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Abstract

Purpose

The purpose of this study was to compare the performance of four diffusion models, includ-

ing mono and bi-exponential both Gaussian and non-Gaussian models, in diffusion weighted

imaging of rectal cancer.

Material and methods

Nineteen patients with rectal adenocarcinoma underwent MRI examination of the rectum

before chemoradiation therapy including a 7 b-value diffusion sequence (0, 25, 50, 100,

500, 1000 and 2000 s/mm2) at a 1.5T scanner. Four different diffusion models including

mono- and bi-exponential Gaussian (MG and BG) and non-Gaussian (MNG and BNG) were

applied on whole tumor volumes of interest. Two different statistical criteria were recruited to

assess their fitting performance, including the adjusted-R2 and Root Mean Square Error

(RMSE). To decide which model better characterizes rectal cancer, model selection was

relied on Akaike Information Criteria (AIC) and F-ratio.

Results

All candidate models achieved a good fitting performance with the two most complex mod-

els, the BG and the BNG, exhibiting the best fitting performance. However, both criteria for

model selection indicated that the MG model performed better than any other model. In par-

ticular, using AIC Weights and F-ratio, the pixel-based analysis demonstrated that tumor

areas better described by the simplest MG model in an average area of 53% and 33%,

respectively. Non-Gaussian behavior was illustrated in an average area of 37% according to

the F-ratio, and 7% using AIC Weights. However, the distributions of the pixels best fitted by
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each of the four models suggest that MG failed to perform better than any other model in all

patients, and the overall tumor area.

Conclusion

No single diffusion model evaluated herein could accurately describe rectal tumours. These

findings probably can be explained on the basis of increased tumour heterogeneity, where

areas with high vascularity could be fitted better with bi-exponential models, and areas with

necrosis would mostly follow mono-exponential behavior.

Introduction

Diffusion weighted imaging (DWI) has an increasing clinical role in the imaging of patients

with rectal cancer, especially in the restaging phase after chemoradiation treatment (CRT) [1].

It has been confirmed that DWI improves the diagnostic accuracy when added to conventional

T2 sequences for detecting residual disease after CRT [2,3]. The latter has been mainly accom-

plished by detecting high signals on the high b-value diffusion images by means of visual

assessment [1–4], and occasionally by measuring apparent diffusion coefficient (ADC) of

these areas [4].

In the era of minimally invasive surgical treatment or even wait and see policies [5,6], it is

of paramount importance to develop and validate non-invasive imaging biomarkers that could

provide prognostic information on the therapeutic outcome, before initiating the treatment

[7]. To serve the latter requirements, an ongoing shift from qualitative evaluation of diffusion

images to more quantitative strategies, including measurement of ADC [4,8–9] and tumor vol-

ume [10] on high b-value images, is in progress. The most commonly used diffusion related

biomarker is the ADC calculated from a mono-exponential model which assumes that the

molecular displacement probability function is Gaussian. It has been shown that in several

normal tissues, as well as, in malignant, heterogeneous tissues, there is a deviation between the

Gaussian diffusion models and the experimental data, noticeable in high b-values which could

be attributed to interactions of water molecules with anatomical structures, like cellular mem-

branes. This means, that in the presence of increased tissue heterogeneity the assumption that

water displacements can be described by a Gaussian probability function, is no longer valid. In

such cases, non-Gaussian models like kurtosis has been shown to fit the data more accurately

in the brain [11], breast [12], prostate [13], liver [14] and pancreas [15].

In the current study, four different models (mono- and bi-exponential fitting to Gaussian

and non-Gaussian distributions) were applied on data from patients with rectal cancer, to

identify which model provided the best performance in terms of fitting quality.

Materials and methods

Patients

This study retrospectively assessed nineteen patients who were diagnosed with histologically

proven non-mucinous type rectal adenocarcinoma at Maastricht University Medical Center

medical center between April 2014 and July 2015. Twelve patients were male, seven females.

Median age was 66 (range 45–84 years). Patients were selected from a patient group of n = 28

patients who all underwent a primary staging MRI examination including a dedicated DWI

sequence before treatment. Nine patients were excluded because the DW images could not be
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assessed due to peristaltic motion effects. The study was approved by the Maastricht UMC

Medical Review Ethics Committee while informed consent was waived.

Image acquisition

Diffusion weighted imaging (DWI) using a single shot Spin-Echo Echo Planar Imaging

sequence was acquired on a 1.5 T whole-body magnetic resonance scanner (Ingenia, Philips,

Best, the Netherlands). For signal reception a 32-channel flexible anterior phased-array coil

and built-in posterior coil were used. Seven b-values (number of signal averages) including: 0

(5), 25 (5), 50 (5), 100 (5), 500 (5), 1000 (10) and 2000 (10) s/mm2 were acquired. The most

important DWI sequence parameters were TR/TE: 4414/79ms; FOV: 320 x 247 mm2; acquisi-

tion matrix: 176x109; reconstruction matrix: 256x256; slice thickness 5mm and intersection

gap 0.4mm. The diffusion gradients were applied in 3 orthogonal axes (tetrahedral scheme),

parallel imaging factor was 1.9 and a spectral selective fat saturation pulse was used. The DWI

scan time was 08mins and 24s for the acquisition of 20 axial slices. Before the initiation of the

diffusion sequence all patients were injected 20mg of Butylscopolamine (Buscopan, Boehrin-

ger Ingelheim Pharma, Ingelheim, Germany) to reduce peristaltic motion.

Image analysis

Diffusion data were post processed with in-house developed software [16] which was able to

generate parametric maps of a number of model related parameters. For each patient the

tumor was traced manually slice by slice by a trained radiologist with 7 years of experience in

rectal MRI. Regions of interest (ROIs) were drawn on the b1000 images, including only the

areas with high signal intensity therefore avoiding necrotic parts of the tumors encompassing

as much of the tumor volume as possible, avoiding the outmost tumor margins in order to

minimize partial volume averaging (Fig 1). The T2-weighted sequences were at the reader’s

disposal for anatomical reference.

All pixel values belonging to the tumor were used as input for signal intensity curves as a

function of b-value. Model specific curves were graphically overlaid on the data in order to

gain insight into each model performance qualitatively. For visual and quantitative evaluation

of each approach, statistical criteria permitted direct comparison of the fitting outcome (Fig

2). Signal to Noise Ratio (SNR) maps were calculated on a pixel by pixel basis for each individ-

ual b-value based on the following formula that is valid when images obtained with parallel

imaging techniques are considered [17]:

SNR ¼
SItumorffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

4� p
sdair

p ð1Þ

where SItumor was the signal intensity of each tumoral pixel and sdair the standard deviation of

a region of interest drown in the air near the anterior abdominal wall.

The analysis was based upon pixels with adequate model compliance to the data. A statisti-

cal goodness-of-fit metric relying on the adjusted-R2 (adj-R2) was applied indifferently of the

model, and pixels above a threshold of equal to 50% were included in the analysis. Moreover,

in case a ROI showed a very high SNR value at b0 (i.e. 1000), pixels within the ROI with SNR

above the 95th quantile of the SNR distribution were also excluded from the analysis as convey-

ing spurious signal. Finally, the analysis was applied individually to each patient, all tumours

were visualised on DWI series, and quantitative data were presented as mean ± standard devia-

tion (SD).
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Diffusion signal modelling

The DWI biomarkers were quantified on a pixel by pixel basis leading to the generation of

parametric maps (Figs 3 and 4) of each individual biomarker using the following formulae:

1. ADC from the mono-exponential Gaussian fit, according to:

SðbÞ ¼ So � e� b�ADC ð2Þ

2. Dbg, Dbg
� and fbg from the bi-exponential Gaussian fit, according to:

SðbÞ ¼ So � ½ð1 � fbgÞ � e� b�Dbg þ fbg � e� b�D�bg � ð3Þ

Fig 1. Multiple regions of interest are shown on b1000 diffusion images in a patient with rectal cancer. The tumor was carefully

traced based on high signal intensities on b1000 and anatomical information from T2w images.

https://doi.org/10.1371/journal.pone.0184197.g001
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Fig 2. Statistical criteria used to evaluate (A) the quality of fit and (B) model performance. (A) adjusted-

R2 map and corresponding histogram. (B) Akaike Information Criteria (AIC) map and corresponding

histogram.

https://doi.org/10.1371/journal.pone.0184197.g002

Fig 3. Generated pixel-based ADC and true-diffusion maps from the four examined models. On the

upper row ADC and Gaussian true diffusion maps are shown, while on the bottom row non-Gaussian mono

and bi-exponential true diffusion maps are visualized. A single slice of the tumor was selected for visualization

purposes.

https://doi.org/10.1371/journal.pone.0184197.g003
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3. Kmng and Dmng from the mono-exponential non-Gaussian fit, according to:

SðbÞ ¼ So � e� ðb�Dmngþ
1
6
�b2�D2

mng�Kmng Þ ð4Þ

4. Dbng, fbng, Dbng
�, Kbng from the bi-exponential non-Gaussian fit, according to:

SðbÞ ¼ So � ð1 � fbngÞ � eð� b�Dbngþ
1
6
�b2�D2

bng�Kbng Þ þ fbng � e� b�D�bng

h i
ð5Þ

where S(b) is the signal intensity (SI) at a given b-value, S0 the SI without any diffusion

weighting gradient (b-value equal to 0), ADC the apparent diffusion coefficient, Dbg the

Gaussian true diffusion coefficient, Dbg
� the Gaussian pseudo-diffusion coefficient, fbg the

Gaussian micro-perfusion fraction, Dmng is the mono-exponential non-Gaussian diffusion

coefficient, Kmng the mono-exponential kurtosis coefficient, Dbng is the bi-exponential non-

Gaussian true diffusion coefficient, Dbng
� is the bi-exponential non-Gaussian pseudo-diffu-

sion coefficient, fbng is the non-Gaussian micro-perfusion fraction and Kbng the bi-expo-

nential kurtosis coefficient. The kurtosis coefficient expresses the degree of deviation from

the Gaussian distribution and is a dimensionless parameter, whose value may be either 0

(expressing perfect Gaussian distribution) or higher.

Fig 4. Generated pixel-based kurtosis and micro-perfusion fraction maps from the four examined

models. On the upper row non-Gaussian mono and bi-exponential kurtosis maps are shown, while on the

bottom row Gaussian and non-Gaussian micro-perfusion fraction maps are visualized. A single slice of the

tumor was selected for visualization purposes.

https://doi.org/10.1371/journal.pone.0184197.g004
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All models were applied on multi-slice regions of interest including rectal tumors and their

associated biomarkers were derived for every pixel in the region using non-linear fitting tech-

niques. The mean post processing time to generate all diffusion parametric maps was

04:32mins (min: 01:45mins, max: 08:31mins) depending on the number of pixels belonging to

the tumor.

Nonlinear Least Squares (NLLS) was applied as a fitting method for calculating the bio-

markers from the four different models. NLLS, based on the Levenberg-Marquardt algorithm

[18], are minimization problems in mathematics that given initial, lower, and upper bounds

for each calculated biomarker (i.e. Dbg, Dbg
� and fbg for the bi-exponential Gaussian fit) con-

sider the diffusion model by a linear one, and iteratively refine the values of the parameters to

reach their optimal values. The following constraints in the initialization values intended to

limit possible effect of local minima in the fitting procedure:

1. Mono-exponential Gaussian (MG) model: ADC from 0.1 (10-3mm2/s) to 4.0 (10-3mm2/s)

with an initial value of 1.5 (10-3mm2/s).

2. Bi-exponential Gaussian (BG) model: Dbg from .1 (10−3 mm2/s) to 4.0 (10−3 mm2/s) with

an initial value of 1.5 (10−3 mm2/s), Dbg
� from 10 (10−3 mm2/s) to 300 (10−3 mm2/s) with

an initial value of 100 (10−3 mm2/s), and fbg from .05 to .8 with an initial value of .2.

3. Mono-exponential non-Gaussian (MNG) model: Dmng from .1 (10−3 mm2/s) to 4.0 (10−3

mm2/s) with an initial value of 1.5 (10−3 mm2/s), and Kmng from 0 to 2.5 with an initial

value of 1.

4. Bi-exponential non-Gaussian (BNG) model: Dbng from .1 (10−3 mm2/s) to 4.0 (10−3 mm2/s)

with an initial value of 1.5 (10−3 mm2/s), Dbng
� from 10 (10−3 mm2/s) to 300 (10−3 mm2/s)

with an initial value of 100 (10−3 mm2/s), fbng from .05 to .8 with an initial value of .2, and

Kbng from 0 to 2.5 with an initial value of 1.

Statistical metrics

Statistical metrics including the R-square (R2) and the Root Mean Square Error (RMSE) are

frequently used criteria to determine the goodness-of-fit of a model. Studies showed that R2

and conclusively metrics that mainly rely on the measurement of the absolute distance

between the fitted curve and the given signal have been adequate metrics in nonlinear fitting

problems [19–20]. Therefore, the bias-corrected adjusted-R2 (adj-R2) that accounts for the

number of degree of freedom (DOF) was used instead of the R2. Both adj-R2 and RMSE were

included in the analysis to only assess how close the fitted curve was to the measured signal

intensity curve, thus providing a strong statistical indicator about the fitting accuracy of the

four examined models and the derived diffusion parameters.

Akaike Information Criteria (AIC) [21] and the F-test statistics (F-ratio) [22] were recruited

for statistical evaluation of the performance of the four investigated models in terms of model

selection. A low value for AIC signifies a good model. However, a direct comparison of the

AIC values is meaningless when comparing a series of models [23]. Instead, model selection

was performed using AIC Weights. The second metric for model selection relied on a hypothe-

sis test using F-ratio with a 5% level of significance. F-ratio was calculated based on the follow-

ing equation:

F ¼
ðSSE1 � SSE2Þ=SSE2

ðDF1 � DF2Þ=DF2

ð6Þ

where DF is the degree of freedom given by the number of the b-values minus the number of
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model parameters, and subscripts 1 and 2 present the simpler and the more complex examined

models respectively. F-ratio indicates a pairwise comparison between two candidate models

for best fitting, choosing the more complex model (i.e. with subscript 2) in case its p-value is

less than the one from the F-table with a 5% level of significance.

Multiple pairwise comparisons were conducted between the four candidate models until

the best model was determined. To further extend the statistical analysis, all derived parame-

ters were tested and exhibited non-normal distribution with a p-value of 5% as significant.

Therefore, Wilcoxon-Mann-Whitney test was used to disclose any significant differences

between all four models.

For adj-R2 and AIC Weights, success is measured on the basis of the maximum value of the

criterion while the opposite is true for the RMSE where the lowest score pinpoints the most

successful model. F-ratio relies on a hypothesis test and no measurements can be displayed.

Results

Data fitting and derived parameters

Table 1 summarizes the percentage of fitted pixels within the ROIs of all patients after the

thresholding process was applied to all four models. All candidate models effectively fit a wide

area of each ROI above the defined threshold, specifically more than 85% of the pixels in all

cases. The Gaussian bi-exponential model (BG) fitted the highest number of pixels of each

patient with an adj-R2 value superior to 95% (for 15 out of 19 patients). SNR of the tumour

area for every b-value, expressed as mean ± SD, is also shown on Table 1. An average SNR

level above 240 was achieved in the low b-value range (b-value from 0 to 100 s/mm2), decaying

smoothly to 85 as the b-value increases.

Table 2 gives an overview of the goodness-of-fit of the four candidate models, where the

adj-R2 and especially the RMSE indicate that the two most complex models, the BG and the

BNG, exhibit the best fitting performance. In case of the adj-R2, the BG model showed the best

fitting performance in fourteen out of nineteen patients whereas using RMSE the most com-

plex model (BNG) best fitted tumor areas from all patients.

Table 1. Pixel percentage of all patients fitted with adj-R2 more than 50% and SNR levels at each b-

value. Values in parentheses show the number of patients with highest number of pixels fitted by the model.

Model Pixel Percentages

MG 93.49 (4/19)

BG 97.93 (15/19)

MNG 94.77 (0/19)

BNG 96.07 (0/19)

B-value SNR

0 267 ± 94

25 269 ± 97

50 267 ± 93

100 243 ± 87

500 179 ± 62

1000 129 ± 44

2000 85 ± 28

Abbreviations: adj-R2, adjusted-R2; SNR, Signal to Noise Ratio; MG, mono-exponential Gaussian; BG, bi-

exponential Gaussian; MNG, mono-exponential non-Gaussian; BNG, bi-exponential non-Gaussian.

https://doi.org/10.1371/journal.pone.0184197.t001
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Mean ± SD of each derived parameter from the four examined models are presented in

Table 3 for all tumoral pixels. In a significant number of patients (12 out of 19) the ADC from

the MG and the Dbng from the BNG model showed a statistical dependence according to the

Wilcoxon-Mann-Whitney test (p-value higher than 5%). On the contrary, no statistical signifi-

cant differences (p-value less than 5%) were found between micro-perfusion, micro-perfusion

fraction and kurtosis related parameters, respectively.

Model selection

The statistical analysis was performed with respect to the model selection criteria of the AIC

Weights and the F-ratio. To obtain a more detailed insight into the performance of the four

examined models, the number of pixels that were attributed to a certain criterion according to

the best fitting were calculated and depicted in Table 4. The majority of pixels from each ROI

were in general assigned to the model proven to be the most successful. In case of the Akaike

Weights and the F-ratio, most of the pixels seemed to be better characterized by the mono-

exponential Gaussian decaying curve and the ADC parameter. In the same twelve out of nine-

teen patients, most of the pixels from the tumor area were better characterized by the MG

model either using AIC Weights or F-ratio. However, the F-ratio led to a more balanced

Table 2. Derived goodness-of-fit parameters from the four models, expressed as mean ± SD.

Model adj-R2 (%) RMSE

MG 83.0 ± 19.1 (0/19) 35.0 ± 22.6 (0/19)

BG 92.7 ± 11.6 (14/19) 16.8 ± 12.9 (0/19)

MNG 86.7 ± 17.9 (2/19) 26.1 ± 20.4 (0/19)

BNG 91.3 ± 16.7 (3/19) 13.3 ± 13.3 (19/19)

Abbreviations: adj-R2, adjusted-R2; RMSE, Root Mean Square Error; MG, mono-exponential Gaussian; BG,

bi-exponential Gaussian; MNG, mono-exponential non-Gaussian; BNG, bi-exponential non-Gaussian.

https://doi.org/10.1371/journal.pone.0184197.t002

Table 3. Derived DWI parameters from the four models, expressed as mean ± SD.

Model Parameters Mean ± SD

MG ADC 1.006 ± 0.605 (x10-3 mm2/s)

BG Dbg 0.612 ± 0.218 (x10-3 mm2/s)

Dbg* 46.76 ± 84.79 (x10-3 mm2/s)

fbg 0.186 ± 0.128

MNG Dmng 1.459 ± 0.758 (x10-3 mm2/s)

Kmng 1.005 ± 0.465

BNG Dbng 0.882 ± 0.391 (x10-3 mm2/s)

Dbng* 87.27 ± 114.2 (x10-3 mm2/s)

fbng 0.127 ± 0.110

Kbng 0.839 ± 0.598

Abbreviations: MG, mono-exponential Gaussian; ADC, apparent diffusion coefficient (10−3 mm2/s); BG, bi-

exponential Gaussian; Dbg, Gaussian true diffusion (10−3 mm2/s); Dbg*, Gaussian pseudo-diffusion (10−3

mm2/s); fbg, Gaussian micro-perfusion fraction; MNG, mono-exponential non-Gaussian; Dmng, mono-

exponential non-Gaussian diffusion (10−3 mm2/s); Kmng, mono-exponential kurtosis; BNG, bi-exponential

non-Gaussian; Dbng, bi-exponential non-Gaussian true diffusion (10−3 mm2/s); Dbng*, bi-exponential non-

Gaussian pseudo-diffusion (10−3 mm2/s); fbng, non-Gaussian micro-perfusion fraction; Kbng, bi-exponential

kurtosis coefficient.

https://doi.org/10.1371/journal.pone.0184197.t003
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distribution of the overall number of pixels from all ROIs to the four examined models when

compared to the AIC Weights. The BG model was the second most successful in both criteria,

and non-Gaussian behavior was observed in almost 37% and 7% of pixels when F-ratio and

AIC Weights were calculated, respectively.

The statistical analysis was extended in terms of the SNR calculations to assess any potential

influence they had on the model selection process. The mean value of SNR for every pixel of all

ROIs was calculated for the subgroup of low (0, 25, 50, 100 s/mm2) and high (500, 1000, 2000

s/mm2) b-values, respectively. The corresponding min-to-max SNR ranges for each group

were in turn divided into 8 sub-regions of equal width in which all models were individually

tested with respect to the aforementioned analysis criteria. The scope of this analysis was

focused in testing the level of stability each model performance shows at different levels of

SNR. Table 5 shows the percentage of pixels best fitted by each model at each SNR interval for

the low and the high b-value range according to the F-ratio, respectively. A consistent behav-

ior, in terms of which model best fitted the most pixels, was shown in the low, high and overall

b-value range (Table 4) with minor alterations to the percentage differences along the SNR

intervals. Similar results in terms of stability were obtained in case of the AIC Weights.

In order to conclude to a single model that achieves best fitting performance for each

patient individually, an average percentage of pixels best described by each model was first cal-

culated for each patient and then summarized as shown in Table 6 and Fig 5. The purpose of

evaluating fitting performance for each patient individually was to remove dependence from

lesion size (number of pixels assigned as tumor) and more importantly to decide upon the

most appropriate model for personalized data fitting. The results shown equivalent results to

those presented in Table 4.

Discussion

Diffusion imaging is gaining increasing attention for rectal cancer imaging not only qualita-

tively but also quantitatively [8,24]. The predictive value of ADC in assessing the treatment

outcome has already been demonstrated by a limited number of studies [25–27]. In the vast

majority of these studies a mono-exponential Gaussian algorithm is used in order to extract

quantitative information. In the presented study, we acquired multiple b-values located on the

low and very high range, in order to bring out micro-perfusion contamination and deviations

from the Gaussian behavior [28].

A comprehensive statistical analysis was conducted to assess fitting quality of each model

using the adj-R2 and RMSE. As reported in the literature, metrics that rely on the measure-

ment of the absolute distance between the fitted curve and the acquired diffusion signal tend

to favour the most complex models [19–20]. Statistically, a complex model like BNG would

better fit the data than a simple model like MG causing overfitting and consequently false

Table 4. Percentage of pixels best fitted from a specific model according to the AIC weights and F-

ratio.

Model AIC Weights F-ratio

MG 52.50 (12/19) 33.29 (12/19)

BG 40.53 (7/19) 29.71 (2/19)

MNG 3.11 (0/19) 24.17 (4/19)

BNG 3.86 (0/19) 12.83 (1/19)

Abbreviations: AIC, Akaike Information Criteria; F-ratio, F-test statistics; MG, mono-exponential Gaussian;

BG, bi-exponential Gaussian; MNG, mono-exponential non-Gaussian; BNG, bi-exponential non-Gaussian.

https://doi.org/10.1371/journal.pone.0184197.t004

Diffusion weighted imaging model comparison in rectal cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0184197 September 1, 2017 10 / 15

https://doi.org/10.1371/journal.pone.0184197.t004
https://doi.org/10.1371/journal.pone.0184197


model selection in some cases. Therefore, model selection analysis was based on the AIC

Weights and F-ratio showing contradictory to the goodness-of-fit metrics results.

A trend was distinguished when considering both chosen criteria (i.e. AIC Weights and the

F-ratio) for model selection, which evince the MG as the most reliable fitting algorithm. How-

ever, a high heterogeneity of all ROIs was prominent and statistically presented through the

percentage of pixels best fitted by each of the four models. Table 4 shows that the AIC Weights

and especially the F-ratio showed a balanced and smoothed distribution of the pixels better fit-

ted by the models. Extending the current analysis into eight different SNR intervals, Table 5

depicted that model performance was not influenced by the SNR of the tumor area. These

results were further confirmed when average percentages of all pixels of the tumor area of each

patient that best fitted by each model were summarized in Table 6 and Fig 5. These prelimi-

nary findings suggest that in heterogeneous tissue areas, a single model cannot quantitatively

describe all the underling anatomical and functional diversity. Therefore, a composite

Table 5. Percentage of pixels best fitted from a specific model according to the F-ratio at each SNR range. SNR distinct intervals were calculated

from the low and the high b-values.

B-value range SNR intervals MG BG MNG BNG

LOW [51.3 170) 39.64% 31.53% 20.82% 8.00%

[170 202) 33.99% 32.15% 22.61% 11.25%

[202 228) 31.23% 31.72% 22.96% 14.09%

[228 248) 28.39% 30.80% 26.69% 14.12%

[248 271) 29.04% 28.99% 26.77% 15.20%

[271 301) 30.99% 30.50% 25.09% 13.41%

[301 356) 33.42% 28.61% 23.96% 14.01%

[356 733] 39.62% 23.39% 24.45% 12.55%

HIGH [31.1 89.2) 30.21% 30.45% 25.01% 14.33%

[89.2 102.6) 30.61% 28.77% 26.61% 14.01%

[102.6 114.9) 30.21% 28.07% 27.45% 14.28%

[114.9 125.8) 29.96% 28.58% 28.23% 13.22%

[125.8 136.4) 30.53% 29.18% 26.88% 13.41%

[136.4 148.8) 32.23% 30.48% 24.31% 12.98%

[148.8 171.5) 37.99% 32.94% 18.85% 10.22%

[171.5 517.7] 44.59% 29.23% 16.01% 10.17%

Abbreviations: F-ratio, F-test statistics; SNR, Signal to Noise Ratio; MG, mono-exponential Gaussian; BG, bi-exponential Gaussian; MNG, mono-

exponential non-Gaussian; BNG, bi-exponential non-Gaussian.

https://doi.org/10.1371/journal.pone.0184197.t005

Table 6. Patient-based percentages of pixels best fitted from a specific model according to the AIC

weights and F-ratio.

Model Metric # of Patients Pixel Percentages

MG F-ratio 12/19 34.4 ± 10.4

AIC 12/19 52.5 ± 16.9

BG F-ratio 2/19 28.7 ± 9.2

AIC 7/19 39.2 ± 14.6

MNG F-ratio 4/19 23.3 ± 9.1

AIC 0/19 4.0 ± 2.5

BNG F-ratio 1/19 13.6 ± 7.3

AIC 0/19 4.3 ± 2.5

https://doi.org/10.1371/journal.pone.0184197.t006
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diffusion model (CDM) map could be useful to reflect tumour heterogeneity by presenting the

most accurate diffusion model on a pixel by pixel basis (Fig 6).

Measured mean signal and fitted curves from the four examined models, applied to two dif-

ferent areas (Region A and B) from Fig 6, were depicted in the following figure (Fig 7). As seen

from Fig 7, “Region A” which was classified according to the model selection criteria as an

area with a mono-exponential behavior was better fitted by the MG model compared to

“Region B” which was better described by BG and BNG.

In the present study, when measuring the signal decay in tumoral pixels, we observed a sig-

nificant deviation not only in the low b-value area that can be explained in the basis of micro-

perfusion contamination, but in the high b-value area due to probably increased tumoral het-

erogeneity. Although the signal to noise ratio (SNR) decreases considerably with higher b-val-

ues, our acquisition protocol with asymmetric averaging scheme and utilization of state of the

Fig 5. Boxplots showing patient-based percentage of pixels best fitted from a specific model.

Percentage of pixels best fitted from a specific model according to the two chosen criteria for model selection.

https://doi.org/10.1371/journal.pone.0184197.g005

Fig 6. Composite diffusion model parametric map on a patient with rectal cancer. All four models were applied on a pixel by pixel

basis. Mono and bi-exponential Gaussian and non-Gaussian models were presented with different colors using F-ratio for model selection.

https://doi.org/10.1371/journal.pone.0184197.g006
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art reception RF coils resulted in high SNR values of the tumor even in the images obtained

with a b value of 2000 s/mm2.

We must acknowledge several limitations in the current study. The relative small number

of patients is a potential limitation although for the purpose of the study it was considered ade-

quate. Another limitation was the absence of the application of motion correction techniques

between the different b-values. Motion correction in the rectum is not a trivial problem often

requiring the development of sophisticated elastic deformation algorithms, which was not

under the scope of this study. However, proper administration of antiperistaltic drugs just

before the diffusion acquisition minimized such motion-related issues.

In conclusion, the current study indicates that there is no single diffusion model that can

describe rectal tumors accurately. Our results suggest that a combination of different models

can add value for describing tumor heterogeneity quantitatively in the context of composite

diffusion model maps. These findings probably can be explained on the basis of increased

tumoral heterogeneity in these lesions, where areas with high vascularity could be better fitted

by bi-exponential models, and areas with necrosis would mostly follow mono-exponential

behavior.

Supporting information

S1 Dataset. The dataset used in this analysis is available in the file S1_Dataset.zip. The

derived DWI parameters from the four examined models and the statistical analysis results are

provided in csv format.
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