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Abstract. Alzheimer’s disease (AD) is a lethal neurodegenerative disorder characterized by severe brain pathologies and
progressive cognitive decline. While the exact cause of this disease remains unknown, emerging evidence suggests that
dysregulation of neurotransmitters contributes to the development of AD pathology and symptoms. Serotonin, a critical
neurotransmitter in the brain, plays a pivotal role in regulating various brain processes and is implicated in neurological
and psychiatric disorders, including AD. Recent studies have shed light on the interplay between mitochondrial function
and serotonin regulation in brain physiology. In AD, there is a deficiency of serotonin, along with impairments in mito-
chondrial function, particularly in serotoninergic neurons. Additionally, altered activity of mitochondrial enzymes, such as
monoamine oxidase, may contribute to serotonin dysregulation in AD. Understanding the intricate relationship between mito-
chondria and serotonin provides valuable insights into the underlying mechanisms of AD and identifies potential therapeutic
targets to restore serotonin homeostasis and alleviate AD symptoms. This review summarizes the recent advancements in
unraveling the connection between brain mitochondria and serotonin, emphasizing their significance in AD pathogenesis
and underscoring the importance of further research in this area. Elucidating the role of mitochondria in serotonin dys-
function will promote the development of therapeutic strategies for the treatment and prevention of this neurodegenerative
disorder.
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INTRODUCTION

Serotonin, also known as 5-hydroxytryptamine, is
a member of the monoamine neurotransmitter family
[1, 2]. In the central nervous system, serotonin is pre-
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dominantly synthesized and released by the dorsal
raphe nucleus, where serotonin-producing neurons
reside [1, 2]. As a critical component of the diffuse
nervous system, serotonin signaling contributes to the
modulation of multiple key brain processes, including
mood and emotion, cognition and memory, appetite
and satiety, the sleep-wake cycle, and social interac-
tions [3–10]. Accordingly, serotonin plays a pivotal
role in brain health, with its dysregulation has been
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linked to a plethora of neurological and psychiatric
disorders including Alzheimer’s disease (AD) [11–
13]. While serotonin itself is not the underlying cause
of AD, the contribution of serotonin signaling deregu-
lation to the progression of symptoms reveals unique
therapeutic opportunities; these serotonin signaling-
targeting therapies having demonstrated substantial
therapeutic benefits [14–16]. Therefore, elucidating
the regulatory mechanisms of serotonin has a positive
impact on our understanding of both neurobiology
and neurodegeneration.

Mitochondria are vital organelles that support
neuronal functions through their roles in produc-
ing energy, regulating calcium homeostasis, and
maintaining oxidation-reduction (redox) balance [17,
18]. Mitochondrial dysfunction has been consistently
identified as a key factor underlying synaptic injury
and neuronal stress in AD, which has been exten-
sively reviewed elsewhere [19–22]. Recently, not
only has the impact of serotonin on mitochondrial
fitness emerged, but mounting evidence also sug-
gests the importance of mitochondrial function in the
regulation of serotonin homeostasis [11, 23]. Reflect-
ing the growing interest in the role of serotonin in
neurological decline and wellbeing, this review aims
to summarize recent research progress in the inter-
twined relationship between brain mitochondria and
serotonin. Additionally, we discuss the association
between mitochondrial dysfunction and serotonin
dysregulation in AD and its therapeutic potential for
the treatment of this devastating neurological disor-
der.

MITOCHONDRIA AND SEROTONIN
REGULATION IN NEUROBIOLOGY

Mitochondrial function and neuronal serotonin
transmission and recycling

Serotonin is synthesized through a two-step
reaction. Firstly, tryptophan hydroxylation converts
tryptophan into 5-hydroxytryptophan (5-HTP) by
tryptophan hydroxylase isoform 2. This is followed
by aromatic L-amino acid decarboxylase-mediated 5-
HTP decarboxylation [24, 25]. In the presynapse, the
synthesized serotonin is then immediately packaged
into synaptic vesicles by the vesicular monoamine
transporter (VMAT), especially VMAT2, and sub-
sequently released into the synaptic cleft, where
it interacts with serotonin receptors in the post-
synaptic membrane [26]. A significant portion of
the released serotonin is recaptured by presynapses

via the serotonin transporter (SERT) [27, 28] and
under further degradation by mitochondrial enzymes
including monoamine oxidase isoform A (MAO-
A) [29], thus completing the cycle of serotonin
metabolism. Although the evidence supporting the
direct involvement of mitochondria in serotonin syn-
thesis is currently limited, the role of mitochondria in
the regulation of serotonin transmission and break-
down is becoming increasingly evident.

VMAT2 is the major protein responsible for the
loading of serotonin into synaptic vesicles for stor-
age and subsequent release [26]. Previous studies
have determined that the function of VMAT2 is
fueled by the ATP-consuming V-type H+-ATPase
[30] and regulated by phosphorylation modifica-
tion [31, 32], both of which are ATP-dependent
processes. Additionally, synaptic-vesicular transport
requires high energy expenditure [33]. Given that
mitochondria are the primary providers of ATP
in the presynapse [34], it is plausible that mito-
chondrial ATP production is crucial for serotonin
storage and transport. Indeed, in our recent study,
we have observed impaired serotonin release in
mouse hippocampal slices subjected to stress induced
by carbonyl cyanide-p-trifluoromethoxy phenylhy-
drazone, a mitochondrial uncoupling agent [11].
These findings suggest that mitochondrial function
plays an integral role in serotonin release and sup-
port the notion of mitochondrial involvement in
serotonin neurotransmission. Moreover, the activity
of SERT relies on the maintenance of a cross-
membrane Na+/K+ gradient, which is created by the
energy-consuming Na+/K+ ATPase pumps [35]. As
a result, impaired mitochondrial bioenergetics could
also potentially compromise serotonin recycling and
reuptake processes.

It is worth noting that mitochondria serve as a
stabilizer of Ca2+ homeostasis in neurons [36, 37].
The VMAT2-mediated filling and release of serotonin
within synaptic vesicles involve Ca2+ signaling,
including the participation of Ca2+-dependent acti-
vator proteins of secretion 1 and 2 [38]. Furthermore,
the exocytosis of synaptic vesicles is modulated
by Ca2+ signaling, which can be influenced by
mitochondrial sequestration of Ca2+ [39]. In this
regard, mitochondrial regulation of Ca2+ may also
contribute to serotonin transmission, and impaired
mitochondrial Ca2+ retention capacity can impede
serotonin regulation. The direct link between mito-
chondrial Ca2+ handling capacity and serotonin
release is determined in mice with heterogeneous
loss of mitochondrial adenine nucleotide translo-
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case 1 (ANT1) [40]. Serotonin-producing cells in
the dorsal raphe nucleus demonstrate susceptibility
to ANT1 deficiency-induced mitochondrial dysfunc-
tion, which coincides with dorsal raphe neuronal
hyper-depolarization and resultant increases in sero-
tonin turnover [40]. Due to the involvement of ANTs
including ANT1 in the regulation of mitochondrial
Ca2+ through mitochondrial permeability transition
[41], it is proposed that the influence of this mito-
chondrial protein deficit on serotonin regulation is,
at least in part, associated with Ca2+-related pertur-
bations [40]. These findings therefore highlight the
need for further comprehensive investigations into
the role of mitochondrial Ca2+ handling in serotonin
signaling.

Mitochondrial enzymes and serotonin
degradation

MAO-A, an isoform of MAO, is an outer
mitochondrial membrane-bound enzyme that con-
verts serotonin to its metabolite, 5-hydroxy-3-
indolacetaldehyde (5-HIAL) [42]. This toxic bio-
genic aldehyde is further processed into the less toxic
5-hydroxy-3-indolacetic acid by a mitochondrial
matrix protein, aldehyde dehydrogenase 2 (ALDH2),
for excretion [28, 43]. Previous studies have con-
sistently reported that loss of function of MAO-A
reduces serotonin breakdown in the brain, leading
to behavioral abnormalities in humans and rodents
[44–49]. Furthermore, suppressed ALDH2 activity
disrupts serotonin metabolism, resulting in the accu-
mulation of the toxic serotonin metabolite 5-HIAL
and leading to pathological consequences [28, 50,
51]. The significance of these mitochondrial enzymes
in serotonin metabolism thus underscores the key role
of mitochondria in maintaining neuronal serotonin
homeostasis.

SEROTONIN AND MITOCHONDRIAL
REGULATION IN NEUROBIOLOGY

Despite the role of mitochondria in regulating
serotonin transmission and metabolism, the impact
of serotonin on neuronal mitochondrial fitness has
been accentuated in recent years [23, 52, 53]. A
recent finding demonstrated that serotonin induces
mitochondrial biogenesis in mouse cortical neurons
[23]. Such a mitochondrial biogenesis-promoting
effect of serotonin is achieved through the stim-
ulation of serotonin receptor 2A (5-HT2A), the
receptor’s downstream signaling involving sirtuin

1, and the peroxisome proliferator-activated recep-
tor gamma coactivator 1 alpha [23]. Interestingly,
serotonin signaling-induced mitochondrial biogene-
sis and subsequent alterations in cellular metabolism,
favoring increased oxidative phosphorylation, have
also been reported in breast cancer [54]. This
suggests that the role of serotonin in regulating
mitochondria is not exclusive to neural cells. Addi-
tionally, the influence of the SERT on mitochondria
has been reported [55]. A previous study showed
a negative correlation between SERT expression
and mitochondrial copy number in the brains of
male rats, while reduced SERT expression led to a
decrease in mitochondrial copy number in females
[55]. Regardless of the unclear mechanisms under-
lying the impact of SERT on mitochondria and
the sex-related dimorphic regulation, these findings
implicate the involvement of serotonin signaling in
mitochondrial biology. Moreover, Reddy and the col-
leagues in a recent study reported that citalopram, a
selective inhibitor of SERT, promotes mitochondrial
fusion, potentiates mitochondrial generation, and
enhances mitochondrial turnover through mitophagy
in a mouse hippocampal cell line [56]. Although it
cannot be excluded the non-SERT-related off-target
effects of citalopram on mitochondria, these results
echo the impact of SERT expression modulation
on mitochondrial regulation [55], further support-
ing the potential association of serotonin signaling
with mitochondrial fitness even in non-serotonin-
producing neural cells.

MITOCHONDRIA AND SEROTONIN IN
ALZHEIMER’S DISEASE

Serotonin deficiency in AD

AD is a chronic neurodegenerative disorder
characterized by pathological features, including
amyloid-� (A�) aggregation, abnormal tau phos-
phorylation, synaptic and neuronal degeneration. In
addition to the defining manifestation of progressive
memory loss, patients with AD frequently demon-
strate psychiatric symptoms, including mood and
emotional fluctuations, social behavioral changes,
as well as sleep disturbances [57–64]. Both depres-
sion and anxiety have been repeatedly identified in
patients with AD or even in the prodromal stage
of AD [65–70]. Previous studies reported depres-
sive and anxiety symptoms in a significant portion
of patients in different stages of AD with mild
to severe cognitive deficits [71–73]. Furthermore,
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meta-analytic studies have identified mood disorders
including depression and anxiety as strong risk fac-
tors for the development of AD [74–79]. Because of
the well-established central role of serotonin dysreg-
ulation in mood disturbances including depression
and anxiety problems [80–83], the strong negative
association of depression and anxiety with cognitive
performance in AD patients determined in previous
clinical studies [68, 70] justifies further investigations
of serotonin dysregulation in this neurodegenerative
disorder. Although AD is not a typical neurotrans-
mitter disorder, serotonin deficiency in the brains of
AD patients has long been observed to be associated
with mood disturbances and cognitive impairment
[84, 85]. The loss of serotoninergic neurons in the
raphe nucleus was first reported four decades ago
and has been consistently observed to coincide with
reduced serotonin and its metabolites since then [85–
93]. The lesions in the raphe nucleus in patients in
the early stage of AD further implicate an associa-
tion of serotonin dysregulation with the development
of this neurodegenerative disorder [94, 95]. Consis-
tent with the findings in patients [85, 93, 96–98],
a reduction in serotonin-producing neurons in the
raphe nucleus and a decrease in serotonergic fiber
density in multiple brain regions including the neo-
cortex and hippocampus has been determined in
several mouse models of AD-like brain amyloidosis
[11, 99]. These findings suggest detrimental impacts
of A� on the fitness of serotonergic neurons. In
addition to A� deposition, abnormal tau aggregation
constitutes another AD-related pathological charac-
teristic [100]. Previous studies have also determined
neurofibrillary tangles composed of hyperphospho-
rylated tau in the dorsal raphe nucleus in AD patients
[101–104] and proposed an association of tauopathy
with AD-related serotoninergic neuron degeneration
and serotonin deprivation [104, 105]. The direct link
between tau abnormalities and serotonin dysregula-
tion was determined in further animal experiments.
Marcinkiewcz’s group showed that overexpression
of human tau in mice induces degenerative changes
of serotonin-producing neurons [106]. Accordingly,
tau depletion prevents chronic stress-mediated mouse
brain serotonin loss [107]. Moreover, manipulating
serotonin signaling reciprocally promotes the devel-
opment of tau aggregation [108, 109]. These findings
in together highlight the interactions between sero-
toninergic system and tau pathology. However, a
previous study reported a paradoxical increase in hip-
pocampal serotoninergic fibers in 3xTg mice, another
familial AD mouse model with brain amyloidosis

and tauopathy [110]. This discrepancy between 3xTg
mice and other mouse models with brain amyloido-
sis and/or tauopathy may reflect differences in the
ability of different mouse models to recapitulate AD
pathologies, raising interesting questions regarding
mouse model selection for studying AD-related dis-
ruption of the serotoninergic system. Of note, despite
the deleterious impact of A� and tau on serotonin-
ergic neurons, we cannot fully refute the possibility
that tau and A� or amyloid-� protein precursor may
have unknown interference with each other’s effect
on serotoninergic neurons, impeding the degener-
ation of these neurons in 3xTg mice. This needs
further investigation. In addition to perturbations in
serotonin and serotoninergic neurons, lowered levels
of the SERT have been identified in multiple brain
regions in patients at various stages of AD [85, 91].
Of note, some serotonin-enhancing agents such as
citalopram also display a A�-lowering capability [56,
111, 112], possibly through the activation of sero-
tonin receptors including 5-HT2 R and 5-HT4 R [113,
114]. Moreover, serotonin receptor modulators also
demonstrate therapeutic effects against tau pathology
[108]. In addition to the therapeutic benefits observed
with selective serotonin reuptake inhibitors (SSRIs)
and serotonin receptor modulators in AD patients
and animal models [14–16, 108, 111, 115–117], clin-
ical studies have also found protective effects of
SSRIs against cognitive decline and cortical atro-
phy in older adults with concurrent mild cognitive
impairment and depression [15]. Therefore, these
findings strongly demonstrate serotonin dysregula-
tion in the etiopathogenesis of this neurodegenerative
disorder.

Mitochondria dysfunction and serotonin
deficiency in AD-related conditions

Although mitochondria dysfunction has been
well-documented in AD paradigms [19, 118–120],
previous studies on mitochondrial dysfunction in AD
overwhelmingly focused on mitochondria in pyra-
midal neurons in the neocortex and hippocampus.
It should be noted that, despite the vulnerability
of the limbic system to neuronal stress, degen-
erative changes and AD-associated pathologies in
the brain stem, including the serotonin-producing
raphe nucleus, are also prominent in patients with
AD [93, 96, 97]. To this end, although the investi-
gation of mitochondrial function in serotoninergic
neurons in AD-related conditions has been seldom
explored, the mitochondrial sensitivity to AD-
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associated pathologies and the reported deleterious
impacts of mitochondrial dysfunction on raphe neu-
ron functions [40] thus warrant a hypothesis of a
role of mitochondrial dysfunction in serotoninergic
neuronal stress in this neurodegenerative disorder.

Hippocampal lesions are a key pathological fea-
ture underlying the symptoms of AD [121–123].
The hippocampus, a vital brain region involved in
memory storage, information processing, and mood
modulation [124–127], heavily relies on serotonin
for its optimal functioning [128–130], aligning with
the findings that serotoninergic neurons innervate the
neurons in the hippocampus, and all types of sero-
tonin receptors are present in this region [131, 132].
SSRIs, a class of medications that enhance serotonin
levels, have shown therapeutic effect in alleviat-
ing AD symptoms [14–16, 111, 115–117], further
emphasizing the impact of serotonin dysregulation
on hippocampal-related cognitive and mood distur-
bances associated with the disease. Our recent study
has provided evidence of concurrent impairments
in hippocampal serotonin release and mitochondrial
morphological control within hippocampal sero-
toninergic fibers in 5xFAD mice, a mouse model of
familial AD-like brain amyloidosis [11]. Serotonin-
ergic neurons in A�-rich environments exhibited
reduced mitochondrial bioenergetics and increased
mitochondrial fragmentation [11]. Additionally, the
administration of a mitochondria-uncoupling agent
resulted in the suppression of serotonin release in hip-
pocampal slices [11]. Considering the significance of
mitochondrial health in serotonin transmission, these
findings offer important insights into the contribution
of mitochondrial dysfunction to serotonin dysregu-
lation in this neurodegenerative disease, warranting
further investigation into the role of mitochon-
drial dysfunction in raphe nucleus neurodegeneration
within AD-relevant pathological settings. Moreover,
given the role of serotonin in promoting neuronal
mitochondrial biogenesis, there may exist a vicious
cycle of mitochondrial dysfunction and serotonin
failure that reinforces each other, leading to damage
in both serotoninergic and non-serotonergic neurons
in AD brains.

Other than the direct influence of mitochon-
drial dysfunction on serotonin transmission, changes
in MAO, a mitochondrial enzyme responsible for
serotonin metabolism, have been implicated in AD-
relevant settings. In addition, altered MAO activity
has a correlation with AD neuropsychiatric symp-
toms and pathological changes, including amyloid
deposition and neurofibrillary tangles [133–137]. So

far, there is no evidence of the impact of MAO
alterations on serotonin metabolism in AD brains.
However, the administration of MAO inhibitors does
exhibit clinical benefits to some extent in mitigating
AD symptoms, including psychiatric symptoms [138,
139]. Although serotonin is not the sole substrate of
MAO [29], the therapeutic effect of MAO inhibitors
in alleviating psychiatric symptoms arguably implies
an influence of MAO changes on serotonin signaling
in AD. Nevertheless, declining serotonin metabolites
in AD patients may not solely arise from lowered
serotonin synthesis, but also from enhanced sero-
tonin degradation by MAO. In this context, we cannot
refute the possibility that MAO, especially MAO-A,
is also hyperactive in serotoninergic neurons, lead-
ing to pathological consequences such as serotonin
degradation and subsequent disturbances in sero-
tonin signaling in AD-related conditions. However,
it should be noted that a previous study reported a
simultaneous decline in both serotonin and MAO-
B in platelets from very late-stage AD patients.
So far, there are mixed results regarding MAO-B
expression in neural cells. MAO-B expression has
been previously identified in monoaminergic includ-
ing serotoninergic neurons [140–143]. In contrast,
other reports including a recent neuroimaging study
showed that MAO-B is not expressed by neurons
[144, 145]. Regardless of the yet-unsettled question
of MAO-B expression in neurons, there is no evi-
dence of a role of MAO-B in neuronal serotonin
metabolism; and MAO-A is the only genetically
determined MAO family member to be responsible
for serotonin degradation to date [146]. In this regard,
the concurrence of platelet serotonin and MAO-B
reduction may have limited capacity to indicate sero-
tonin metabolism in AD platelets but is rather a
reflection of systemic degenerative changes in the
end stage of this neurodegenerative disorder. Given
the strong relevance of MAO-A to serotonin regula-
tion, the findings of the negative impact of MAO-A
activity on mitochondrial bioenergetics in cortical
neurons [147] further strengthened the hypothesis
that MAO-A hyperactivity may exacerbate mitochon-
drial dysfunction, resulting in a downward spiral of
worsened serotonin dysregulation in AD.

CONCLUSIVE REMARKS AND FUTURE
PERSPECTIVES

In conclusion, the interplay between mitochon-
dria and serotonin signifies a complex relationship
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Fig. 1. Schematic diagram of the interactions between serotonin regulation and mitochondria in serotoninergic neurons in neurobi-
ology and AD. In physiological conditions, mitochondria in serotoninergic neurons support the metabolism of serotonin and brain serotonin
homeostasis, leading to normal mood and cognition. The beneficial effect of serotonin system on mitochondrial fitness thus forms a virtuous
cycle with mitochondria-related serotonin regulation. In AD-relevant pathological settings, Mitochondria in serotoninergic neurons demon-
strate impaired function and enhanced MAO-A activity in response to AD-associated pathological molecules including A� and pathological
tau, resulting in serotonin deficiency. The serotonin system dysregulation eventually promotes mood disturbances and cognitive impairment,
which reinforces each other. Furthermore, brain amyloidosis and tauopathy as well as serotoninergic neuronal mitochondrial dysfunction
are exacerbated by serotonin dysregulation, culminating in a vicious cycle.

between these two entities with substantial impli-
cations for neurobiology. In the context of AD,
this delicate balance between serotonin and mito-
chondrial function can be disrupted, giving rise to
a vicious cycle of mitochondrial dysfunction and
serotonin failure that mutually reinforce each other,
resulting in pathological consequences in this neu-
rodegenerative disorder (Fig. 1). There are several
outstanding questions that remain unresolved. It is
unclear whether mitochondrial dysfunction or sero-
tonin dysregulation in raphe neurons occurs first
during the development of this age-related disor-
der. Of note, the scientific community has yet to
reach a consensus on whether raphe neurons are
sensitive to the aging process has not yet reached
a consensus [148, 149]. However, it is commonly
accepted that aging renders neuronal mitochondria
vulnerable to functional deficits [150–154]. In this
regard, it can be hypothesized that age-related mito-
chondrial dysfunction is an initiating factor for the
damage of raphe neurons, leading to serotonin failure
in the elderly at risk of AD. However, we can-
not fully exclude the possibility that mitochondrial
dysfunction or serotonin dysregulation in raphe neu-

rons develops independently and exacerbates each
other with AD progression, given the yet-elusive
complicated regulation of serotonin metabolism and
early demonstration of raphe nucleus degeneration
in early AD [94, 95]. Another question that merits
consideration is the influence of disrupted serotonin
and mitochondrial interactions on the development
of neuroinflammation in AD brains. Growing evi-
dence suggests that both serotonin dysregulation and
mitochondrial dysfunction contribute to inflamma-
tory neuronal damage [155–160]. In this context,
the investigation of serotonin and mitochondrial dys-
function should not be limited to neurons but should
also be extended to glial cell pathology in AD. Fur-
thermore, mitochondria in neurons within the diffuse
modulatory nervous system have long been neglected
in the study of mitochondrial dysfunction in AD. It
is important to recognize that dysfunction in sero-
toninergic, dopaminergic, and cholinergic neurons
within the diffuse modulatory nervous system also
play a significant role in AD-associated pathology
and contribute to the development of the disease [84,
161–163]. Therefore, there is an urgent need for neu-
ron type-specific investigations to comprehensively
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understand the mitochondrial pathways involved in
this devastating neurological disorder. Lastly, it is
increasingly recognized that serotonin-modulating
therapies, especially SSRIs, demonstrate racial and
ethnic disparities in their efficacy [164, 165]. More-
over, SSRIs and serotonin–norepinephrine reuptake
inhibitors (SNRIs) may risk the elderly to increase
adverse cardiovascular events [166, 167]. Given these
critical concerns about SSRIs and SNRIs, targeting
mitochondrial dysfunction may hold promise to be a
better strategy for the restoration of brain serotonin
homeostasis for the amelioration of AD cognitive and
mood symptoms.

In summary, understanding the complex relation-
ship between mitochondria and serotonin is essential
for unraveling the mechanisms behind serotonin dys-
regulation in AD. Further research is needed to
explore these mechanisms and their potential as ther-
apeutic targets to restore serotonin homeostasis and
alleviate AD symptoms. The findings presented in
this review underscore the significance of developing
novel therapeutic strategies that target both mitochon-
drial dysfunction and serotonin dysregulation for the
prevention and treatment of AD.
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