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 review review

Besides the skin, the lung is the only organ that is in direct 
contact with the external environment. Given the fact that we 
inspire 6–12 L of air/min, the lung is constantly exposed to 
inhaled microbes, allergens and particulate material, which must 
be cleared without inducing inflammation, so as to maintain 
homeostasis. The airway tract mucosa plays an important role in 
protecting the lungs from environmental insults and maintain-
ing homeostasis. The airway tract can be divided into two zones: 
the conducting zone and the respiratory zone. In the conducting 
zone, the inhaled air is moistened, warmed, and cleaned before 
it reaches the lower respiratory zone, where gas exchange occurs 
and blood is oxygenated. The conducting zone comprises the 
nasal cavities, pharynx, larynx, trachea, bronchi, and bronchioles, 
while the respiratory zone includes respiratory bronchioles, alveo-
lar ducts, and alveolar sacs. The conducting airway tract starting 
from the trachea undergoes dichotomous branching leading to 
two bronchi, which further branch into series of bronchial and 
bronchiolar airways. The size of the airway tract progressively 
decreases from the trachea to the terminal bronchiole, the most 
distal part of the tract. The terminal bronchiole connects to alve-
olar ducts through a respiratory bronchiole which has features 
of both bronchiole and alveoli.1 This review will focus on the 
conducting airway tract as it comes in direct contact with the 
external environment and acts as a barrier by preventing invasion 
of inhaled environmental agents.
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Airway epithelium contributes significantly to the barrier 
function of airway tract. Mucociliary escalator, intercellular 
apical junctional complexes which regulate paracellular 
permeability and antimicrobial peptides secreted by the 
airway epithelial cells are the three primary components of 
barrier function of airway tract. These three components 
act cooperatively to clear inhaled pathogens, allergens 
and particulate matter without inducing inflammation and 
maintain tissue homeostasis. Therefore impairment of one or 
more of these essential components of barrier function may 
increase susceptibility to infection and promote exaggerated 
and prolonged innate immune responses to environmental 
factors including allergens and pathogens resulting in chronic 
inflammation. Here we review the regulation of components 
of barrier function with respect to chronic airways diseases.
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Cellular Diversity in the Conducting Airway 
Epithelium

The mammalian conducting airway can be broadly divided into 
two regions based on structure and function: the cartilaginous 
proximal airway starting from nasal cavities to bronchi and 2–3 
generations of bronchioles, and non-cartilaginous distal airway 
consisting of terminal and respiratory bronchioles. Luminal sur-
faces of the entire conductive airway tract are lined by a continu-
ous layer of epithelial cells which vary in relative distribution, 
abundance, and cell type depending on the airway region in 
which they are found. The proximal airway through the bronchi 
is lined with pseudostratified epithelium and is made up of three 
major cell types: ciliated cells, non-ciliated secretory cells, and 
basal cells (Fig. 1). As the bronchi branches into bronchioles and 
to terminal bronchioles the epithelium gradually changes from 
psuedostratified to simple cuboidal epithelium and the number 
of ciliated, goblet, and basal cells gradually decline and non-cil-
iated cells called Clara cells becomes the major cell type.2 In the 
proximal airway and cartilaginous bronchioles, the invagination 
of epithelium forms submucosal glands, which are characterized 
by a variable proportion of ciliated cells, goblet cells, and serous 
cells.3 Other minor cell types that are present in conducting air-
ways are: (1) chemosensory or brush cells which contains apical 
tufts of microvilli and are thought to play a role in regulation of 
both airway surface fluid secretion and breathing,4,5 and (2) pul-
monary neuroendocrine cells which are typically tall and pyrami-
dal in shape and extend from the basal lamina of the epithelium 
and possess microvilli.6,7

Ciliated cells account for over 50% of all epithelial cells in the 
conducting airway.8 Approximately 200 to 300 cilia are found 
on the luminal surface of each ciliated cell, and in humans the 
length of the cilia ranges between 6 μM in the proximal airways 
to 3.6 μM in the seventh generation of bronchi.9 A large num-
ber of mitochondria are present right below the apical surface 
and provide energy to the cilia for coordinated ciliary beating.10 
Ciliated cells are believed to be terminally differentiated and arise 
from basal or secretory cells.11,12 However, recent studies have 
suggested a remarkable plasticity and differentiation potential 
for ciliated cells. After injury, ciliated cells dedifferentiate into 
squamous, cuboidal or columnar cells, thereby playing a role in 
restoration and regeneration of bronchial epithelium.13,14 Ciliated 
cells have also been shown to transdifferentiate into goblet cells 
in a mouse model of allergic airway disease, which depends on 
IL-13 expression and persistent activation of epithelial growth 
factor (EGF) receptors.15



e24997-2 Tissue Barriers volume 1 issue 4

cells have been long considered 
stem cells because of their ability to 
proliferate and repopulate terminal 
bronchioles.30 Although in vivo and 
in vitro studies have demonstrated 
the potential of Clara cells to dif-
ferentiate into ciliated and goblet 
cells, immunohistochemistry stud-
ies in human lungs clearly indicates 
the presence of Clara cells only in 
the terminal bronchioles, and not 
in the proximal airways, suggesting 
that these cells may be important in 
maintenance of distal bronchioles.31

Barrier Function of 
Epithelium in Conducting 

Airways

The primary function of airway epithelium is to function as a 
physical barrier between the external environment and internal 
milieu. The three essential components that contribute to the 
barrier function of airway epithelium are: mucociliary escala-
tors which trap and removes inhaled foreign particles from the 
airways,32 intercellular tight and adherens junctions33 that regu-
late epithelial paracellular permeability, and secreted antimicro-
bial products that kill inhaled pathogens.34

Mucociliary Function of the Airway Epithelium

The major players that contribute to the mucociliary function 
of airway epithelium are mucus and cilia. While the mucus 
traps inhaled pathogens and other particulate material, coordi-
nated beating of cilia sweeps the trapped material away from the 
lungs toward the pharynx.35 The efficient transport of mucus is 
dependent on the rate of ciliary beating as well as the hydration 
of mucus, which contributes to its viscoelastic properties.36,37 In 
general, more hydrated mucus is cleared more efficiently from 
the lungs.

The airway mucus contains more than 200 proteins, and is 
secreted by both goblet cells and submucosal glands. The main 
component of airway mucus are mucins, which are high molec-
ular weight glycoproteins that cross link to form the structural 
framework of the mucus barrier.38,39 At least 12 mucins are 
detected in human lungs. Of these, MUC5AC and MUC5B 
are the predominant mucins in normal airways.40 MUC5AC is 
mainly produced by goblet cells, while MUC5B is predomi-
nantly produced by submucosal glands.41,42 In healthy indi-
viduals, circadian rhythms regulate normal mucus secretion, 
principally through the vagal nerve. However in patients with 
inflammatory airway diseases, mucus hypersecretion from meta-
plastic and hyperplastic goblet cells contributes to obstruction 
of airways.43 Various inflammatory mediators, such as tumor 
necrosis factor -α, IL-1β, IL-13, IL-17, neutrophil elastase, 
growth factors such as EGF and TGF, and environmental fac-
tors such as cigarette smoke, allergens and microbial pathogens 

Goblet cells have electron lucent granules which contain 
acidic mucin glycoproteins in the apical region of cytoplasm, 
and contain a condensed nucleus on the basal side giving the 
cells a unique shape. In normal conductive airways the ratio of 
goblet cell to ciliated cells is approximately 1:5 and this ratio 
increases under the conditions of chronic airway diseases, such 
as asthma, chronic obstructive pulmonary disease, and cystic 
fibrosis. The goblet cells secrete high molecular weight mucin 
glycoproteins into the airway lumen, which trap and remove 
foreign particles, thus protecting the epithelial surface. Mucin 
secretion must be tightly regulated for normal functioning, as 
overproduction can block the airway and impair proper muco-
ciliary clearance.

Serous cells are found at the distal ends of submucosal 
glands and resemble goblet cells morphologically, but their 
granule content is more electron-dense.16 Serous cells secrete 
the bulk of glandular fluid in response to secretogogues that use 
cAMP and/or Ca2+ as second messengers.17 The fluid secreted 
by these cells directly contributes to airway surface liquid (see 
later) volume, hydration of mucus released from goblet cells,18,19 
and innate immunity.20

Basal cells are connected to the basement membrane via 
hemodesmosomes, providing the foundation for the attachment 
of ciliated and goblet cells to basal lamina, and also have the 
potential to regulate inflammatory responses, oxidant defense 
and transepithelial water movement.21 The most important fea-
ture of basal cells is their capacity to repopulate all the major 
cell types of conductive airway epithelium.22-24 Basal cells are 
therefore thought to be the progenitor cells or the transient 
amplifying cells of the airway epithelium,25 but this is yet to be 
confirmed.

The most prominent features of Clara cells are the mem-
brane-bound electron dense secretory granules. Although these 
granules do not contain glycoprotein like in goblet cells, they 
secrete CC10 (or CCSP) protein which is used as a Clara cell 
marker.26,27 These cells also secrete surfactant proteins and anti-
proteinases that may protect bronchiolar epithelium.28,29 Clara 

Figure 1. Components of airway tract epithelium. Cilia and airway surface fluid play a major role in mu-
cociliary clearance of inhaled envirmental irritants; apicolateral junctional complex regulates paracellu-
lar permeability and prevents paracellular invasion of environmental factors; Antimicrobial peptides in 
the mucus layer kills inhaled pathogens.
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Impaired mucociliary clearance may also be a direct result 
of defective ciliary function as observed in patients with ciliary 
dyskinesia. Although these patients have normal secretion of 
mucus, it is not cleared due to defective ciliary beating.67 On the 
other hand, in COPD patients the impaired mucociliary func-
tion may be due to a combination of excessive mucus produc-
tion, increased viscosity of mucus due to acquired dysfunction of 
CFTR, and reduced ciliary beating.68-70 It has been shown that 
respiratory epithelial cells exposed to cigarette smoke extract or 
condensate showed shorter and 70% fewer cilia compared con-
trol cells.71 Although mice exposed to cigarette smoke showed 
slight increases in ciliary beat frequencies at 6 weeks and 3 mo, 
it was significantly reduced at 6 mo, and post-mortem examina-
tion revealed significant loss of tracheal ciliated cells.72 Recently 
Yaghi et al. provided direct evidence of suppressed ciliary beat-
ing in nasal epithelium from COPD patients.68 Such changes 
in number and function of cilia can significantly impair the 
mucociliary clearance function of airway epithelium.

Mucociliary dysfunction, in addition to causing obstruction 
of airways, may also promote recurrent and persistent respira-
tory infections as evidenced in patients with cystic fibrosis, cili-
ary dyskinesia, and COPD.73-76 Mucin glycoproteins have been 
shown to interact with several respiratory pathogens including 
Pseudomonas aeruginosa, Staphylococcus aureus, Heamophilus 
influenzae, Streptococcus pneumonia, Burkholderia cenocepacia, 
influenza virus, adenovirus, and coronavirus.77-83 The bound 
pathogens which are cleared under normal conditions may 
persist in the airway lumen when the mucociliary clearance 
is impaired, and initiate an inflammatory response which can 
damage the airway epithelium. However, the impact of the 
interaction of mucin glycoproteins with pathogens in vivo is yet 
to be established.

Apico-Lateral Junctional Complexes and Airway 
Epithelial Permeability

Tight and adherens junctions located at the apicolateral border 
of airway epithelial cells also contribute significantly to the bar-
rier function of conductive airway tract epithelium. Like in other 
mucosal epithelium, paracellular permeability of airway epithe-
lium is maintained through the cooperation of two mutually 
exclusive structural components: tight junctions and adherens 
junctions on the apicolateral membranes.33 While tight junc-
tions regulate the transport of solutes and ions across epithelia, 
adherens junctions mediate cell to cell adhesion and promote 
formation of tight junctions.84-86 In normal airway epithelium, 
these intercellular junctions prevent inhaled pathogens and other 
environmental insults from injuring the airways, and also serve 
as signaling platforms that regulate gene expression, cell prolif-
eration, and differentiation.87,88 Therefore, disassociation or sus-
tained insults that affect junctional complexes will disrupt not 
only barrier function, but may also interfere with normal repair 
and differentiation of airway epithelium. Airway epithelium is 
leaky, hyperproliferative, and abnormally differentiated in smok-
ers and in patients with asthma and COPD compared with air-
way epithelium in healthy smokers.89-92 Infection with viruses or 

have all been shown to stimulate hypersecretion of mucus.44-49 
Therapies targeted to limit exaggerated mucus hypersecretion 
in addition to modulating mucociliary clearance in chronic air-
ways disease may prevent airways obstruction.

The rate of mucociliary clearance depends on the composi-
tion of the airway surface liquid (ASL) lining the airway sur-
face. ASL is made up of two layers, an upper viscoelastic layer 
of mucins secreted by the goblet cells and submucosal glands,50 
which floats on a lower periciliary layer containing large mem-
brane-bound glyocproteins, as well as tethered mucins (muc-1, 
muc-4 and muc-16).51,52 The periciliary layer is relatively less 
viscous, approximately 7 μM in height which corresponds to 
a length of outstretched cilia and acts as a lubricating layer for 
cilia to beat.32,52,53 Hydration of ASL is regulated by coordinated 
activity of Chloride secretion (Cl−) and Sodium (Na+) absorp-
tion channels. The combination of Cl− secretion and reduced 
reabsorption of Na+ favors normal ASL hydration and efficient 
mucociliary clearance. In normal airways, the coordinated 
functioning of ATP-activated cystic fibrosis transmembrane 
conductance regulator (CFTR), calcium-activated Cl− channel 
(CaCC), outwardly rectifying Cl− channel (ORCC), Cl− chan-
nel 2 (CLC2), and epithelial Na+ channel (ENaC) regulate the 
ASL hydration.54 CFTR negatively regulates ENac and there-
fore absent or dsyfunctional CFTR increases ENaC activity 
leading to hyperabsorption of Na+, an increased driving force 
for fluid reabsorption resulting in reduced ASL depth and 
impaired mucociliary clearance as observed in the chronic air-
way disease cystic fibrosis.54 In cystic fibrosis patients this con-
dition is further exacerbated by excessive mucus production due 
to goblet cell metaplasia and hyperplasia, and submucosal gland 
hypertrophy resulting in obstruction of airways.

Goblet cell metaplasia and hyperplasia are also observed in 
patients with other chronic airway diseases such as asthma and 
chronic obstructive pulmonary disease (COPD), and is induced 
by the coordinated action of EGFR and IL-13.55-59 Downstream 
of IL-13, several transcription factors, e.g., thyroid transcrip-
tion factor (TTF)-1, Sam pointed domain-containing ETS 
transcription factor (SPDEF), and forkhead transcription fac-
tor (FOX)A2, regulate goblet cell development downstream 
of IL-13.60 While both TTF-1 and FOXA2 repress goblet 
cell metaplasia,61,62 SPDEF promotes goblet cell metaplasia 
by downregulating FOXA2 and TTF-1.62 Recently, increased 
SPDEF and decreased FOXA2 expression has been shown to 
contribute to the development of goblet cell hyperplasia in 
mouse models of asthma.63-66 SPDEF not only promotes goblet 
cell hyperplasia but also upregulates the network of genes asso-
ciated with mucus production.65 Inhibition of aldose reductase 
or SERPINb3a, both of which are induced in asthma reduced 
SPDEF expression, attenuates development of goblet cell hyper-
plasia.63,64 Additionally, TTF-1 was significantly reduced in 
patients with asthma and mice deficient in TTF-1 were found 
to be prone to develop goblet cell metaplasia upon exposure to 
allergens.62 Therefore, strategies to modulate activities of TTF-
1, FOXA2 or SPDEF may attenuate goblet cell metaplasia and 
mucus production, thus improving mucociliary function in 
patients with asthma and other chronic airway diseases.
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However, our studies have not shown binding of RV to tight 
junction proteins. Instead, RV-induced barrier dysfunction is 
dependent on ROS generation.93,111 Oxidative stress constitutes 
a well-studied mechanism of tight junction breakdown, induc-
ing tyrosine phosphorylation and dissociation of occludin from 
the tight junction complex.113 Our on-going studies indicate that 
while normal differentiated airway epithelial cell cultures show 
restoration of barrier function at 4 d post-RV infection, similarly 
differentiated COPD cell cultures show barrier dysfunction up 
to 14 d after RV infection (Faris and Sajjan, unpublished results). 
Based on these preliminary observations, we speculate that RV 
infection in COPD patients may further damage airway epithe-
lium, and this may in turn promote airway remodeling, increase 
the risk for acquiring secondary infections and alter innate 
immune responses to infection or other environmental insults 
ultimately leading to progression of lung disease. Therefore, 
strategies to inhibit barrier disruption or quickly restore barrier 
function after viral infection may prevent progression of lung 
disease in patients with COPD and possibly in subjects with 
other chronic airways disease such as cystic fibrosis and asthma.

Adherens junctions are located just below the tight junctions 
and mechanically connect adjacent cells and initiate the forma-
tion and maturation of cell-cell contacts. The principal proteins 
in adherens junctions are type I transmembrane glycoprotein, 
epithelial cadherin (E-cadherin), β-catenin, and α-catenin. An 
extracellular domain of E-cadherin of adjacent cells forms homo-
typic, calcium dependent adhesions between epithelial cells. 
E-cadherin associates with the armadillo protein family member 
β-catenin and α-catenin, which then forms an interface with the 
microtubule network and actin cytoskeleton.114,115 In addition, 
E-cadherin also regulates cell proliferation and differentiation 
by modulating EGFR and β-catenin activities. Under normal 
conditions, E-cadherin interacts and retains EGFR in adherens 
junctions of airway epithelium,116 thus preventing EGFR activa-
tion.117-119 Dissociation of E-cadherin from the adherens junction 
complex or reduced expression of E-cadherin, each of which may 
occur during epithelial to mesenchymal transition, may cause 
uncoupling and redistribution of EGFR from the adherens junc-
tion to the apical cell surface,120 where it is readily activated by 
EGF ligands. Excessive activation of EGFR not only promotes 
cell proliferation, but also development of goblet cell metapla-
sia/hyperplasia.57 In fact, enhanced surface expression and phos-
phorylation of EGF receptors in the airway epithelium has been 
observed in patients with asthma who show impaired mucosal 
barrier function.121 Recently, we demonstrated that EGF recep-
tor phosphorylation is also increased in COPD airway epithelial 
cells, which retains the phenotype of goblet cell hyperplasia.122,123 
β-catenin cooperates with E-cadherin to form adherens junc-
tions.124 However, when dissociated from E-cadherin β-catenin 
translocates to the nucleus and activates canonical Wnt/β-
catenin signaling, thus promoting cell proliferation and sup-
pressing cell-differentiation.125,126 Since cigarette smoke causes 
aberrant activation of canonical Wnt/β-catenin signaling,127,128 
it is plausible that chronic cigarette smoke exposure decreases 
barrier function and facilitates invasion of airway epithelium by 
environmental allergens, pollutants, and pathogens. In asthma 

bacteria can also cause transient disruption of tight or adherens 
junctions.93-95 Host factors, such as interferons and tumor necro-
sis factor-α expressed in response to infection may prolong tight 
junction disruption long after infection is cleared, enabling the 
passage of inhaled allergens and pollutants.96,97

The formation of apico-lateral junctional complexes is closely 
related to cell polarization. Recent gene arrays indicated the 
expression of two polarity complexes in airway epithelial cells: 
the Crumbs (CRB) complex and the partitioning defective (PAR) 
complex.90 The CRB complex consists of the integral membrane 
protein Crumbs3 and the scaffolding proteins, protein associated 
with Lin seven 1 (PALS1), and PALS1-associated tight junction 
protein (PATJ).98-100 The CRB complex plays a critical role in the 
formation of tight junctions, cell polarization, and ciliogenesis.101 
Decreased expression of Crumbs3 delays formation of tight junc-
tions and cilia.101,102 Depletion of PALS1 leads to the loss of PATJ, 
disruption of cell polarity, decreased TER, and altered traffick-
ing of E-cadherin.103,104 Coronavirus envelope protein E binds 
to PALS1, and ectoexpression of protein E delays tight junction 
formation in MDCK cells.105 Recently, we showed that Crumbs3 
is necessary for ciliogenesis in airway epithelial cells and is asso-
ciated in the tip of mature cilia in mucociliary-differentiated 
bronchial airway epithelial cell cultures.106 The PAR complex is 
composed two scaffolding proteins, PAR3 and PAR6, and atypi-
cal protein kinase C,103 but the molecular actions of the PAR 
complex in airway epithelial polarity are not known.

Tight junctions are composed of several transmembrane pro-
teins (including occludin, multiple claudins, junctional adhesion 
molecule (JAM)) and cytoplasmic scaffolding proteins con-
taining PDZ-domains (zonula occludens ZO-1, ZO-2, ZO-3), 
cingulin, and MUPP1. Transmembrane proteins in the junc-
tion connect the membranes of adjacent cells to make a tight 
seal, while scaffolding proteins anchor transmembrane proteins 
to the cytoskeleton. Claudins function to regulate the paracel-
lular permeability in airway epithelium, whereas occludin has 
been shown to regulate de novo assembly of tight junctions.107 
Although JAM association with tight junctions is well studied, 
its function at tight junctions remains unclear. In recent years, 
the coxsackievirus and adenovirus receptor (CAR), which serves 
as a receptor for viruses, was also shown to be a transmembrane 
protein located in the tight junction and interacts with ZO-1 in 
airway epithelial cells.108 Further, CAR expression was shown to 
be required for formation of functional tight junctions and limits 
permeability of macromolecules. Airway epithelial cells isolated 
from healthy smokers and patients with COPD show reduced 
expression of occludin and claudins, which may contribute to 
the observed barrier dysfunction in these subjects.90 Several 
respiratory viruses have been shown to increase permeability and 
decrease transepithelial resistance of airway epithelium by either 
interacting with tight junction proteins or by dissociating adhe-
rens junction complexes. Coxsackievirus and adenovirus bind to 
CAR, inducing disassembly of the tight junction and reduction 
in transepithelial resistance (TER).109,110 Previously, we demon-
strated that rhinovirus (RV) dissociates ZO-1, occludin, and 
claudin 4 from the tight junctions and increases bacterial associa-
tion and translocation across polarized airway epithelium.93,111,112 
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also been shown to decrease the expression defensin genes in the 
airways.135 Herr et al. showed that hBD2 is significantly reduced 
in the pharyngeal wash and sputum of current or former smokers 
compared with non-smokers, and exposure of airway epithelium 
to cigarette smoke in vitro inhibited induction of HBD2 by bac-
teria.148 Cathelicidins are another class of antimicrobial peptides 
and LL37 is the only human cathelicidin identified to date. LL37 
binds to lipopolysaccharides and inactivates its biological func-
tion. Overexpression of human LL37 in cystic fibrosis mouse 
models increased killing of P. aeruginosa and reduced the ability 
of this bacterium to colonize the airways.149

Airway epithelial cells also generate oxidants such as nitric 
oxide (NO) and hydrogen peroxide. Three NO synthases con-
tribute to production of NO in airway epithelia: the constitu-
tively expressed NOS1 and NOS3, and inducible NOS2. Viral 
infections and pro-inflammatory cytokines induce expression of 
NOS2 and defective NOS2 expression is responsible for increased 
viral replication in cystic fibrosis, while overexpression of NOS2 
provides protection against viral infection.150,151 Recently we 
demonstrated that COPD airway epithelial cells show a trend 
in decreased expression of NOS2 and this was associated with 
impaired clearance of rhinovirus.123 Extracellular hydrogen per-
oxide is produced by dual oxidase 1 and 2. These belong to a 
family of NADPH oxidases and are located in the plasma mem-
brane and secrete hydrogen peroxide to the extracellular milieu. 
The dual oxidase-generated hydrogen peroxide in combination 
with thiocyanate and lactoperoxidase generates the microbicidal 
oxidant hypothiocyanite, which effectively kills both gram posi-
tive and gram negative bacteria. This innate defense mechanism 
is defective in cystic fibrosis airway epithelium due to impaired 
transport of thiocyanate.152 COPD airway epithelial cells also 
show decreased expression of Duox 1 and 2, but their contri-
bution to defective bacterial clearance in COPD is yet to be 
determined.123

Conclusions

The three barrier functions of airway epithelial tract, mucociliary 
clearance, intercellular apical junctional complexes and antimi-
crobial products of airway function together to effectively clear 
inhaled pathogens, allergens and pollutants from the lungs. The 
intercellular apical junctional complex not only regulates para-
cellular permeability, but also separates proteins of basolateral 
surface from apical surface and promotes normal differentiation 
of airway tract epithelial cells. This is critical for regulation of 
secretion of mucus and antimicrobial proteins and peptides, and 
also for maintenance of viscosity and depth of ASL, in which 
cilia beat. Barrier function of airway tract epithelium is com-
promised in patients with chronic airways disease due to repeti-
tive injury and abnormal repair leading to airway remodeling. 
Understanding the molecular mechanisms of airway epithelial 
repair under normal and chronic disease conditions is necessary 
to develop therapies to prevent airway remodeling and promote 
normal epithelial repair. However, the field of airway epithelial 
repair is in its infancy, because airway epithelium is complex 
and comprises several cell types and the cells show remarkable 

however, allergens are thought to be primary stimulus responsible 
for airway remodeling. It was demonstrated that proteases present 
in the allergens disrupt not only tight junctions but also adherens 
junctions129,130 and this could lead to both EGFR activation and 
Wnt/β-catenin signaling ultimately resulting in development of 
goblet cell metaplasia/hyperplasia.

Antimicrobial Products of Airway Epithelium

In addition to being a physical barrier, airway epithelium also 
acts as a biochemical barrier against invading pathogens. Airway 
epithelial cells secrete a wide variety of antimicrobial substances 
such as enzymes, protease inhibitors, oxidants, and antimicrobial 
peptides, which accumulates in the ASL and kill inhaled patho-
gens. Lysozyme, an enzyme found in airway epithelial secretions, 
exerts antimicrobial effect against a wide range of gram-positive 
bacteria by degrading their peptidoglycan layer.131 Lysozyme is 
also effective against gram-negative bacteria in the presence of 
lactoferrin, which disrupts the outer membrane, allowing lyso-
zyme to gain access to the peptidoglycan layer.132 Lactoferrin is an 
iron-chelator and inhibits microbial growth by sequestering iron 
which is essential for microbial respiration.133 Lactoferrin also 
displays antiviral activity against both RNA and DNA viruses by 
either inhibiting binding of the virus to host cells or by binding 
to the virus itself.134,135 Lactoferrin levels increase in response to 
bacterial and viral infections. In clinically stable COPD patients, 
lower levels of salivary lysozyme correlated with increased risk 
of exacerbations136 while reduced lysozyme levels in COPD is 
thought to be due to degradation by proteases elaborated by bac-
terial pathogens or neutrophils.137,138

Epithelial cells produce protease inhibitors, such as secretory 
leukoprotease inhibitor (SLPI), elastase inhibitor, α1-antiprotease, 
and antichymotrypsin. These protease inhibitors mitigate the 
effects of proteases expressed by pathogens and recruited innate 
immune cells. Maintaining the balance between antiproteases 
and proteases in the airway lumen during infection is pivotal 
in preventing lung inflammation and maintenance of tissue 
homeostasis. In COPD patients, levels of SLPI and lysozyme 
were shown to decrease with bacterial infection, while lactofer-
rin levels remain unchanged.139 This could be due to inactivation 
of SLPI by proteases or decreased expression of SLPI, but either 
way the end result under these conditions is an imbalance in the 
ratio of antiproteases to proteases in the airway lumen. Therefore, 
neutralization of proteases would be beneficial in this situation. 
Accordingly, administration of SLPI decreased the levels of IL-8 
and elastase activity in airway secretion of cystic fibrosis patients, 
who also have reduced SLPI in their airway lumen.140

Human β defensins (hBD) are the most abundant antimicro-
bial peptides expressed on the surface of airway epithelium and 
are effective against a wide range of bacteria and viruses.141-143 
While hBD1 is constitutively expressed, hBD2 to hBD4 expres-
sion is induced by LPS via NF-κB activation and by IL-1.144,145 
hBD2 is induced by P. aeruginosa infection in normal but not 
in cystic fibrosis airway epithelia.146 Activity of hBD2 is also 
attenuated in cystic fibrosis patients due to increased salt con-
centration.147 Environmental factors such as air pollutants have 
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genes of interest in primary epithelial cells will greatly advance 
the research in this field.
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plasticity. There also exists a controversy with respect to pro-
genitor cells and lung stem cells that replenish injured airway 
epithelium. Further immortalized airway epithelial cells do not 
differentiate normally necessitating primary airway epithelial 
cells for these studies. Primary cells are not readily available and 
not amenable to transfection or transformation that is necessary 
to elucidate regulatory mechanisms. Development of appropri-
ate methods to immortalize airway epithelial cells that maintain 
ability to differentiate and methods to express or knockdown 
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