the development concept of green, openness and sharing
is established. Promote multi-subjects such as government, enterprises and residents to
jointly control PM2.5 pollution.

5.3. Research Prospects

The relatively rigorous empirical process can simulate the influence mechanism of
various factors on PM2.5 pollution as much as possible. However, on the one hand, the
potential error of available data will make the model results uncertain. On the other hand,
the selection of control variables will affect the effect of core variables in the model to some
extent. Extensive related research to investigate the mechanism of industrial adjustment
and technological progress on the purification of air pollution is an issue that needs to be
paid attention to in the future. In addition, the impact of industrial and technical factors on
PM2.5 pollution has potential regional heterogeneity, which needs to be analyzed deeply in
the future.
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