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Real-time estimation and biofeedback of
single-neuron firing rates using local field potentials
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The long-term stability and low-frequency composition of local field potentials (LFPs) offer

important advantages for robust and efficient neuroprostheses. However, cortical LFPs

recorded by multi-electrode arrays are often assumed to contain only redundant information

arising from the activity of large neuronal populations. Here we show that multichannel LFPs

in monkey motor cortex each contain a slightly different mixture of distinctive slow potentials

that accompany neuronal firing. As a result, the firing rates of individual neurons can be

estimated with surprising accuracy. We implemented this method in a real-time biofeedback

brain–machine interface, and found that monkeys could learn to modulate the activity of

arbitrary neurons using feedback derived solely from LFPs. These findings provide a principled

method for monitoring individual neurons without long-term recording of action potentials.
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T
he ability to monitor the activity of neurons using
electrodes implanted in the central nervous system has
many potential applications in neuroprosthetic devices for

patients with neurological injury and disease. For example,
extracellular recordings of the spikes (action potentials) from
multiple neurons in motor cortex can be used by brain–machine
interfaces (BMIs) to control assistive devices1–3, or be relayed to
other sites in the nervous system via electrical stimulation to
provide artificial connections with therapeutic benefit4,5.
However, the clinical translation of spike-based neuroprostheses
faces two major challenges. First, micromotion of electrode
implants and the tissue response around recording sites prohibit
the recording of spikes from the same ensemble of neurons over
prolonged periods6–8, reducing the stability and longevity of
operation. Second, discriminating spike activity involves
sampling, processing and/or transmission of signals at high
rates (at least 10 kHz), which requires high power consumption
and constrains implementation in implanted devices9.

Local field potentials (LFPs) offer an attractive solution to both
of these problems. Since they reflect the summation of
postsynaptic potentials over at least a few hundred micrometres
from the recording site10–15, LFPs may be less sensitive to micro-
movements and encapsulation of electrodes16,17, and kinematic
information can be retrieved even from electrodes without clear
spike activity18,19. Of particular interest is the low-frequency LFP
(lf–LFP; below 5 Hz) because it can be sampled, processed and/or
transmitted at rates comparable to the frequency content of
movements. Historically, this ‘delta’ band has been associated
with slow-wave sleep during which neurons become highly
synchronized across wide areas of cortex and subcortical
structures, but recent studies in awake subjects suggest that
motor cortical lf–LFPs during upper-limb movement contain
considerable information about kinematics20–24. Despite these
advances, the physiological significance of the lf–LFP and its
relationship to neuronal spiking are still poorly understood,
hindering the applications of this signal beyond ‘biomimetic’
decoding of kinematics. For example, it is known that acquisition
of BMI skill is often associated with profound changes in the
tuning of neurons contributing to the decoder1,2,25. Although
such changes can be reduced by recalibrating decoding
algorithms online26, neuroplasticity may nevertheless be
beneficial for the retention of BMI skill, as well as resistance to
interference from other tasks27. These tuning changes likely
reflect the ease with which the activity of individual neurons can
be modulated under operant conditioning or biofeedback
paradigms28–30. Previous studies have demonstrated that LFP
power in broad frequency bands can be modulated under
biofeedback31 and closed-loop BMI paradigms32. However, it is
less clear which features of the lf–LFP can similarly be brought
under volitional control and would thus be applicable for closed-
loop BMIs.

We hypothesized that if we could identify lf–LFP components
with a strong and consistent relationship to the firing rates of
local neurons, then these should also be amenable to operant
conditioning and therefore provide useful features for closed-loop
BMIs. Moreover, the ability to infer firing rates from lf–LFP
would be generally applicable for any neuroprosthetic application
requiring long-term monitoring of neural activity. The correla-
tion between single neurons and individual LFPs has been
investigated extensively using spike-triggered averaging and more
sophisticated techniques15,33–37. However, to date there have
been surprisingly few studies of the extent to which neural firing
rates can be estimated from multiple LFPs and vice versa, perhaps
in part due to the persisting assumption that multiple LFPs
convey largely redundant information arising from the
synchronous activity of many neurons10,22,38. In the monkey

visual cortex a single LFP channel has been estimated by linear
summation of multiple potentials associated with spike
activity34,35. Moreover, Rasch et al.33 found that in anesthetized
(but not awake) animals, the firing rate of a single neuron could
be predicted from a single channel of LFP. However, this study
did not examine whether performance could be improved by
using multiple LFPs. In the motor cortex, Bansal et al.23 have
used multiple LFPs to decode the summed spiking activity of all
neurons recorded on an electrode array, but did not investigate
the possibility of predicting the firing rates of individual neurons.

We therefore examined the relationship between neural spiking
and multichannel lf–LFPs recorded from the motor cortex of
monkeys. We found that each lf–LFP could be well described by a
linear mixture of spike-related slow potentials, and that the
contribution of a given neuron to this mixture varied substantially
across different lf–LFP channels. This variability, which was
captured by a small number of distinct sources, allowed the
estimation of firing rates of individual neurons from multichannel
lf–LFPs with surprising accuracy. Estimates were stable over
many days, captured a significant portion of the neural firing
space and generalized well across abstract biofeedback tasks.
Monkeys could increase or decrease the estimated activity of
arbitrary neurons on demand, and even dissociate two cells using
feedback based solely on lf–LFP features. Moreover, task-related
firing rate modulations were specific to the targeted neurons.
These findings reveal a wealth of information about local spiking
activity contained within multiple lf–LFPs and could, in the
future, allow low-power implantable neuroprostheses to infer
neural activity long after spike recordings are lost.

Results
Estimating low-frequency LFPs from neuronal firing rates. We
recorded LFPs and spike activity (Fig. 1a) using moveable
microwire arrays39 implanted in the right primary (M1) and
ventral premotor (PMv) cortices of three monkeys performing a
two-dimensional (2D) centre-out isometric wrist torque task
using their left hand fixed in a static manipulandum (see
Supplementary Fig. 1; Supplementary Methods). Spike-triggered
averages (STAs) of LFP (Fig. 1b) typically exhibited beta-band
(B20 Hz) phase-locking, as well as large and consistent low-
frequency features, which we refer to as spike-related slow-
potentials (SRSPs). The SRSP amplitude was typically largest in
the LFP recorded from the same electrode as the spikes used to
construct the average (Fig. 1c). However, robust SRSPs were also
observed in recordings from other electrodes within the same
cortical area, suggesting the LFP contains a mixture of slow
components reflecting the activity of both neighbouring and
distant neural activity within each cortical area. To test this, the
low-frequency LFP (lf–LFP; filteredo5 Hz) was modelled as a
sum of the spike trains of multiple neurons (Fig. 1d) convolved
with filter kernels that resembled the SRSP waveforms (Fig. 1e,
see Methods). When tested on validation data that were not used
to build the model, we were reliably able to estimate lf–LFPs
recorded from both M1 and PMv (Fig. 1f). The quality of fit
increased monotonically as more neurons were included, with the
majority of useful information obtained from those recorded
within the same cortical area as the estimated lf–LFP (Fig. 2). The
local nature of the SRSP was confirmed by its polarity inversion
as electrodes were progressively advanced through the cortical
grey matter (Supplementary Fig. 2).

Estimating single-neuron firing rates from multiple lf–LFPs.
Importantly, the SRSP associated with an individual neuron
varied in both shape and polarity across different lf–LFP
electrodes, particularly within the same cortical area as the trigger
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neuron (Fig. 3a), despite the fact that lf–LFPs themselves
appeared broadly similar (Fig. 4a). However, this variation could
be explained by only a few principal components (PCs) (Fig. 3b–
d), suggesting that the contribution of a particular neuron to the
multichannel lf–LFP comprises a limited number sources with
distinct spatio-temporal profiles. On the basis of this, we devel-
oped a method to estimate these sources from the lf–LFP, and
then used deconvolution to recover the firing rate of single
neurons (see Methods and Supplementary Fig. 3).

First, we decomposed the SRSPs for a particular neuron (Fig. 4b)
into PCs and convolved each with the neuron’s firing rate to
estimate its contribution to the lf–LFP. We found the low-
dimensional projection of the lf–LFP data that best approximated
the first few source estimates (Fig. 4c), and used Wiener
deconvolution to recover the firing rate. To exclude the unlikely
possibility of action potential waveforms passing our low-pass

filter40, the lf–LFP recorded from the same electrode as the neuron
was not used for its firing rate estimation. Once the projection
matrix and deconvolution filter had been obtained from training
data, their ability to estimate firing rates was tested on separate
validation data. Figure 4d shows a representative validation
performance using 20 LFPs to estimate the firing rate of single
neurons in M1 and PMv. Firing rate estimates captured a
significant proportion of modulation across the low-frequency
band (Supplementary Fig. 4a,b). Moreover, the task-related
modulation of individual neurons during the torque task,
including trial-averaged firing rate profile and ‘preferred
direction’ could be retrieved from LFP-based firing rate estimates
(Supplementary Fig. 4c,d). The quality of firing rate estimation
increased with the number of lf–LFPs included in the model, with
the most useful being within the same cortical area as the estimated
neuron (Fig. 5a–d). Firing rate estimation was only marginally
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Figure 1 | Estimating lf–LFPs from firing rates. (a) Spike raster of a single neuron (top) and LFP (bottom) recorded in M1. (b) STA of LFP (top), separated

into low- (middle) and high-frequency (bottom) bands. (c) Mean peak-to-peak amplitude of STA of low-frequency LFP recorded on the same electrode as a
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monkey). (d) Spike rasters for eight M1 (blue) and seven PMv neurons (red). (e) SRSPs for each neuron within a single M1 (left) or PMv lf–LFP (right).

m Indicates time of spike. (f) lf–LFPs estimated using a linear model applied to validation data. Significance thresholds (Po0.05, two-tailed; non-parametric

bootstrap) for the indicated r-values were 0.07 and 0.11 for the M1 and PMv LFP, respectively. Data from monkey D.
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improved by further inclusion of the lf–LFP recorded on the same
electrode as the estimated neuron (Fig. 5a–d, open squares).

Our approach to recovering firing rates from low-dimensional
source estimates was motivated by the observation that the
contribution of a single neuron to the lf–LFP (that is, the SRSP)
comprised mixtures of a small number of components, but these
will not necessarily be the largest signals within the lf–LFP. As a
result, estimation based on SRSP components out-performed
models fitted directly to the PCs of the lf–LFPs (Fig. 5e,f).
Moreover, validation performance was optimal when only a
limited number of sources were included, suggesting that each
SRSP contains about three to four distinct components.

LFP-based firing rate estimates are stable over many weeks. To
assess the stability of the relationship between lf–LFPs and firing
rates, we recorded the same ensemble of neurons over a pro-
longed period (monkey D: 20 neurons, 45 days; monkey R: 8
neurons, 23 days). Models fitted to data recorded on day 0 were
able to estimate firing rates of most neurons simultaneously from
validation lf–LFP data recorded during that session (r-values for
monkey D: mean 0.47, range 0.23–0.74; monkey R: mean 0.27,
range 0.03–0.56). We then used the same model parameters to
predict cell activity on subsequent days (Fig. 6a,b. r-values on the
last day for monkey D: mean 0.31, range 0.06–0.57; monkey R:
mean 0.16, range � 0.11 to 0.51). Performance of the model
using parameters from day 0 was stable throughout the recording
period and was only slightly improved by fitting new parameters
on each day (Fig. 6c,d; see Methods).

Next, we examined how well the trial-averaged modulation of
single-neuron firing rates (aligned to the end of the successful
hold period) could be retrieved from LFP-based estimates. On
day 0, the mean (±s.d.) correlation between the average firing
rate of single neurons and the equivalent average of the LFP-
based estimates was r¼ 0.93±0.06 for monkey D and 0.88±0.14
for monkey R (Supplementary Figs 5a and 6a). Note that these
correlation coefficients are considerably higher than the r-values
obtained for non-averaged data, suggesting that our method gave
an unbiased estimate of task-related modulations of single
neurons that converged towards the same trial-averaged profiles
as the instantaneous firing rates. On subsequent days, despite
slight variation in the animals’ behaviour, trial-averages of LFP-
based estimates continued to resemble the actual trial-averaged
firing rates from day 0 (r-values on day 1: 0.86±0.11 for monkey
D and 0.59±0.26 for monkey R; r-values on the last day:
0.74±0.11 and 0.53±0.27). Remarkably, trial-averaged LFP-
based estimates were as similar to the day-0 profiles as were trial-
averages of the actual firing rates on subsequent days (day 1:
0.81±0.13 for monkey D and 0.63±0.32 for monkey R; last day:
0.71±0.15 and 0.44±0.32; Supplementary Figs 5b and 6b).
Comparable results were obtained when we compiled trial-
averaged profiles for each target direction separately, albeit with
lower r-values for both actual and estimated firing rates as a
consequence of averaging over fewer trials (Supplementary
Figs 5c and 6c). Therefore, if we take as ‘ground truth’ the
task-related modulation of a single neuron on day 0, this could be
recovered from the LFP-based firing rate estimates at least as
accurately as from the actual firing rate of the same neuron across
the extended recording period in both animals.

We were still able to recover trial-averaged profiles from the
LFP-based estimates even for the last sessions in our data sets
before electrodes were moved to find new neurons, obtaining r-
values of 0.66±0.14 for monkey D and 0.57±0.34 for monkey R
at time points corresponding to days 116 and 63, respectively. It is
not possible to provide comparable values for the actual firing
rates in these sessions since spike waveforms recorded on the
electrodes had changed and/or deteriorated to the extent that the
original ensemble of neurons could no longer be identified.

Dimensionality of LFP-based firing rate estimates. In general,
the firing rates of neurons within the same cortical area exhibited
higher correlation than across areas, although we did not find
clear evidence for smaller ensembles of tightly correlated cells
within each area (Supplementary Fig. 7a–f). Nevertheless, we
considered the possibility that multichannel lf–LFPs might con-
tain information only about a limited number of hidden or latent
variables, corresponding to correlated components of the popu-
lation activity. In this case, LFP-based firing rate estimates would
predict only a few dimensions of the observed neural space. To
test this, we calculated the PCs of the actual firing rates of all
recorded neurons (low-pass filtered at 5 Hz) so as to find
dimensions of the neural space that captured the greatest co-
variation (Fig. 6e,f, green lines). Approximately half of the total
firing rate variance in both animals was explained by the first two
PCs (which generally captured broad co-activation of neurons
within M1 or PMv; Supplementary Fig. 7g–i), with the remainder
distributed across the higher components. We then projected the
LFP-based firing rate estimates of all neurons onto the same PC
axes, and assessed their correlation with actual firing rates along
each dimension using validation data (Fig. 6e,f, blue lines). The
highest correlations were obtained for the first two PCs, con-
sistent with a previous observation that the total spiking within an
area can be decoded from lf–LFPs23. However, we could also
obtain statistically significant prediction of all but one of the
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higher PCs in each animal, suggesting fractionated components of
the population activity were also contained within the LFP-based
estimates. This was despite the fact that higher PCs captured less
of the firing rate variability and would therefore be expected to
have a lower signal-to-noise ratio. Indeed, the drop in estimation
performance with increasing PC number could be simulated by
artificially introducing noise uniformly across the actual spike
recordings. A proportion of spikes from each neuron were
shuffled to spike trains of other neurons in the same recording (in
effect simulating what might happen in a real experiment if spikes

were misclassified to the wrong cell; see Supplementary Methods).
Performance of the LFP-based firing rate estimate over the entire
neural space was comparable to firing rates calculated from actual
spike data, in which 25% of spikes were correctly classified
(Supplementary Fig. 7j–l). This is consistent with the mean
r-values for single-neuron estimation (B0.5), suggesting on
average 25% of the true firing rate variation of individual neurons
was captured by LFP-based estimates. Note, however, that while
we here simulated the effect of noise by adding spikes from other
neurons, the actual noise in our firing rate estimates did not have
any consistent task relationship, since trial-averaged profiles
converged on the true task-modulation of the single neurons
(Supplementary Fig. 4c,d).

Generalization of LFP-based estimates across BMI tasks. Next
we asked whether the relationship between LFPs and firing rates
would generalize across behaviours, or vary systematically with
different firing rates and altered neuronal correlations. Therefore
we explored how well models built on data recorded during the
isometric torque task could be used to estimate firing rates during
various biofeedback BMI tasks (see Supplementary Fig. 1). The
position of a one-dimensional (1D) cursor was controlled in real-
time by either the firing rate of one arbitrarily chosen cell, the
summed firing rates of two cells or the difference in firing rates of
two cells (see Supplementary Methods). Models of both cells’
firing rates built on torque task data generalized well across all
three conditions, performing only marginally worse than indivi-
dual models built and validated on data within each condition
(Supplementary Fig. 8a,b; see also Supplementary Discussion).
During the one-cell control task, we quantified the degree to
which modulation of neuronal firing rate was associated
with movement of the wrist, using a ‘torque modulation index’
(see Supplementary Methods). We found a weak correlation
(significant in one animal) between this index and the
performance of our LFP-based firing rate estimate (monkey D,
correlation coefficient¼ 0.43, P¼ 0.04, monkey A, correlation
coefficient¼ 0.30, P¼ 0.16). However, LFP-based firing rate
estimation performed well in many cases even when the beha-
viour involved minimal torque modulation (Supplementary
Fig. 8e,f). In addition, the size and shape of the SRSP was con-
served across trials requiring both increases and decreases in
neuronal firing rates, including those not associated with overt
wrist movement (Supplementary Fig. 9). Interestingly, consistent
features in the trial-averaged lf–LFP could not alone account for
the SRSP, suggesting that it reflected largely correlated trial-to-
trial variability in the neuronal firing rate and LFP
(Supplementary Fig. 9; see also Supplementary Discussion).

Real-time biofeedback using LFP-based firing rate estimates.
Finally, to demonstrate the utility of LFP-based firing rate esti-
mation for closed-loop control, we implemented our algorithm in
real-time using a 2-s history of lf–LFP data to predict the
instantaneous firing rates of two neurons 0.2 s in the past. Again,
we excluded lf–LFPs from those electrodes used to record the
selected neurons. After fitting the model on B5 min of torque-
tracking data, monkeys performed the 1D biofeedback BMI task
now controlled by estimated firing rates of one or two neurons
(Fig. 7a,b). Monkeys were quickly able to increase and decrease
the estimated firing rates of single neurons (Fig. 7c–f), and
achieve independent control of two estimates when each moved
the cursor in opposite directions (Fig. 7g–i). Although we
imposed no direct constraints on the activity of the underlying
neurons, monkeys nevertheless performed the task by modulating
the actual firing rates of the chosen neurons (Fig. 7d–i), and the
correlation between neurons changed in accordance with the
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imposed biofeedback contingency (Fig. 7j). We defined a tuning
index (see Methods) to quantify the modulation of firing rate with
target position, and across 44 sessions in two animals the esti-
mated neurons were tuned significantly more than the other
recorded neurons (median tuning index of estimated neurons
0.42; other neurons 0.10; U¼ 9,140, Po0.001, two-tailed, by the
Mann–Whitney U-test) (Fig. 7k,l).

Discussion
We have demonstrated that single-neuron firing rates can be
estimated from multichannel lf–LFP recordings in motor cortex
using simple linear models. LFP-based estimates capture around
25% of the variance of instantaneous firing rates and 75–85% of
trial-averaged profiles, performing as well as the actual firing rates
at reconstructing the task relationship of individual neurons on
subsequent days. These models were remarkably robust (up to
several months in both animals), generalized across behaviours
and yet were sufficiently accurate and specific to permit operant
conditioning of individual neuron firing rates using biofeedback
based solely on lf–LFPs.

Our finding that the lf–LFP contains contributions from a
number of sources reflecting the activity of local neuronal
populations is in agreement with recent studies33,35,41. However,

to our knowledge, this is the first demonstration that the different
mixtures contained within multiple lf–LFPs can be separated for
estimation and biofeedback control of single neurons. Given that
LFPs are population signals, the accuracy with which we are able
to resolve individual neurons is surprising, especially since neural
synchrony inevitably confounds the inference of causal effects
from STAs. Our use of linear models incorporating multiple
recorded cells can only partially mitigate this problem. Clearly,
given its large amplitude and slow time course, the SRSP
attributed by the model to each recorded cell must contain
contributions from unrecorded (but correlated) neurons in the
local network. On one hand, since firing rate estimates
generalized well across a variety of abstract BMI tasks we
conclude that the contribution of unrecorded neurons remained
broadly consistent across behaviours, although further
experiments would be required to demonstrate the stability of
SRSP features across more complex tasks. On the other hand,
independent fluctuations in the firing rates among the recorded
neurons are vital for their estimation since the contribution of
perfectly correlated cells to the LFP would be impossible to
separate. More plausibly, moderate correlations might be
signatures of larger, synchronous ensembles generating the
observed LFP. In this case, we would expect to predict only
those correlated components of neural activity (reflecting the
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activity of these ‘hidden’ ensembles) and not uncorrelated
dimensions (reflecting neural noise). However, when estimating
the firing rates of 8–20 neurons simultaneously, we obtained
significant prediction along all but one PC of the observed neural
space. The quality of fit along each dimension could be simulated
by adding noise uniformly across individual neurons, suggesting
that the LFP-based estimates are not systematically biased to
particular PCs. Moreover, when estimates of single neurons were
used for real-time biofeedback, task-related firing rate
modulations were largely confined to the targeted neuron.
Therefore, we conclude that the dimensionality of LFP-based
estimates is comparable to the dimensionality of our multiple
single-unit recordings. It remains to be seen whether this will stay
true as the density of recording arrays increases. One possibility is
that, as more of the network is sampled, the SRSP attributed to
each recorded neuron will eventually converge on the true causal
effect of its spiking. Alternatively, greater single-unit resolution
may ultimately reveal tightly correlated ensembles beyond which
SRSP-based separation becomes impossible.

The origin and spatial extent of the LFP remains a subject to
debate, with estimates ranging from a few hundred micro-
metres11,12 to several millimetres13. We observed robust SRSPs
varying in shape and polarity within lf–LFPs recorded on
different electrodes throughout the same cortical area as the
trigger neuron. We can rule out recording artefacts (for example,
room noise, head movements and electromyogram) since the
SRSP reversed polarity within the grey matter and lf–LFPs were
most informative of the firing rates of neurons within the same
cortical area. Moreover, when controlling LFP-based firing rate
estimates, monkeys selectively modulated the firing rates of the
estimated neurons rather than performing behaviours that might
be expected to generate artefacts. Although we cannot discount
the presence in our LFP recordings of artefacts uncorrelated with
spiking activity, these would only reduce the accuracy with which
we could estimate firing rates. We cannot say whether the spatial
extent of the SRSP reflects volume conduction of local sources or
synchronization of broader neuronal populations within each
cortical area42. Nevertheless, LFP-based firing rate estimation
worked equally well for M1 and PMv, while similarities with
spike–LFP relationships reported in macaque visual cortex33,34

and rat somatosensory and prefrontal cortex36 suggest that the
SRSP may reflect a ubiquitous feature of cortical organization
rather than a unique property of motor cortex. Possible
mechanisms that could account for low-frequency SRSP
components occurring several hundred milliseconds after spike
activity include GABAB-mediated recurrent inhibition43,44—since
the slow kinetics of the G-protein-coupled receptor gives rise to
extracellular potentials that can be delayed substantially relative
to cell activity45—as well as intrinsic effects, such as slow
hyperpolarization-activated Ih currents that contribute to low-
frequency resonances in cortical neurons46. Alternatively,
reciprocal connections with the thalamus form feedback loops
that are thought to contribute to delta-frequency oscillations47.
Indeed, our finding that the SRSP contains 3–4 distinct compo-
nents suggests that multiple processes likely contribute. Because
different electrodes record different mixtures of these compo-
nents, we are able to extract information about firing rates that
may not be present in global measures such as overall LFP power
in broad frequency bands. Moreover, information in LFPs is
highly layer dependent41,48 and variation in electrode depth with-
in our recording array appears beneficial for extracting non-
redundant spike-related features from multiple LFP channels.
This may additionally help explain why decoding of LFPs typi-
cally outperforms surface recordings from the brain or scalp18,20.

Large regression models can suffer from over-fitting and
instability, especially when inputs are highly correlated49 (as in

the case of multiple LFPs38). However, the distinct SRSP
components associated with each neuron allowed us to develop
a biophysically principled approach to dimensionality reduction,
which improved model validation and out-performed PC
regression. Our assumption of a linear relationship between lf–
LFP and spike activity is likely suboptimal, although evidence
from the primary visual cortex suggests that nonlinear
approaches may yield only marginal improvements33.
Experiments in the anesthetized visual cortex suggest there may
be distinct information contained in the lf–LFP compared with
gamma-band LFPs and spikes50, and that inclusion of these
higher frequencies improves prediction of spiking33. LFP spectra
in the awake motor cortex are characterized by strong activity in
the beta-band, but this is typically suppressed during movement
while spiking activity shows the greatest modulation. This
motivated our use of the low-frequency band for firing rate
estimation. Nevertheless, it is possible that the inclusion of higher
frequency bands could further improve performance, albeit at the
cost of increased computational complexity.

The instability of single-unit recordings is a challenge for
invasive neuroprostheses, but the wide spatial extent of the SRSP
across electrodes within the same cortical area suggests the lf–LFP
may be less sensitive to micromotion than extracellular spike
recordings. This may explain why we could still recover trial-
averaged firing rate profiles after several months. Remarkably,
this means that even after a neuron on one electrode is lost (or the
entire electrode signal is lost), its firing rate can still be inferred
from the lf–LFP recorded on other electrodes. We propose that
soon after electrode implantation, while clean spike recordings
can be obtained from many neurons, model parameters that
relate the firing rates of these neurons to lf–LFPs should be
calculated. Such an approach may allow firing rate estimation also
to be performed after spike recordings have substantially
deteriorated. While recent studies suggest that unsorted threshold
crossings can be used for biomimetic BMIs over several years17,51,
it remains to be seen whether the day-to-day stability of these
signals over extended periods will match LFPs17–19. Moreover, lf–
LFPs can be sampled at much lower frequencies, which has
important implications for the power requirements of
implantable devices. Once model parameters have been
determined, real-time firing rate estimation requires only two
simple steps: projection of the multichannel lf–LFP data into a
low-dimensional source space followed by linear deconvolution.
Such processing would be relatively easy to implement using
low-power electronics, particularly as it can operate at sampling
rates as low as tens of Hertz. The ability to estimate firing
rates from lf–LFP extends the use of this signal beyond
biomimetic decoding from open-loop training data, an
approach which has limitations for clinical application in
paralysed subjects. The true potential of BMIs as abstract tools
that are operated skilfully by the user will likely be achieved
through extensive ‘closed-loop neural adaptation’25,27,29 at the
level of individual neurons or small ensembles. Indeed, estimation
of firing rates from lf–LFPs could in principle be used within any
device requiring monitoring of neuronal activity over extended
periods of time, with encouraging implications for the
development of robust and efficient neuroprostheses for a range
of neurological conditions.

Methods
Subjects and training. Three female monkeys (Macaca mullata) were used in this
study: monkey A (age at the start of the experiment 5 years, 9 months; weight
9.7 kg), monkey D (5 years, 4 months; 6.4 kg) and monkey R (5 years, 4 months;
5.4 kg). Subjects were trained to sit in a primate chair, and voluntarily accept neck
and arm restraint, and immobilization of the left hand within a static manip-
ulandum, but were not head-fixed. All animal procedures were carried out under
appropriate UK Home Office licenses in accordance with the Animals (Scientific
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Procedures) Act 1986, and were approved by the Local Research Ethics Committee
of Newcastle University.

Wrist torque-controlled task. We trained subjects to perform a task in which 2D
isometric left-wrist torque (measured by a static six-axis force/torque manip-
ulandum) controlled the 2D position of a circular cursor on a screen placed
B50 cm in front of the subject. We refer to this here as the ‘torque task’. Each trial
was initiated by the cursor entering a central circular ‘home’ region, reflecting zero
torque (relaxation). A peripheral circular target appeared at one of eight positions
spaced equally around a circumference centred on the home position. After a
variable ‘cue’ period (between 1.2 and 2.4 s)—during which subjects had to remain
in the home region—they were required to move the cursor to overlap the target
for a fixed ‘hold’ period (0.6 s). If successful, subjects heard a reward tone, and were
given a small piece of fruit reward by a researcher. There was no time limit for an
individual trial. Around 300–500 trials were performed per day in a single session.

Brain-machine interface tasks. Following surgical implantation, subjects also
performed one of two different types of biofeedback BMI tasks, in which the 1D
screen cursor position was controlled by the normalized amplitude of signals
derived from neural recordings, to acquire 1D targets. Each day’s recording con-
sisted of 50 trials of the torque task followed by 250–450 trials of a BMI task. In
general, for BMI tasks we tried to choose neurons with large amplitude, clean
spikes, but did not otherwise select based on task-related modulation of firing rate.
Moreover, the axis of 1D cursor movement under brain control was chosen at
random so as to have no consistent relationship with the preferred direction of
neurons. There were two main types of BMI tasks: ‘cell control’ and ‘LFP control’.
Monkey A performed only the ‘cell-control’ task. Monkey D first performed a
series of ‘cell-control’ sessions followed, after an intervening period of 6 months, by
the ‘LFP-control’ task, based on a different sample of neurons. Monkey R per-
formed only the ‘LFP-control’ task. The ‘cell-control’ BMI task is described in
Supplementary Methods.

‘LFP-control’ BMI task. In this task, the 1D cursor position was controlled by the
smoothed estimated firing rates of neurons. Each day, we built a model using data
from the torque task that was then used to estimate simultaneously the firing rates
of two neurons from lf–LFP data in real-time. The two estimated firing rates (x̂1

and x̂2) were smoothed online using an exponential decay filter with a decay
constant a¼ 250 ms. Cursor position was then controlled by either the smoothed
estimated firing rate of one neuron or by the difference between two smoothed
firing rate estimates. Because the firing rates of different units were modulated over
different ranges, we applied a linear scaling to normalize rate estimates to screen
co-ordinates, based on the distribution of the firing rate estimates obtained during
the torque task. Each firing rate estimate was mapped to normalized screen
co-ordinates such that the 5th/95th centiles of this distribution corresponded
to ±50% (in screen coordinates, where 100% represents the screen edge).
Targets appeared at four positions: ±35 and ±70%. During one-cell control, the
cursor position, c, was equal to the scaled firing rate, x̂1ðnormÞ. During two-cell
control, c ¼ x̂1ðnormÞ � x̂2ðnormÞ

� �
= 2
p

, where the factor of 1= 2
p

was used to make
all targets equidistant from the origin in the 2D normalized neural space.

Surgical procedures. Surgeries were performed under general anaesthesia induced
with propofol (2-4 mg kg� 1) and maintained with sevofluorane (minimum
alveolar concentration 1.8-1.9%) and alfentanil infusion (0.2 mg kg� 1 min� 1).
Ventilation was supported and expired carbon dioxide concentration and per-
ipheral oxy-/deoxy-haemoglobin ratio were monitored. An intra-arterial line and
urethral catheter were inserted to monitor circulatory status, and intravenous fluid
support was provided (Hartmann’s saline, 5–10 ml kg� 1 h� 1), while body tem-
perature was maintained between 36.5 and 37.5 �C throughout. Animals received
peri-operative methylprednisolone (5.4 mg kg� 1 h� 1) and cefotaxime (250 mg, 2-
hourly), as well as post-operative antibiotics (ceftiofur 3 mg kg� 1), analgesia
(meloxicam 0.2 mg kg� 1) and steroids (methylprednisolone).

Guided by a prior structural magnetic resonance imaging scan, we made
individual craniotomies over the primary motor cortex (M1; coordinates antero-
posterior [AP] B11 mm, medio-lateral [ML] B15 mm), and ventral premotor
cortex (PMv; AP B20 mm, ML B20 mm). After dural resection, a custom-made
moveable microwire array39 was placed over each area. Each array consisted of 12
tungsten microwires (50 mm diameter, impedance 100–200 kO at 1 kHz; Advent
Research Materials, UK), passing through parallel polyimide guide tubes in two
rows of six aligned to the central or arcuate sulcus, with spacing of B200 mm
within rows and B2 mm between rows. The craniotomy was sealed with
cyanoacrylate, gelfoam and dental acrylic, and a titanium casing was attached to
protect the microwires and connectors. Animals recovered and returned to training
for 1–2 weeks before the microwires were lowered into the cortex. Each microwire
was advanced until clear spiking activity was heard. Our use of flexible, moveable
microwires, while advantageous for single-unit recording, precluded us from
providing accurate data regarding separation of electrode recording sites, since
X-ray imaging suggests the electrodes do not necessarily remain parallel as they are
advanced. Depending on the experiment, we left the microwires in place up for

many months at a time or moved them as often as twice per week to obtain new
signals.

Electrophysiological recordings. The majority of data were acquired using a
TDT-RZ2 digital signal processor and acquisition system (Tucker Davis Tech-
nologies, FL, USA). Cortical signals were acquired by a digitizing pre-amplifier
(48.8 kHz; frequency response 3 dB for 0.35 Hz–7.5 kHz, 6 dB for 0.2 Hz–8.5 kHz)
from 24 microwire electrodes, relative to a subdural reference. In experiments
involving real-time estimation of firing rates, the lf–LFP was extracted by low-pass
filtering the raw signal online at 5 Hz (digital biquad filter) and downsampling to
48.8 Hz. Neuronal spiking activity was extracted by digitally band-pass filtering the
raw signal (1–8 kHz) and thresholding. We classified single-unit spikes in a semi-
supervised fashion using the TDT online PC-based feature extraction and clus-
tering software suite.

Data for Fig. 1a–c and Supplementary Figs 8 and 9 were acquired using a
system based around a CED Power-1401 acquisition system (Cambridge Electronic
Design, Cambridge, UK), which is described in detail in Supplementary Methods.
Both recording systems were used with monkeys A and D. Only the TDT-based
system was used with monkey R.

All offline analysis was performed in MATLAB (Mathworks, MA, USA).
Channels were excluded from further analysis if visual inspection of the LFP signals
indicated that the electrodes or their insulation were damaged (flat signals,
consistent wideband noise or large artefacts). If not already extracted online, we
extracted lf–LFP signals offline by low-pass filtering LFPs at 5 Hz (zero-phase 5th-
order Butterworth filter, MATLAB) and downsampling to 48.8 Hz.

Estimating lf–LFPs from neuronal firing rates. The spike events of P neurons at
time t were binned with the same sampling interval as the lf–LFP, demeaned and
assigned to the P-dimensional vector x(t). lf–LFP vectors of Q recording channels
were demeaned and assigned to the Q-dimensional vector y(t). We used a multiple-
input, multiple-output (MIMO) model defined by the equation:

y tð Þ ¼
Z t2

t1

H tð Þ:x tþ tð Þdt ð1Þ

where H(t) is an unknown Q-by-P matrix of finite impulse response (FIR) filter
kernels, that are a function of the time interval, t, relative to spike occurrence. For
offline lf–LFP estimation, we used t1¼ � 2.0 s and t2¼ 2.0 s. We solved for the
filter kernel matrix, H(t), of this system using the correlation-based approach of
Perreault et al.52, which is a computationally efficient approximation to least-
squares regression under reasonable assumptions. Conceptually, an individual filter
kernel element, hpq(t), from this matrix is very similar to the STA (and looks
similar when plotted against t), but it excludes contributions from the auto- and
cross-correlation structure within multichannel firing rates.

Next, using these filter kernels, we produced lf–LFP estimates, ŷ(t), from firing
rate data according to the same model with:

ŷ tð Þ ¼
Z t2

t1

H tð Þ:xval tþ tð Þdt ð2Þ

where xval(t) is firing rate data from validation data comprising 25% of the
recording. The performance of the model was quantified by the Pearson’s
correlation coefficient, r, between the estimated lf–LFP, ŷq(t), and the actual lf–LFP,
yq(t).

Estimating neuronal firing rates from lf–LFPs. In theory we could apply the
MIMO approach described above to solve directly the inverse problem of esti-
mating firing rates from LFPs. However, due to strong correlations between LFP
inputs, we found that models fitted to the high-dimensional data suffered from
instability and generalized poorly. Therefore we reduced the dimensionality of the
LFP data used as input to the MIMO model. A common way to achieve this is by
applying PC analysis to the LFP signals. However, the components of the LFP that
are most informative about an individual neuron may not be those that capture the
greatest overall variance. Instead we used a five-stage approach, guided by the
biophysically reasonable assumption that the SRSP associated with each neuron is
composed of a discrete number of components:

(1) we built a forward MIMO model (equation 1) with P neuronal firing rates,
x(t), as inputs, and Q lf–LFPs, y(t), as outputs, to generate the Q-by-P matrix
of filter kernels, H(t). Typically, we estimated two neuronal firing rates
simultaneously (Supplementary Fig. 3a–c) and therefore the lf–LFPs from both of
those electrode channels were excluded from the model. For offline firing rate
estimation, we used t1¼ � 2.0 s and t2¼ 2.0 s.

(2) We performed PC analysis on the filter kernels (Supplementary Fig. 3d).
This was motivated by the observation that the variability of the SRSP across LFP
channels could be captured by a small number of components (Fig. 3), implying
that only a discrete number of sources within the LFP are informative of the
spiking of a given neuron. The first six SRSP-PCs were used for the remainder of
the analysis, yielding h0p(t), a vector of six filter kernels where the subscript
indicates that these are appropriate for estimating cell p. (Note that in Fig. 5a–d
only three PCs were used, while in Fig. 5e,f the number of PCs used was a
dependent variable.)
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(3) At this stage it would be possible to project the LFP directly onto the six
SRSP-PC axes to achieve dimensionality reduction. However, such an approach
would be suboptimal since, while these projections maximize the information
about a given neuron, they do not minimize uncorrelated noise (which would not
appear in the SRSP). Instead, for each neuron we first obtained a ‘source estimate’
vector, sp(t), (Supplementary Fig. 3e) by convolving the firing rate xp(t) with the
SRSP-PC kernels:

sp tð Þ ¼
Z t2

t1

h0p tð Þ:xp tþ tð Þdt ð3Þ

(4) We then found the projection of the LFP data that best approximated this
source estimate. Linear regression was performed between the source estimates,
sp(t), and the Q lf–LFPs, y(t), yielding a Q-by-6 ‘weighting matrix’ Mp

(Supplementary Fig. 3h) to transform the lf–LFP data into a six-dimensional
‘source projection’ vector, y0p(t), that best fitted the six source estimates of neuron p
(Supplementary Fig. 3f).

(5) For each neuron, we calculated an ‘inverse filter’ kernel vector, jp(t), to
deconvolve the source projections for neuron p and produce an estimated firing
rate (Supplementary Fig. 3g). To do this we fitted a new model, with source
projections, y0p(t), as inputs and the low-pass-filtered (5 Hz; zero-phase 5th-order
Butterworth) actual firing rate, xp(t), as an output:

xp tð Þ ¼
Z t2

t1

jp tð Þ:y0p tþ tð Þdt ð4Þ

We found that the stability of this model (an inverse Wiener–Kolmogorov
filter) could be improved by adding low-amplitude Gaussian noise (mean¼ 0;

s:d: ¼ y0p

���
���=100) to each source projection before fitting, which is equivalent to

adding a regularization term to penalize the sum-square of the filter kernels.
An ‘lf–LFP decoder’ for neuron p thus consisted of two elements: (1) the lf–LFP

weighting matrix, Mp; and (2) the inverse filter kernels, jp(t). Both were stored for
later use in either online or offline firing rate estimation. To test the model,
validation lf–LFP data, yval, (either 25% of the recording, or data from another
behavioural task/another day) were transformed by the weighting matrix, Mp, and
deconvolved using the inverse kernels to produce a firing rate estimation
(Supplementary Fig. 3i) for a particular neuron:

x̂p tð Þ ¼
Z t2

t1

jp tð Þ:Mp:yval tþ tð Þdt ð5Þ

Online firing rate estimation. For online firing rate estimation during the ‘LFP-
control’ BMI task, we used the same approach as offline, but with t1¼ � 1.8 s and
t2¼ 0.2 s, such that online firing rate estimation was delayed by 0.2 s relative to the
real-time data. Projection of lf–LFP signals into the source space and subsequent
inverse filtering were implemented by hardware digital signal processors within the
TDT-RZ2 using the TDT Real-time Processor Visual Design Studio (RPvdsEx)
software.

Assessing model performance. The quality of firing rate estimation was quan-
tified for each neuron using the Pearson correlation coefficient, r, between the low-
pass-filtered actual firing rate, xp(t), and the estimated firing rate, x̂pðtÞ over vali-
dation data. Since successive samples of lf–LFPs or firing rates are not independent,
the statistical significance of r-values (between estimated and actual data) cannot be
inferred from parametric assumptions. Therefore we estimated the distribution of
r-values under the null hypothesis of no relationship by shifting (with circular
wrapping) the actual and estimated data by all possible time-lags 45 s. The
reported r-value was considered significant (Po0.05, two-tailed) if it fell above the
97.5th centile of the resulting distribution. In the figures, firing rate estimations
whose r-values fell above this threshold are shown as filled circles and those below
as empty circles. In Fig. 6a–d, the mean (±s.e.m.) of the significance threshold
across all neurons is shown for illustrative purposes only, although each neuron
estimate underwent individual significance testing.

We also calculated correlation in the frequency domain using Welch’s
coherence estimate (‘mscohere.m’ in MATLAB Signal Processing Toolbox), with a
128-point fast Fourier transform with non-overlapping windows. Significance was
determined according to ref 53:

threshold ¼ 1� a1=ðN � 1Þ ð6Þ
where the N is the number of disjoint windows (193 in the example shown in
Supplementary Fig. 4b) and the significance level a¼ 0.05.

Performance with increasing numbers of neurons/lf–LFPs/PCs. To determine
how the quality of lf–LFP fit depended on the size of the neuronal sample (Fig. 2),
every lf–LFP channel was estimated using 120 random draws of P neurons
increasing from one up to the number of neurons available. To determine how the
quality of firing rate fit depended on size of the lf–LFP sample (Fig. 5a–d), every
neuron’s firing rate was estimated using 120 random draws of Q lf–LFPs increasing
from three up to the number of channels available (excluding that recorded on the
same electrode as the neuron of interest) and applying dimensionality reduction

based on three SRSP-PCs. For comparison, we also estimated each neuron’s firing
using all available lf–LFPs, not excluding that on the same channel as the neuron
(these results are shown as open squares in Fig. 5a–d). To determine how the
quality of firing rate fit depended on the number of SRSP-PCs (Fig. 5e,f), every
neuron’s firing rate was estimated using all lf–LFPs (excluding that recorded on the
same electrode as the neuron of interest) projected into a source estimate space
with dimensionality increasing from one up to the number of channels available
(that is, no dimensionality reduction). The quality of fit was compared against
models based on increasing numbers of lf–LFP PCs from one up to the number of
channels available. In each of the figures, error bars show s.e.m. across different
channels, and are therefore are not artificially reduced by the large number of
permutations averaged to estimate the mean for each channel.

Assessing estimation of neural population components. For the simultaneous
estimation of all firing rates, we included lf–LFPs on the same channels as the
estimated neurons, since there would otherwise have been insufficient lf–LFPs
available. PC analysis was performed across the low-pass-filtered firing rates, x(t),
of all neurons recorded in the session (the P-dimensional ‘neural space’), producing
neural PCs, x0ðtÞ. Estimated firing rates of the same neurons, x̂ðtÞ, were reprojected
onto the same PC axes, producing component estimates, x̂0ðtÞ. Comparison
between x0ðtÞ and x̂0ðtÞ used the correlation coefficient, r, with bootstrap sig-
nificance testing (as above).

Tuning index for the ‘LFP-control’ BMI task. The actual firing rate of each cell
was normalized to zero mean and unity variance over the ‘LFP-control’ BMI
session. Firing rate profiles for each target were aligned to the end of successful
trials and averaged separately for estimated and all other neurons. The task-
modulation of firing rates was quantified using a tuning index, calculated for each
neuron during the hold period of the task (adjusted for the 0.2 s delay in the firing
rate estimation), according to:

Tuning index ¼ �xtop � �xbottom

�xtop þ �xbottom
ð7Þ

where �xtop and �xbottom are the mean firing rates of the neuron during the (adjusted)
hold period across all trials for the top target and bottom target, respectively. The
tuning index distributions of estimated (controlling) neurons versus all other (non-
controlling) neurons were compared using the Mann–Whitney U-test imple-
mented in SPSS (IBM, NY), because data did not pass normality tests (Shapiro–
Wilk, Po0.05).
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