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Abstract
Lung cancer (LC) is the leading cause of cancer‐related death worldwide, with
non‐small cell lung cancer (NSCLC) comprising 85% of all cases. COX‐2, an
enzyme induced significantly under stress conditions, catalyzes the conversion
of free arachidonic acid into prostaglandins. It exhibits high expression in
various tumors and is closely linked to LC progression. COX‐2 functions as a
pivotal driver in cancer pathogenesis by promoting prostaglandin E2 synthesis
and facilitating tumor cell occurrence and development. Furthermore, COX‐2
holds potential as a predictive marker for early‐stage NSCLC, guiding targeted
therapy in patients with early COX‐2 overexpression. Additionally, combining
COX‐2 inhibitors with diverse treatment modalities enhances tumor therapeu-
tic efficacy, minimizes adverse effects on healthy tissues, and improves overall
patient survival rates posttreatment. In conclusion, combined therapy targeting
COX‐2 presents a promising novel strategy for NSCLC treatment, offering
avenues for improving prognosis and effective tumor treatment. This review
provides novel insights and ideas for developing new treatment strategies to
improve the prognosis of NSCLC.
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Key points
• COX‐2 cross‐interacts with a variety of signaling molecules, participating in
multiple signaling pathways and in the development of tumors.

• Targeted COX‐2 therapy can effectively inhibit the occurrence and
development of non‐small cell lung cancer.

• Potential future drug development, limitations, and prospects for targeted
COX‐2 therapy.

1 | INTRODUCTION

Lung cancer (LC) continues to be the foremost cause of
cancer‐related deaths both in the United States and
globally.1–3 It ranks as the second most common cancer
type, following female breast cancer, with an estimated
20,000 new cases and 17,600 deaths per year.2,4 LC can
be classified into main types based on the cells of origin:

small‐cell lung cancer (SCLC) and non‐small cell lung
cancer (NSCLC).2 NSCLC constitutes approximately 85%
of all LC cases.2 The treatment options for NSCLC are
diverse, such as surgery, chemotherapy, radiotherapy,
and molecular targeted therapy (e.g., epidermal growth
factor receptor [EGFR] or anaplastic lymphoma kinase
[ALK] inhibitors and immunotherapy).2,5 Despite these
interventions, nearly 70% of diagnosed patients were
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found to have advanced unresectable NSCLC, resulting
in a discouraging 15% 5‐year survival rate.3,5,6 Therefore,
gaining a comprehensive understanding of the patho-
genesis of NSCLC holds paramount importance in
developing innovative drugs, strategies, and therapies
that can enhance treatment efficacy, minimize adverse
effects on healthy tissues, and improve the overall
patient survival rate posttreatment.

Regarding preclinical studies, studies demonstrated
the pivotal role of cyclooxygenase‐2 (COX‐2) at the tumor
level and its association with various pathological condi-
tions.6–9 This target molecule is involved in tumor
proliferation, invasion, angiogenesis, and resistance to
apoptosis.6–9 The evidence continues to accumulate,
underscoring the significance of COX‐2 in NSCLC
progression.10,11 Therefore, a comprehensive understand-
ing of the underlying molecular mechanisms can provide
valuable predictive biomarkers and therapeutic targets in
the treatment of NSCLC. In this review, we aimed to
outline the molecular mechanisms, signaling pathways,
development, and therapeutic strategies associated with
COX‐2. For this aggressive form of cancer, we intend to
provide a potential COX‐2‐related framework that can be
utilized for diagnostic, prognostic, and therapeutic.

2 | COX ‐2 AND TUMORIGENESIS

In the lung, tumorigenesis is influenced by a variety of non‐
modifiable and modifiable factors of risk that lead to the
shaping of a favorable tumor microenvironment.5 Non-
modifiable risk factors encompass age, gender, race, and
family history, while modifiable factors of risk include
tobacco and cannabis smoking, asbestos exposure, radon
exposure, air pollution, arsenic exposure, infections, and
chronic obstructive pulmonary disease (COPD).5 Both
modifiable and nonmodifiable risk factors found in LC
may have an impact on the expression of multiple
molecular targets, including COX‐2, EGFR, ALK, ROS1,
BRAF, neurotrophic tropomyosin receptor tyrosine kinases
(NTRK), MET, and RET, as well as emerging targets HER2,
KRAS, and NRG (Figure 1).2 The activation and mutation of
specific molecular targets within the lung can lead to cell
proliferation, antiapoptosis, invasion, metastasis, and angi-
ogenesis, thereby driving the development of LC.2,12 For
example, MET protein overexpression was observed during
28.0%–33.5% of NSCLC patients, while COX‐2 was found to
be positively expressed in 71.6% of lung atypical adenoma‐
like hyperplasia tissues.13,14 These molecular targets were
closely associated with tumorigenesis, with COX‐2, in
particular, having a strong relationship with the tumor
microenvironment.14 Additionally, certain cells within the
tumor microenvironment, such as fibroblasts and type 2
macrophages, released COX‐2‐related prostaglandin E2
(PGE2), contributing to the formation of an oncogenic
microenvironment.11 Conversely, a pivotal role in creating
an oncogenic milieu was played by the tumor

microenvironment. Specifically, tumor cells within the
microenvironment produce PGE2, which polarized tumor‐
associated macrophages (TAMs) into M2‐like TAMs.15

Furthermore, stromal cells within the tumor micro-
environment made a contribution to the generation of
COX‐2 and PGE2. These factors recruited stromal fibro-
blasts and contribute to tumor stroma formation by
activating the CXCL12‐CXCR4 axis.16 In LC cells, the
production of PGE2 was promoted through the activation
of the p38 pathway by Fas signaling, further supporting the
recruitment of myeloid‐derived suppressor cells (MDSC) to
the tumor microenvironment.17 Moreover, EGFR signaling
pathway activation in LC cells created an immuno-
suppressive tumor microenvironment by recruiting tumor‐
associated macrophages (TAMs) and regulatory T cells
(Tregs).18 The interaction between EGFR and COX‐2 was
also significant in LC cells, as the activation of EGFR
signaling enhanced mitogen‐activated protein kinase
(MAPK) activity, subsequently triggering activator protein‐
1 (AP‐1)‐mediated increased in COX‐2 gene expression and
generation of PGE2.19 This PGE2, in turn, could activate
EGFR, thereby stimulating cell proliferation.19 These
aforementioned molecular targets actively contributed to
tumorigenesis and played critical roles in tumor progres-
sion, with particular emphasis on COX‐2, which signifi-
cantly supported the tumor microenvironment and EGFR
interactions involving multiple signaling pathways
(Figure 1).19 Understanding the intricate relationships
among these molecules is essential for unraveling the
complexities of the tumor microenvironment and develop-
ing targeted therapeutic interventions.

3 | SIGNALING PATHWAYS OF
COX ‐2 IN TUMORS

Prostaglandin synthase exhibits two distinct activities in the
lung. First, its cyclooxygenase activity converts free
arachidonic acid (AA) into preprostaglandin G2 (PGG2),
and second, its hydroperoxidase activity converts PGG2
into PGH2.20 The isomerization reaction of PGH2 to PGE2
is mediated by microsomal prostaglandin synthase‐1
(MPGES‐1).21 PGE2, being a downstream product of
COX‐2, plays a vital role in cancer cell growth and survival,
contributing to cancer cell proliferation, apoptosis resist-
ance, restricted migration and invasion, angiogenesis,
recruitment of myeloid suppressor cells to evade T‐cell
attack and chronic inflammation (Figure 2).11,21 Cyclo-
oxygenase is involved in various cellular events, including
inflammation, fever, thrombosis, neurodegenerative dis-
eases, and neoplastic diseases.22 The COX enzyme family
comprises three isomers: COX‐1, COX‐2, and COX‐3.20,23,24
COX‐1 was constitutively expressed in the majority of cells
and tissues, while COX‐3 was primarily found in the central
nervous system and showed minimal induction by acute
inflammatory stimuli.23–25 COX‐2, an inducible enzyme,
is minimally expressed in normal cells, except for the
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stomach, kidney, female reproductive system, and central
nervous system.11 However, under conditions of cellular
damage or exposure to various stressors such as endotox-
ins, mitogens, and cytokines, COX‐2 can be significantly
upregulated.11 COX‐2 expression was regulated by NF‐κB,
MAPK, and PI3K/Akt signaling pathways.26 HER2 en-
hanced COX‐2 expression through the MEK/ERK signaling
pathway, while COX‐2 activated the PI3K/AKT pathway, it

facilitated the proliferation and invasion of NSCLC cells.27

Transforming growth factor‐β1 (TGF‐β1)‐induced down-
regulation of COX‐2 expression can be blocked by TβRI
inhibitors and Smad3‐specific inhibitors, indicating the
involvement of the TGF/Smad signaling pathway in COX‐2
expression.28 Furthermore, the persistent activation of the
Wnt/β‐catenin signaling pathway was associated with
excessive activation of cold‐inducible RNA binding protein

F IGURE 1 Cyclooxygenase‐2 functions in the tumor microenvironment. COPD, chronic obstructive pulmonary disease.
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(CIRP), subsequently regulating the expression of impor-
tant target genes, including COX‐2 (Figure 3).29 Recent
studies indicated that COX‐2 serves as a widely used
biomarker for iron death in vivo or in vitro, although its
role may vary depending on cell type and environmental
conditions. Its upregulation was regulated by lipid
peroxidation, while the effects of antioxidants and toxic
substances could either decrease or increase its expres-
sion.30 Furthermore, COX‐2 is overexpressed in diverse
cancer subtypes, including non‐small cell lung, breast,
pancreatic, and colon cancers, and it is primarily involved
in promoting tumorigenesis and progression through its
mediation of PGE2 production.11 PGE2 activated protein
kinase A (PKA), enhanced cAMP response element‐
binding protein (CREB) binding to the COX‐2 promoter,
and stimulated COX‐2 expression.31 Additionally, PGE2
exerted its tumorigenic and progressive effects through four
G protein‐coupled receptors (GPCRs) (EP1, EP2, EP3, and
EP4).32 In NSCLC cells, all four GPCRs participated in
PGE2‐induced COX‐2 expression.31 For instance, PGE2
activation of the EP1 receptor triggered the MAPK/ERK
pathway via protein kinase C (PKC) activation, leading to
ERK phosphorylation.32 Similarly, PGE2 binding to the EP4
receptor in NSCLC cells mediated JUK, PI3K, and PKA
signal activation, resulting in increased α7nAChR expres-
sion and enhanced cell growth.33 In the LC micro-
environment, PGE2 potentially regulated programmed cell

death protein‐1 (PD‐1) levels in infiltrating CD8+ T cellsby
binding to EP2/EP4 receptors. Elevated expression of PGE2
may inhibit immune cell‐mediated attack on tumor cells,
thereby establishing immune tolerance to tumors.34

Through EP2 and EP4 receptors, PGE2 activated the
GSK3β/β‐catenin pathway, resulting in the transcriptional
upregulation of oncogenes, including c‐myc, cyclin D1, and
vascular endothelial growth factor (VEGF), ultimately
promoting tumor cell growth and migration.35 Similarly,
in colonic tumor cells, PGE2 bound to the EP2 receptor to
activate the Gs‐axin‐beta‐catenin signaling axis, stimulating
cell proliferation.36 Furthermore, the activation of the PI3K/
Akt signaling pathway occurred when PGE2 bound to the
EP4 receptor, resulting in enhanced cell proliferation.36 In
MDSC, COX‐2/EP2/EP4 was implicated in the regulation of
CXCR4 expression, influencing its responsiveness to
CXCL12 or ovarian ascites, which promoted tumor escape,
growth, and the inhibition of immune response
(Figure 4).36 Previous studies demonstrated an intricate
relationship between EGFR and COX‐2 in LC, affecting
crucial aspects such as tumor growth, angiogenesis, and
metastasis.29 Activation of EGFR signaling induced
increased activity of the MAPK, leading to AP‐1‐mediated
transcriptional upregulation of COX‐2 and subsequent
production of PGE2.19,31 Remarkably, PGE2 could further
stimulate cell proliferation by transactivating EGFR.19,31

Additionally, EGFR signaling activation could trigger the
PI3K/Akt pathway, which in turn activates the downstream
molecular protein NF‐κB, either directly or indirectly.37,38

Consequently, this activation led to overexpression of COX‐
2.39,40 Interestingly, PGE2, a product of COX‐2, exhibited a
surprising inhibitory effect on NF‐κB activity through a
negative feedback loop.40 In the context of cancer, this
bidirectional positive feedback loop between EGFR and
COX‐2 could significantly amplify the process of carcino-
genesis (Figure 4).19,41 Moreover, COX‐2 regulated several
downstream effectors, such as IL1β, IL6, TNF‐α, CXCL5,
EZR, FN1, and CCND1, to maintain tumor progression.10,42

In conclusion, COX‐2 plays a critical mediating
function in tumorigenesis and cancer progression.
It can be activated by tumor effector molecules, and in
turn, it activates downstream effectors. Additionally,
COX‐2 synergistically interacts with other target mole-
cules to promote cancer development and progression.

4 | MOLECULAR MECHANISM OF
COX ‐2 IN LC

COX‐2 overexpression was linked to various oncogenic
processes, including cell proliferation, apoptosis down-
regulation, angiogenesis, metastasis, and drug resist-
ance.7,43 Epithelial–mesenchymal transition (EMT)
played a critical role in cancer metastasis and drug
resistance, facilitated by transcription factors like Twist,
Snail, Slug, and ZEB1.5,44 In lung carcinogenesis, COX‐2
was pivotal in maintaining EMT‐induced changes, and

F IGURE 2 Factors affecting the expression of cyclooxygenase‐2
(COX‐2) and the synthesis pathway of COX‐2. MDSC, myeloid‐derived
suppressor cells.
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its inhibition had the potential to reverse these changes,
inhibiting LC progression and metastasis.45 However, it
was observed that EMT can be induced by celecoxib, a
COX‐2 inhibitor, via the MEK‐ERK pathway, increasing
the risk of metastasis and chemoresistance.46

Tumor angiogenesis, facilitated by COX‐2 overexpres-
sion, was strongly associated with the proangiogenic
factor VEGF.47 Interestingly, VEGF upregulation in LC
was believed to be dependent on downstream metabo-
lites of COX‐2 rather than COX‐2 protein itself.8 Elevated
COX‐2 messenger RNA expression enhanced angiogene-
sis, cell migration, and invasion by promoting thrombox-
ane A2 (TXA2) synthesis, activating the PI3K/Akt path-
way.8,9 Moreover, COX‐2 maintained high levels of VEGF
in NSCLC tissues through the PKA pathway, contributing
to tumor‐induced angiogenesis.8 Additionally, COX‐2 and
the resulting substance, PGE2, upregulated CXCR4
expression in microvascular endothelial cells, enhancing
the proangiogenic effects of bFGF and VEGF.16 Notably,
naproxen inhibited CXCR4 expression through COX‐2/
PGE2 inhibition, suppressing lung tumor growth.48

Concomitant dysregulation of c‐MET and COX‐2
significantly promoted LC proliferation, survival, invasion,

metastasis, and resistance.10 COX‐2, acting as a downstream
mediator of the HGF/c‐MET signaling pathway, regulated c‐
MET and phosphorylates its Y74 site, as well as activating T‐
lymphokine‐activated killer cell‐derived protein kinases
(TOPK).10 In NSCLC, HGF increased transcription and
expression of the COX‐2 gene by activating Erk1/2 and p38
pathways, ultimately leading to the activation of transcrip-
tion factors such as AP‐1, C/EBP, and CREB.49 Furthermore,
COX‐2 overexpression in NSCLC promoted IGF‐IR autop-
hosphorylation, activated the Class IA PI3K signaling
pathway, reduced IGFBP‐3 expression, and enhanced
IGF‐I and IGF‐II activity, promoting cell mitosis and
survival.50 Surprisingly, COX‐2 could directly catalyze DGLA
to form the anticancer byproduct 8‐HOA, inducing apopto-
sis through downregulation of the YAP1/TAZ pathway and
activation of the p53‐dependent endogenous apoptotic
pathway, while enhancing LC sensitivity to chemotherapy.51

Additionally, COX‐2 contributed to radioresistance in LC
cells by activating the JNK/Sp1 signaling pathway.52

Moreover, COX‐2 promoted EMT, adhesion, and metastasis
of Lewis Lung carcinoma (LLC) cells by upregulating
ELMO3 protein expression (Figure 5).51 In a coculture
environment comprising neutrophils and LC cells, PGE2

F IGURE 3 Upstream signaling pathway mediating cyclooxygenase‐2 expression. MAPK, mitogen‐activated protein kinase; NF‐κB, nuclear
factor‐κB; PI3K, phosphoinositide 3‐kinases; TGF, transforming growth factor.
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produced by the synergistic action of elastase and COX‐2
released from neutrophils played a crucial role in facilitating
lung tumor cell proliferation.53

5 | THE FUNCTION OF COX ‐2 IN
THE PROGRESSION OF NSCLC

Several studies explored the presence of active COX‐2 in
NSCLC. Initially, Huang et al.54 assessed the COX‐2
expression in NSCLC using immunohistochemical
assessment of tumor specimens and adjacent affected
tissues. In the evaluation of 15 tumor specimens, which

comprised eight adenocarcinomas and seven squamous
cell carcinomas, all showed positive cytoplasmic staining
for COX‐2. Subsequently, Wolff et al.55 presented further
findings on the expression of COX‐2 in the lungs from 21
adenocarcinoma and 11 squamous carcinoma patients
using immunohistochemistry. COX‐2 expression was
observed in lung tissue from 19 adenocarcinomas and
all squamous cell carcinomas. Particularly, highly differ-
entiated adenocarcinomas exhibited a significantly high-
er COX‐2 positive expression rate compared to poorly
differentiated adenocarcinomas, squamous carcinomas,
and small cell lung carcinomas, with small cell lung
carcinomas showing the weakest staining intensity.55

F IGURE 4 The role of the cyclooxygenase‐2 and its downstream product prostaglandin E2 signaling pathway in tumorigenesis and cancer
development. CREB, cAMP response element‐binding protein; EGFR, estimated glomerular filtration rate; MAPK, mitogen‐activated protein
kinase; NF‐κB, nuclear factor‐κB; PI3K, phosphoinositide 3‐kinases; PKA, protein kinase A.
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Moreover, COX‐2 protein expression was also detected in
atypical alveolar epithelium, considered a precursor
lesion for LC, and correlated with asbestosis and
idiopathic fibrous alveolitis.55 In additional studies,
Hosomi et al.14 showed positive COX‐2 expression in
71.6% of lung atypical adenomatous hyperplasia tissues, a
precursor to adenocarcinoma. Zhao et al and Song
et al.56,57 also found an increasing expression level of
COX‐2 with higher differentiation of LC. Song et al.57

evaluated COX‐2 expression in 101 LC tissues and seven
normal tissues using immuno‐histochemistry and image
analysis. They observed higher COX‐2 expression in
peripheral LC compared to central LC, which may be
attributed to the prevalence of peripheral lesions in lung
adenocarcinomas, thus confirming the close association
between COX‐2 and lung adenocarcinoma.57 The study
also reported significantly higher COX‐2 expression in
advanced LC and the lymph node metastasis‐positive
group compared to the negative group.57 Zhang et al.58

examined COX‐2 expression using immuno-
histochemistry in 52 NSCLC patients and found a positive
COX‐2 expression rate of 83.3% in patients with lymph
node metastasis, higher expression in T3–T4 stage
(92.3%) compared to T1–T2 stage (33.3%), and signifi-
cantly higher expression in clinical stage 3–4 (80%)
compared to clinical stage 1–2 (28.1%).

Several studies investigated the prognostic impor-
tance of COX‐2 expression in lung adenocarcinoma and
NSCLC patients. Achiwa et al.59 evaluated a cohort of
130 lung adenocarcinoma patients and found that
elevated COX‐2 expression was not significantly associ-
ated with clinical prognosis, except in the subgroup of
stage I patients who underwent surgical resection.
Similarly, in a study by Khuri et al.,60 160 specimens
from patients with stage I NSCLC were examined. The
results revealed that higher COX‐2 expression intensity
was linked to worse overall survival and disease‐free
survival, indicating an unfavorable prognosis.60 In a
subsequent cohort study of 259 NSCLC cases, Laga
et al.61 observed that increased COX‐2 expression was
associated with shorter patient survival, particularly in
stage I and II NSCLC. However, the prognostic impact of
COX‐2 expression in NSCLC remains inconsistent
among different studies. Mattsson et al.62 assessed the
relationship between COX‐2 transcript levels in LC cells
and clinical parameters or overall survival of NSCLC
patients using nine publicly available gene expression
data sets. The study did not discover any correlation
between COX‐2 expression in LC cells and clinical
parameters or the overall survival of patients. However,
high protein expression of COX‐2 in stromal cells was
greatly connected with longer survival, although not

F IGURE 5 Cyclooxygenase‐2 signaling pathway in non‐small cell lung cancer occurrence and development. 8‐HOA, 8‐hydroxyoctanoic acid;
EMT, epithelial–mesenchymal transition; IGF‐I, insulin‐like growth factor 1 NSCLC, non‐small cell lung cancer; TOPK, T‐lymphokine‐activated
killer cell‐derived protein kinases; VEGF, vascular endothelial growth factor.
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with clinical parameters.62 Moreover, Nan et al.63

investigated the relationship between COX‐2 gene
polymorphisms and survival in 136 patients with
unresectable stage IIIA‐B NSCLC. The results suggested
that specific COX‐2 gene polymorphisms were linked to
improved overall survival and extended progression‐free
survival.63 However, a Brazilian cohort study with 104
NSCLC patients did not find a correlation between COX‐
2 gene polymorphisms and overall survival.64

In summary, COX‐2 expression was detected early in
LC, particularly in highly differentiated adenocarcinomas
and lymph node metastases. However, the prognostic
significance of COX‐2 expression in LC remains contro-
versial. While some studies suggested an association
between high COX‐2 expression and poor prognosis,
particularly in early‐stage NSCLC, others did not find a
correlation. Additionally, COX‐2 gene polymorphisms
may play a role in the development and prognosis of LC,
although the findings are inconsistent. These variations
in results may be influenced by factors such as sample
size, study design, different ethnicities, and treatment
approaches. Therefore, further studies are necessary to
validate and elucidate the role and potential mechanisms
of COX‐2 in LC.

6 | TARGETING COX ‐2
APPROACHES IN LC

6.1 | COX‐2 as a predictor of LC

Although current methods have been utilized for LC
treatment, the identification of new predictive markers is
crucial for achieving early diagnosis and providing
improved prognostic information for patients. While
COX‐2 alone may not serve as an independent predictor
of LC, several molecules up and downstream of COX‐2
have been considered potential markers for LC prognosis.
For instance, in a recent study, it was observed that high
expression of PGI2, a product of COX‐2, was associated
with a lower 5‐year survival rate compared to the low
PGI2 expression group, indicating its significance in
predicting the prognosis of LC.65 Additionally, co‐
expression of BPTF (COX‐2 promoter binding protein)
and COX‐2 was linked to poor prognosis in LC patients.66

The overexpression of Ku80, a novel binding protein of
the COX‐2 gene promoter, was shown to upregulate COX‐
2 expression in LC cells and was associated with a poorer
prognosis in LC patients.67 Furthermore, Cox regression
analyses indicated that Ku80 overexpression and the
expression of mPGES and PGI2 were statistically signifi-
cant in predicting LC prognosis.65,67 Significant COX‐2
expression in bronchial precursor cells of squamous cell
carcinoma was also demonstrated by Mascaux et al.,68

suggesting the potential of COX‐2 as an early marker for
this type of carcinoma. Additionally, the COX‐2
−1195G>A (rs689466) polymorphism was found to be

associated with LC susceptibility in different ethnic
groups.45 A study in a Japanese population revealed that
the pure COX‐2 −1195A genotype increased the risk of
lung squamous cell carcinoma.45

In conclusion, while COX‐2 alone may not be an
independent predictor of LC, significant potential exists in
utilizing COX‐2 upstream and downstream molecules as
predictive markers to enhance the diagnosis and prognosis
of LC. Studies demonstrated the prognostic value of PGI2,
BPTF, Ku80, and COX‐2 expression in LC patients, along
with the association of COX‐2 polymorphisms with LC
susceptibility. These findings suggested the importance of
exploring and validating the role of these molecules in
clinical settings to improve patient outcomes.

6.2 | COX‐2 as a pharmacological target
in LC

LC presents significant challenges in terms of treatment
efficacy due to its resistance to immunotherapy, targeted
therapies, and cytotoxic treatments.5 Several selective
COX‐2 inhibitors have seen clinical use but were
withdrawn from the market due to severe cardiotoxicity.69

Presently, Celecoxib (Celebrex) stands as the sole Food
and Drug Administration (FDA)‐approved selective COX‐2
inhibitor, demonstrating efficacy with minimal toxicity in
treating inflammatory diseases.70 Clinical trials involving
Celecoxib in conjunction with radiotherapy for unresect-
able stage I NSCLC indicate the feasibility of concurrent
administration with thoracic radiotherapy at the FDA‐
approved maximum dosage of 800mg/day. Even when
not reaching the maximum dose, the progression‐free
survival rates at 1 and 2 years were 66.0% and 42.2%,
respectively, signifying a notable improvement in survival
rates.71 Following these findings, a subsequent clinical trial
investigated the efficacy of Celecoxib combined with
paclitaxel, carboplatin, and radiotherapy in patients with
inoperable stage IIIA/B NSCLC. However, the addition of
Celecoxib to concurrent chemoradiotherapy did not yield
survival benefits in inoperable IIIA/B NSCLC cases.72,73

Despite less promising experimental outcomes, early
administration of Celecoxib in combination with chemor-
adiotherapy in NSCLC patients demonstrated improved
survival rates. This underscores the therapeutic potential
of targeted COX‐2 inhibition in NSCLC, prompting further
exploration and development of novel therapeutic strate-
gies and drugs for NSCLC treatment. In this context,
several effective strategies could be considered:

(1) Nonspecific COX‐2 inhibitors, such as ibuprofen,
sulforaphane, nimesulide, diclofenac, indometha-
cin, and aspirin, showed COX‐2 inhibition in cancer
cells, potentially attributed to elevated ROS concen-
trations. However, it is important to note that these
inhibitors may stimulate the upper gastrointestinal
system.41

288 | LIU ET AL.



(2) Selective COX‐2 inhibitors, such as celecoxib,
etodolac, and NS‐398, offered a lower rate of
gastrointestinal damage compared to nonspecific
inhibitors.41

(3) Targeting microRNAs involved in COX‐2‐mediated
LC progression has shown promise. For example,
the compound orientin, a bioflavonoid from Trigo-
nella hamosa L, reduced COX‐2 expression by
upregulating miR‐26b and miR‐146a, providing a
potential strategy for NSCLC treatment.74

(4) Utilizing vectors to deliver small interfering RNA
(siRNA) for COX‐2 can be an effective strategy. For
instance, 3WJ‐EpCAM‐D5D siRNA nanoparticles
have shown high affinity and penetration in LC
cells, reducing PGE2 production by altering the
peroxidation pattern of COX‐2 catalyzed ω‐6 fatty
acids (e.g., DGLA).75

(5) Multifunctional COX‐2 ligand traps, such as the
quinazolinone‐based stay‐phenyluronium derivative
(6a‐p), which targeted the double mutant EG‐
FRL858R/T790M, COX‐2, and 15‐LOX, offer a
promising approach.76

(6) Blocking COX‐2 production through indirect inhibi-
tion could be achieved by compounds like imino
dibenzyl, which disrupted the conversion of
dihomo‐γ‐linolenic acid (DGLA) to AA in cancer
cells by decreasing δ‐5‐desaturase (D5 D).51

(7) Regulation of T‐cell immune response, such as the
use of cd47‐CAR‐T cells, genetically modified T cells
regulated by COX‐2 protein, showed potential.77

(8) Combining COX‐2 inhibitors with other targeted
inhibitors has shown enhanced anticancer effects.
For example, the combination of the COX‐2 inhibi-
tor celecoxib and the EGFR inhibitor afatinib
enhanced the anticancer effect of radiation on
NSCLC cells.78 PPAR‐γ agonists and COX‐2 inhibi-
tors exerted synergistic effects by inhibiting COX
gene expression and inactivating COX‐2 enzymes,
respectively.9

In summary, targeted therapies against COX‐2 offer a
promising future in oncology treatment, considering its
involvement in multiple signaling pathways in tumor
development. There is substantial evidence supporting
the potential of natural derivatives in chemoprevention
and their ability to antagonize COX‐2 expression in LC.
For example, melafolone, one of the pharmacologically
active flavonoids derived from Polygonum lapathifo-
lium, showed promising effects in improving the efficacy
of tumor anti‐PD‐1 immunotherapy.12 It achieved this
by dual inhibition of COX‐2 and EGFR in both in vivo
and in vitro LC cells, leading to downregulation of PD‐
L1 expression and increased proliferation of CD8+ T
cells.12 Furthermore, melafolone promoted normaliza-
tion of the tumor vascular system by downregulating
VEGF or TGF‐b in nontumor cells within the tumor
microenvironment.12 In addition to melafolone, Korean

Red Ginseng treatment of A549 cells coincubated with
BPA was found to inhibit BPA‐induced production of
reactive oxygen species (ROS), subsequently suppress-
ing MMP‐9 and COX‐2 expression.79 Similarly, sesamin,
a type of lignan compound, exerted positive effects on
cell cycle organization and apoptosis in A549 cells by
inhibiting the Akt‐PI3K signaling pathway through COX‐
2 downregulation.42 Curcumin, in a study with NSCLC
P14 cells, demonstrated downregulation of COX‐2 and
EGFR expression by inhibiting NF‐κB activation and
inducing p65 nuclear translocation.40 Additionally, BEL
forms hydrogen bonded with Tyr385 and Ser530 in the
COX‐2 receptor, leading to the inhibition of COX‐2
expression.34 β‐Elemene significantly reduced COX‐2
expression through the silencing of C3orf21.80 Another
natural compound, Chai Cao Saponin D, a triterpene
saponin, was shown to inhibit COX‐2 expression
possibly by downregulating phosphorylated STAT3 and
C/EBP‐β.34

In conclusion, these studies provide evidence for
natural COX‐2‐blocking products and encourage further
exploration to discover new products for the treatment
of LC. Targeted therapies against COX‐2 hold significant
potential to improve treatment outcomes and warrant
further investigation.

7 | LIMITATIONS AND PROSPECTS
OF TARGETED COX ‐2 THERAPY

Although COX‐2 has been implicated in NSCLC
development, its therapeutic targeting remains a
challenge. Presently, COX‐2 therapy is not main-
stream in LC treatment for several reasons: First,
numerous COX‐2 inhibitors, such as rofecoxib, valde-
coxib, and parecoxib, have been associated with an
elevated risk of cardiovascular events, leading to their
withdrawal or rejection by the FDA.69,70 Second, the
correlation between COX‐2 expression and survival
varies among NSCLC patients, hindering the estab-
lishment of definitive treatment guidelines for COX‐2
inhibitors in LC management.61–64 Last, clinical trial
outcomes have been inconclusive. Some studies
suggested the potential efficacy of celecoxib, a COX‐
2 inhibitor, in LC treatment, while others failed to
confirm significant therapeutic benefits, resulting in
controversy over its clinical utility.71–73,81–83

Given the current limitations of COX‐2 inhibitors in
LC treatment, future research should focus on: (1) Devel-
oping COX‐2 inhibitors with reduced cardiotoxicity.
(2) Investigating the interplay between COX‐2 and key
signaling pathways, aiming to develop dual or multi‐
target inhibitors. (3) Employing precision medicine
approaches to deliver individualized treatment, enhan-
cing treatment relevance and efficacy while minimizing
adverse reactions. (4) Exploring combination therapies
involving COX‐2 inhibition.
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COX‐2 identification as a potential marker and
therapeutic target for NSCLC has garnered significant
interest in the field. Assessing COX‐2 expression profiles,
particularly in early NSCLC stages, holds promise for
guiding targeted therapeutic selection. With NSCLC
being a prevalent tumor lacking effective treatment
options, there is an urgent need for new biomarkers to
aid in diagnosis and personalized treatment, ultimately
aiming to improve patient outcomes and survival rates.
Improving overall survival in LC patients necessitates
exploring novel approaches to COX‐2 targeting therapy,
providing potential for more effective intervention in
this challenging malignancy.

8 | CONCLUSION

Collectively, targeting COX‐2 inhibition represents a
promising therapeutic approach in NSCLC. Identifying
regulators of COX‐2 expression may serve as valuable
markers for LC. Combining COX‐2 inhibitors with
multiple treatment modalities holds the potential to
enhance the prognosis of LC, particularly in NSCLC
patients. Furthermore, the combination of COX‐2
inhibitors with conventional therapies such as chemo-
therapy and radiotherapy offers a promising strategy to
overcome drug resistance in LC.43 These approaches
pave the way for novel and effective strategies in
combating this aggressive cancer.
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