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Abstract

When we plan for long-range goals, proximal information cannot be exploited in a blindly

myopic way, as relevant future information must also be considered. But when a subgoal

must be resolved first, irrelevant future information should not interfere with the processing

of more proximal, subgoal-relevant information. We explore the idea that decision making in

both situations relies on the flexible modulation of the degree to which different pieces of

information under consideration are weighted, rather than explicitly decomposing a problem

into smaller parts and solving each part independently. We asked participants to find the

shortest goal-reaching paths in mazes and modeled their initial path choices as a noisy,

weighted information integration process. In a base task where choosing the optimal initial

path required weighting starting-point and goal-proximal factors equally, participants did

take both constraints into account, with participants who made more accurate choices tend-

ing to exhibit more balanced weighting. The base task was then embedded as an initial sub-

task in a larger maze, where the same two factors constrained the optimal path to a

subgoal, and the final goal position was irrelevant to the initial path choice. In this more com-

plex task, participants’ choices reflected predominant consideration of the subgoal-relevant

constraints, but also some influence of the initially-irrelevant final goal. More accurate partic-

ipants placed much less weight on the optimality-irrelevant goal and again tended to weight

the two initially-relevant constraints more equally. These findings suggest that humans may

rely on a graded, task-sensitive weighting of multiple constraints to generate approximately

optimal decision outcomes in both hierarchical and non-hierarchical goal-directed tasks.

Author summary

Different problems require the consideration of different information sources, including

often useful long-range, future information that may impact our immediate decisions.

However, when future information is irrelevant to a key subgoal, it can be desirable to

focus on achieving the subgoal first. We suggest that humans rely on appropriately

weighting relevant information over irrelevant information to generate decision outcomes

in both types of situations. We conducted behavioral experiments and fitted models of

decision processes to understand to what extent people considered various task factors in

choosing the initial path in different mazes, both when a simple maze occurred alone or
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was embedded as an initial part in a larger maze. Our results show that people approxi-

mate the optimal decision outcomes in both tasks by modulating the weighting of differ-

ent factors during planning, and that people who made more accurate initial path choices

modulated these weightings more successfully than those who made less accurate choices.

Introduction

A hallmark of human intelligence is our ability to carry out goal-directed behavior: our plans

and actions are guided by long-term goals. For behavior to be effective towards achieving a

goal, future information related to the goal often shapes many critical steps in our decision

making. For example, when packing for an upcoming trip, the weather and our planned activi-

ties at the destination must be taken into account, even though the act of packing happens at a

separate earlier time well before we reach the destination. Studies have shown that initial-stage

decision making already considers future choice points and incorporates whole-path or aggre-

gated future information in a decision tree [1–3]. Backward reasoning stemming from known

conditions about a goal is even sometimes the optimal strategy in figuring out how to achieve

the goal [4].

Yet efficient planning is also marked by the ability to break a problem into smaller prob-

lems, focusing in succession on a sequence of subgoals on the path toward the ultimate goal [5,

6]. To come back to our traveling example, deciding whether to take the train or an Uber to

the departure airport is one such smaller problem that can be independent from future aspects

of the plan, once the flight and departure time have been settled. Studies have found that

humans are adept at hierarchical planning, able to use learned knowledge to construct subtasks

in novel problems and decompose tasks efficiently [7, 8]. Modeling work has provided precise

accounts of how humans optimally group states in an environment and efficiently construct

hierarchical task representations [8–11]. Furthermore, neural imaging studies have also sup-

ported the idea that the brain naturally organizes incoming stimuli based on their underlying

hierarchical structure, delineating brain regions that signal differences among subgoal contexts

as participants progress through them [12, 13].

On the surface, the situations discussed above may seem to call for different planning pro-

cesses. When future information is relevant to decision making at an early point in a plan,

selecting appropriate actions requires considering more proximal information together with

future information. But when future information is irrelevant to an immediate subgoal, opti-

mal processing may be enhanced if we first decompose the overall task and then evoke an inde-

pendent process to solve the subgoal without influences from irrelevant factors outside of the

subtask context. However, many types of human sequential behavior that seem naturally char-

acterized by a composition of independent, more atomic processes have been shown to rely on

a degree of parallel consideration of multiple factors [14]. For example, optimally typing the

sequence of letters in a word can involve hand movements that prospectively prepare for

future letters [15], increasing overall speed and fluency. People also produce speech errors

reflecting intruding influences from words after the target word [16], suggesting that current

and future spoken words are being planned at the same time. More recent work has similarly

argued that parallel, context-sensitive processes, rather than explicitly hierarchical or modular

computations, underlie routine sequential action [17] and value-based decision making [18].

We may therefore also expect that humans solving an embedded subtask might exhibit a

graded and non-exclusive focus on the subtask, with some degree of consideration of informa-

tion outside of the subtask context even in situations where this information is irrelevant.
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Here, we consider how a weighted constraint satisfaction process that simultaneously

exploits multiple constraints can provide an alternative to the hierarchical task decomposition

account of human planning and decision making. While we do not rule out that decomposi-

tion may occur in some situations, we suggest that flexible decision making in many problems

may rely instead on the task-sensitive modulation of the degree to which different pieces of

information are weighted in selecting the next action. For example, when solving an embedded

subgoal in a larger task, a greater weighting of the subgoal-relevant information relative to the

subgoal-irrelevant information can effectively approximate the optimal decision outcomes

that would be generated by an explicit task decomposition process followed by exclusive sub-

task execution.

Our experiments explore this weighted constraint satisfaction account by considering the

decision processes people engage in when selecting the first step in two related maze tasks,

where the same maze navigation problem either appears as an isolated task or as an initial sub-

task embedded in a larger maze (Fig 1A and 1B). We now consider the two tasks in more

detail, analyzing the task factors that might influence people’s initial path choices and discuss-

ing the expected behavioral outcomes produced by the hierarchical task decomposition

approach and the weighted constraint satisfaction approach.

We consider first the base task, in which participants are rewarded for moving a token

along the shortest path from a starting point to a designated goal (Fig 1A). The task can be con-

sidered to have three parts: First move out from behind the internal wall near the starting

point; then traverse to the other side of the environment; then approach the goal by moving

behind the internal wall near the goal. The optimal overall path, however, is determined both

by a starting-point-proximal factor (the starting position relative to the internal wall near the

starting point, henceforth called themyopic advantage) and a goal-proximal factor (the goal

position relative to the internal wall near the goal, henceforth called the future advantage).

Since the optimal paths differ in the first action that needs to be taken, an optimal initial path

choice must therefore be jointly constrained by both factors. Thus, if planning inherently

involves the simultaneous consideration of multiple constraints, this task is perfectly suited to

exploit it, and we would expect both the myopic and the future advantage to affect the choice

of the first step and the time it takes to make it.

Fig 1B shows the same maze in the base task, now embedded as an initial part of a larger

maze such that what was previously the goal location now corresponds to a subgoal location

that must be reached prior to navigating to the final goal. In this more complex task, finding

the optimal initial path still depends on the same two constraints, now associated with the

starting point and the subgoal location. If people adopt a hierarchical task decomposition

approach in this case, we may expect a longer processing time before choosing the initial

action to reflect the time required to infer the subgoal and decompose the task into parts, prior

to directing effort at solving the subgoal (Fig 1C, left panel). Moreover, the subsequent process

of choosing the optimal initial direction within the subtask should be identical to that in the

base task and unaffected by the position of the final goal (Fig 1C, right panel).

Alternatively, a weighted constraint satisfaction approach could be recruited to support

decision making in the more complex task. As alluded to above, an approximation of the pat-

tern of responding that would be produced under the hierarchical approach can be achieved

by a greater weighting of the two subgoal-relevant constraints compared to the initially-irrele-

vant final goal in deciding the initial action (Fig 1D). For path selection to still be close to opti-

mal, the weighting of the various factors must allow the two subgoal-relevant constraints to

exert a near equal and jointly predominant influence in decision making. But a small residual

weighting of the irrelevant final goal might be reflected in a subtle influence of this factor on

the time course and outcome of selecting the initial path. To explore this possibility, we can
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therefore ask these questions: 1) To what extent do participants balance their consideration of

multiple relevant constraints, and 2) when there is an irrelevant constraint, to what extent do

they effectively ignore it? More generally, how does the presence of a particular constraining

factor (whether relevant or irrelevant) influence the weighting of other constraining factors?

Across two experiments, we studied how human participants approached solving these

maze problems (Fig 2). We assessed both the paths chosen by participants, as indicated by the

direction of their first step, and the time they took to plan this step, as indexed by their reaction

time. We used the drift-diffusion model (DDM) [19] to characterize how the constraining fac-

tors discussed above were used in deciding the first action on each trial. The DDM and subse-

quent models built on related ideas have been used to understand a wide range of human

perceptual and cognitive processes [20–22], and the DDM has recently been used to account

for behavior in multi-step decision making [1, 3]. Here, we leverage the DDM to characterize

whether the consideration of the various factors during planning was more consistent with a

hierarchical task decomposition process or a weighted constraint satisfaction process. If plan-

ning occurs according to the hierarchical task decomposition approach as described above, the

process of selecting the initial action in the more complex subgoal task should resemble that in

the base task, though it may begin after a longer initial delay. In contrast, in the weighted con-

straint satisfaction approach, we might expect simultaneous influence of the subgoal-relevant

constraints and the final goal during initial path selection, albeit with relatively less weight

assigned to the final goal in decision making. We test these hypothesized decision processes by

jointly fitting participants’ path choices and response times.

In Experiment 1 (Fig 2, top panel), we first confirmed that initial path choices in the base

task indeed reflected a joint influence from the relevant myopic and future constraints. Inter-

estingly, we found that participants’ path choices tended to reflect the myopic advantage more

Fig 1. Hierarchical and parallel planning processes. A. A simple maze where selecting the initial direction of a best goal-reaching path benefits from

the joint consideration of starting-point proximal (myopic) and goal-proximal (future) information. B. The task in A. embedded as an initial part of a

larger maze. C. A hierarchical approach to selecting the initial path in B., by first reducing the task to the initial subgoal task then focusing on finding

the best subgoal-reaching path. D. A parallel approach to selecting the initial path in B., where simultaneous but appropriately-weighted consideration

of constraints both inside and outside of the subtask context generates approximately optimal choice behavior.

https://doi.org/10.1371/journal.pcbi.1009553.g001
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strongly than the future advantage. In addition, when the myopic and future advantages were

pitted against each other, each exerted a weaker influence on path choices than it did when

only one of the factors was relevant to determining the optimal path. We then used the data

from a subset of trials in this experiment to constrain the selection of a best-fitting DDM pro-

cess for the base task. Then in Experiment 2 (Fig 2, middle and bottom panels), we compared

the decision process in the more complex task with that in the base task. We found that initial

path choices were slower in the complex task compared to the base task, and that these choices

were both reduced in accuracy and influenced by the final goal position. In line with these

observations, DDM variants consistent with the weighted constraint satisfaction account fit

the pattern of data better than DDM variants consistent with the hierarchical task decomposi-

tion account. In addition, we found that more accurate participants (those who were more

likely to choose the optimal path) assigned less weight to the initially-irrelevant final goal posi-

tion than less accurate participants, and tended to exhibit more balanced weighting of initially-

relevant constraints. In the General Discussion, we return to the idea that a parallel, weighted

constraint satisfaction approach might be the biological brain’s way of planning decisions, and

that our brains approximate an optimal focus on relevant information in different task

Fig 2. Experimental design. Blue block: starting point. Starred red block: goal location. Trial advantage types are based on

the correspondence between the starting-point proximal constraint (myopic advantage) and the goal-/subgoal-proximal

constraint (future advantage). NT = neutral advantage, SA = single advantage, CA = congruent advantage, IA = incongruent

advantage. For the subgoal trials in Experiment 2, both of the possible final goal locations are shown.

https://doi.org/10.1371/journal.pcbi.1009553.g002
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contexts through the dynamic modulation of constraint weighting as thought and behavior

unfold.

Results

Experiment 1

The two main goals of Experiment 1 were 1) to examine the influence of the starting-point

proximal,myopic advantage and the goal-proximal future advantage in initial path choices in

the base task and 2) to fit variants within the family of drift-diffusion models to a subset of the

trials in the experiment to assess what constraint weighting scheme best captures the joint

choice and response time patterns. We varied the myopic advantage and the future advantage,

which together determine the shortest goal-reaching path on each trial, and analyzed partici-

pants’ first action choice and their time taken to take the first step (response time).
Methods

Ethics statement. This study was approved by the Stanford University Institutional Review

Board under protocol No.7029. In the online experiment, participants were first shown a con-

sent page and were instructed to continue to the study if they agree to participate or exit at any

time if they decline to participate in any or all parts of the study.

Participants. For Experiment 1, 100 US-based participants were recruited on Amazon

Mechanical Turk. To ensure data quality, each participant must have had over 92% HIT approval

rate and must have completed more than 1000 approved HITs to be eligible for the study.

Task design. Participants completed a single session consisting of three practice trials, 184

experimental trials, and a short survey. Each trial consisted of a shortest path search task on an

11×11 grid canvas with two internal walls (Fig 2, top panel). Participants were instructed to

move the blue block to the starred goal location using the minimum number of up, down, left,

or right steps. A step into the walls would increase the step count with no actual movement.

Participants received a base completion compensation of $1.00 and a performance-based

bonus on each trial ($0.03 if a trial was solved with the minimum number of steps, $0.01 if the

solution was only up to two steps more than the shortest solution, and no bonus otherwise).

The study took around 35 minutes and participants received an average of $6.05 for complet-

ing the study.

The experimental trials included 92 base trials and 92 filler trials, presented in a different

randomized order for each participant. Below we report results from the base trials, where the

locations of the starting block and the goal block were designed to vary the relative advantages

of the candidate goal-reaching paths near the starting location and near the goal, but the loca-

tions of the two length-7 walls were fixed (see Table 1). Each unique base trial layout was mir-

rored vertically, except for the neutral trial. Both the original and the mirrored trials appeared

in all four orientations, including the left-to-right orientation shown, as well as top-to-bottom,

right-to-left, and bottom-to-top orientations.

The myopic advantage near the starting point refers to the side of the wall that the blue

block can be moved toward to get out from behind the wall with fewer steps. Similarly, the

future advantage near the goal refers to the side of the wall that the blue block can approach

the goal from with fewer steps. Quantitatively, the myopic and the future advantages can be

computed as the position offset of the starting block and the goal block relative to the center of

the nearby wall. For example, in the trial shown in the top right panel of Fig 2, the myopic

advantage is 2 (towards the upper path), and the future advantage is −2 (towards the lower

path). The pairing of the two advantages establish four advantage types: neutral advantage

(NT), single advantage (SA), congruent advantage (CA), and incongruent advantage (IA). We

subset the SA and IA trials by whether the myopic or the future advantage was the larger
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advantage, denoted by the “-m” or “-f” tail. Note that in the NT trial layout and two of the IA

trial layouts, the two main path candidates (i.e., equivalent to the upper and the lower paths in

the left-to-right orientation) are equally optimal.

On each filler trial, we randomly sampled trial orientation (among all four orientations)

and the length of each internal wall (3, 5, or 7). The two internal walls were also randomly

shifted up or down, but were never allowed to block the upper or lower paths. Wall locations

on the filler trials with two length-7 walls were also never centered (i.e., never identical to the

wall locations on the base trials). The location of the starting block was randomly sampled

from the locations to the left of the starting-proximal wall, and the location of the goal block

was randomly sampled from the locations to the right of the goal-proximal wall.

Exclusions. We excluded data from five participants who were not able to complete the

experiment due to technical reasons. Across all remaining 8740 observations (95 partici-

pants × 92 trials), we excluded trials where participants took longer than one minute to execute

the first move (six trials) or took five or more steps compared to the longer of the two main

path candidates (ten trials; a main path candidate is equivalent to the upper or lower path in

the left-to-right orientation, without excessive steps). We also excluded trials with ill-identified

initial path direction, including trials where the first move was equivalent to going left in the

left-to-right orientation, or where the initial steps contradicted the overall path, e.g., an initial

down action followed by a later upper path (31 trials).

Drift-diffusion modeling. We modeled the path choices and planning time in the IA trials as

a drift-diffusion process, as these trials afford the opportunity to examine the influences of the

two constraints when they each deviate from neutral and contribute to the decision outcome

in opposite directions. The model treats the decision making process as involving a single

aggregate decision variable in which a positive value favors a path choice that satisfies the myo-

pic advantage and a negative value favors a path choice that satisfies the future advantage. On

each trial, this variable evolves randomly over time with a mean direction d given by:

d ¼ md �mAdv � fd � fAdv ð1Þ

wheremd is the drift weight associated with the myopic advantagemAdv and fd is the drift

weight associated with the future advantage fAdv. When the value of the variable reaches an

Table 1. Myopic and future path advantages. All trial layouts were mirrored except for the NT trial. NT = neutral

advantage, SA = single advantage, CA = congruent advantage, IA = incongruent advantage. The -m and -f suffixes indi-

cate whether the myopic or future advantage was larger.

Adv. Type Myopic Adv. Future Adv.

NT 0 0

SA-m 2 0

1 0

SA-f 0 2

0 1

CA 1 1

IA 1 -1

2 -2

IA-m 2 -1

3 -1

IA-f 1 -2

1 -3

https://doi.org/10.1371/journal.pcbi.1009553.t001
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upper or lower bound at values a or −a, the process terminates and a response satisfying the

myopic advantage is chosen if the upper bound is reached, or one satisfying the future advan-

tage if the lower bound is reached.

In addition to the parametersmd, fd, and a, the model also includes an initial non-deci-

sion time t0 and a possible starting point bias z. We additionally modeled inter-trial variabil-

ity for the starting point (sz) and the drift rate (sd). As a baseline, we considered a model in

which the weights for both advantages are equal (md = fd) and there was no starting bias

(z = 0). We tested whether the data were better accounted for with equal or different advan-

tage weights, with or without a starting bias, and with or without the two sources of inter-

trial variability.

We pooled data from all participants to fit the candidate drift-diffusion models. We first

z-scored the raw first move response time (in seconds) within each participant, then shifted

the z-score distributions so that the minimum is 0.5 for each participant to ensure positive

response time and enough non-decision time buffer for modeling purposes. All model vari-

ants were fitted in a Monte-Carlo cross-validation procedure written in R, using the density

function implemented in the rtdists package [23] and the nlminb function in the stats pack-

age [24]. In each of 200 cross-validation folds, we held out data from 35 (out of 95) randomly

sampled participants as the test data. Ten runs from random initial parameter values were

optimized to minimize the summed negative log-likelihood (sNLL) of the training data; the

number of runs per fold could be extended to avoid local minima (see S1 Text). The winning

fit for each fold was selected based on the best training sNLL. Candidate models were fitted

over the same 200 cross-validation folds to control for fold-level variability. For model com-

parison, we fitted a linear mixed-effects model to the sNLL on the held-out test data across all

candidate models with fold-level random intercepts. We then selected as the “winning”

model the one that had a reliably lower sNLL than other models or that had fewer free param-

eters than another model with a statistically indistinguishable sNLL. The winning model then

served as the starting point for modeling individual differences and as the base model for

Experiment 2.

Analysis of individual differences. To investigate how the weighting of constraints differed

among participants, we split all participants into two groups based on the group median of ini-

tial path choice accuracy, where individual accuracy scores were computed on all trials with a

unique optimal initial direction. We then fitted the best group model separately to data from

participants with overall higher levels of accuracy (N = 51) and lower levels of accuracy

(N = 44), using a cross-validation procedure identical to the group analyses, but re-sampling

the test data within each group. We used a 36/15 train/test split for the higher accuracy group

and 31/13 train/test split for the lower accuracy group. We then tested whether specific model

parameter differences between the two groups could have arisen by chance from random

assignment of participants into two groups. We conducted an additional round of fitting in

which we compared the difference in fitted parameter values between the high and low accu-

racy groups to the distribution of differences observed between groups formed by 1000 ran-

dom splits of the participants into two groups matched in size to the high and low accuracy

groups. In this additional round of fitting, data from all participants in each group were used

to train the model, so that the estimated differences reflected the data from all of the partici-

pants assigned to each group.

Results and discussion

Before turning to drift-diffusion modeling, we first present a descriptive analysis of the over-

all choice and reaction time data to confirm that participants’ choices are influenced both by

myopic and future constraints and to characterize the experimental factors that influenced the

degree of choice optimality and the time required to make the choice.
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Overall, participants made optimal initial path choices on 91.57% of the trials (excluding

the NT and IA trials with equally optimal initial directions), and they did so quickly, with a

group-average median planning time of 1.34 sec. As shown in Fig 3B, participants’ selection of

the initial path direction favored the optimal path across all of the advantage pairings, suggest-

ing that they must be taking both constraints into account.

Both choice optimality and response times were influenced by the relative advantage of one

path over another, by whether the optimal choice was based on a single advantage or a combi-

nation of two advantages, and by whether the larger advantage was the myopic, starting-point

proximal advantage or the future, goal-proximal advantage (Fig 3B and 3C). To further charac-

terize these effects, we present a set of planned comparisons taken from a mixed-effects regres-

sion model of trial-level initial path choices (with a probit linking function), with separate

parameters for each trial advantage type and participant-level random intercepts. The model

confirmed a significant difference in choice optimality among different advantage pairings

shown in Fig 3B, χ2(8) = 301.76, p<0.001. Response times (Fig 3C) also differed significantly

among all 12 advantage pairings, F(11, 1128) = 22.80, p<0.001, based on a linear model applied

to the individual median z-scored first move response times. Detailed comparisons of the esti-

mated marginal means (EMMs; with Bonferroni correction) based on both the choice model

and the response time model (controlling for total path differences) confirmed that responses

with an overall path advantage of 4 were faster and more often in the optimal direction than

responses with a path advantage of 2 (adjusted ps<0.01), and that responses in the IA trials

were less optimal and slower than those in the SA and CA trials (adjusted ps<0.01). Choice

optimality rates in SA and CA trials were both near-ceiling and the difference between the

associated response times was not statistically significant (adjusted ps>0.1).

We now turn to the consideration of the relative influence of the myopic versus future

advantages on speed and accuracy of initial path choices. Compared to the counterpart trials

where the future advantage was larger (red points in Fig 3), trials where the myopic advantage

was larger (blue points in Fig 3) had a significantly higher choice optimality rate (adjusted

Fig 3. Initial path choices and the associated response times reflected joint consideration of myopic and future constraints. A. Path choices in trials with equally

optimal initial directions. The value for NT trials was defined to be 0 since there was neither a myopic nor a future advantage on these trials. B. Path choices in trials

where one of the initial directions was optimal. The proportion of optimal trials for each individual was converted into a probit score. If the individual probit score was

larger than 3 or smaller than -3, it was capped at 3 or -3 before averaging. C. Response times associated with the first step. The individual medians of zscored response

times were projected back to the raw time scale in seconds using group average mean response times and group average standard deviations. Trial advantage types:

NT = neutral advantage, SA = single advantage, CA = congruent advantage, IA = incongruent advantage. mAdv = myopic advantage. -m and -f indicates the larger

advantage. Error bars indicate bootstrapped 95% confidence limits.

https://doi.org/10.1371/journal.pcbi.1009553.g003
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p<0.01, EMM comparison from the choice model) and shorter response times (adjusted

p<0.05, from the response time model) in IA and SA trials combined. An overall myopic bias

is exhibited by a majority of the individual participants in the IA trials, though about 30%

showed the opposite tendency when the two advantages are of equal magnitude.

Having observed the joint consideration of myopic and future advantages in deciding the

first step as well as the myopic bias, we next turn to the comparison of drift-diffusion model

variants in characterizing this decision process, focusing on the IA trials in which the two

advantages lead to competing decision outcomes. This analysis suggested that the tendency to

favor the path with the myopic advantage arose from a stronger weighting of the myopic

advantage compared to the future advantage, and not from an initial bias favoring the myopic

advantage (Fig 4A). The model with different weighting for the two advantages resulted in bet-

ter fitting objective (summed negative log-likelihood) on the held-out test data across cross-

validation folds, compared to the baseline model with equal weighting or the model with both

equal weighting and a starting bias (adjusted p’s<0.001, pairwise EMM comparison based on a

linear mixed-effects model of test objectives across all models, Bonferroni corrected). Account-

ing for additional starting bias led to worse fit in the equal weighting case (adjusted p< 0.05)

and did not improve the fit in the different weighting case (adjusted p> 0.5). Models with

Fig 4. Weighted integration of myopic and future constraints in initial-step decision making in the base task. A. Test data objective (summed negative log-

likelihood) of candidate drift-diffusion models, as marked on dark red bars, as compared to the baseline model (see text for details). Asterisk marks the winning model.

B. Parameter estimates of the winning drift-diffusion model. t0, non-decision time. a, decision bound.md and fd, myopic and future advantage weights. sz, inter-trial

variability of the starting point. sd, inter-trial variability of the drift rate. C. Predicted response time (RT) distributions (in red, sampled from the parameter estimates of

the winning fit in the fold with the best test objective) and the empirical RT distributions (in blue). In C., the top two panels show the RT distributions associated with

choices satisfying the myopic advantage on the top and those satisfying the future advantage on the bottom. The bottom four panels show the RT distributions for the

correct responses on the top and error responses on the bottom. mAdv, myopic advantage. fAdv, future advantage. All error bars indicate 95% bootstrapped

confidence limits.

https://doi.org/10.1371/journal.pcbi.1009553.g004
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inter-trial variabilities in both the starting point and the drift rate also consistently outper-

formed those without (adjusted p’s<0.001).

The winning model estimated a ratio between the drift weights associated with the myopic

and the future advantage at 1.13 (SD = 0.02, see Fig 4B). The model fitted the combined choice

and response time data fairly well, though it under-predicted fast correct responses and over-

predicted the occurrence of errors, particularly when the advantage difference was plus or

minus one (Fig 4C, middle panel).

Individual differences. Considered together, participants in Experiment 1 made the optimal

initial choices on over 91% of trials. However, the accuracy rate varied widely across partici-

pants, from 49.23%–100.0%. Participants also differed widely in how quickly they arrived at

their first response (range of individual median response time: 0.60 sec–3.29 sec). To under-

stand what factors differed between participants who made more and less accurate responses,

we split the participant pool into two groups based on the median choice accuracy, with choice

accuracy rates ranging from 94.44% to 100% for the higher accuracy group and from 49.23%

to 94.37% for the lower accuracy group. Importantly, both groups showed a stronger influence

of the myopic over the future advantage, though the effect was more prominent in reaction

times for the more accurate group and more prominent in the probability of choosing the opti-

mal path in the less accurate group (S1 Fig). Fitting the model separately to the higher and

lower accuracy groups revealed that the more accurate group exhibited larger weights for both

the myopic and future advantages and lower drift rate variability relative to the less accurate

group (S2 Fig). In addition, we found that the more accurate group tended to weight the myo-

pic and future constraints more nearly in accordance with an optimal, equal weighting of the

two constraints. For the more accurate group, the ratio of the myopic weight relative to the

future weight was estimated to be 1.09; for the less accurate group, the same ratio was esti-

mated at 1.19. Compared to the distribution of differences obtained from 1000 pairs of ran-

domly-split participant groups (seeMethods), the observed difference in the ratio of the

myopic and future weights between the two accuracy groups (-0.11) was close to the lower end

of the 95% CI of the distribution of differences obtained from random splits [-0.14, 0.15], and

only 66 of the 1000 random splits produced a more negative difference than the difference

between the two groups. The observed difference is thus suggestive of, but not definitive evi-

dence of, a reliable tendency for more accurate participants to weight the two constraints more

nearly equally than less accurate participants.

Experiment 2

Both the descriptive and the model fitting analyses from Experiment 1 indicated that people

rely on both the relevant myopic and future constraints in selecting initial actions in the base

task. Although participants were quite accurate overall in choosing the optimal path to the

goal, they weighted the myopic constraint slightly more than the future constraint, and those

who were less accurate tended to show a greater imbalance compared to the more accurate

participants. We next investigated how people approach the same two-constraint problem

when it appears as a subtask in a larger problem. Experiment 2 included the same set of trials

used in Experiment 1 (base trials) and an additional set of trials where the base maze is the first

part of a larger maze and leads to a subgoal that must be visited prior to reaching the final goal

(subgoal trials; see Fig 2). In these subgoal trials, as illustrated in the figure, we varied the final

goal location, to examine whether this factor might influence initial path choices, even though

it is not relevant to the determination of the optimal path to the subgoal location.

We were interested in how the decision process behind the selection of the first step

changes when people confront the more complex task as compared to when they solve the
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base task. If participants adopted a hierarchical task decomposition approach, we may expect

an increase in the initial non-decision time, followed by an identical decision process to find

the shortest subgoal-reaching path compared to that in the base trials, with no influence of the

position of the final goal on the choice of initial path direction. If participants instead extended

the weighted consideration of multiple factors to the subgoal trials, we may expect no change

in non-decision time, but instead changes in the weighting of the two relevant advantages

along with some weighting of the irrelevant final goal in deciding on the initial path direction.

This experiment also provides a further opportunity to consider differences in the constraint

weightings between higher and lower accuracy groups, both with respect to the relative weight-

ing of the myopic vs. the future advantage on initial path selection, and with respect to any

observed weighting of the initially-irrelevant final goal position.

Experiment 2 was pre-registered through the Open Science Framework (https://osf.io/

w78hu). The statistical tests, the drift-diffusion modeling, and the analyses of individual differ-

ences presented in this paper were developed after the experiment was completed and the pre-

registered analyses were performed (we do not report the results of the pre-registered analyses

as such since the reported analyses refine and extend them).

Methods

Ethics statement. This study was approved by the Stanford University Institutional Review

Board under protocol No.7029. In the online experiment, participants were first shown a con-

sent page and were instructed to continue to the study if they agree to participate or exit at any

time if they decline to participate in any or all parts of the study.

Participants. We recruited 100 participants on Amazon Mechanical Turk with an identical

set of eligibility criteria from Experiment 1, except that participants who previously partici-

pated in Experiment 1 were not eligible.

Task design. Participants completed two practice trials and 158 experimental trials in one

session. Trial layouts were similar to those in Experiment 1, but the grid size was either 11×11

or 11×13 depending on the task condition (Fig 2). We added boundary walls to the grid canvas

and removed the step count penalty for movements that resulted in wall collision. Participants

were randomly assigned to one of the two orientation groups: group one (N = 50) received tri-

als with left-to-right and right-to-left orientations, group two (N = 50) received trials with bot-

tom-to-top and top-to-bottom orientations. Participants received a base completion

compensation of $1.20 and a performance-based bonus on each trial ($0.03 for executing the

shortest solution, $0.01 for a solution up to two steps longer than the shortest solution, and no

bonus otherwise). The study took around 30 minutes and participants received an average of

$5.63 for completing the study.

The experimental trials consisted of base trials (× 46), subgoal trials (× 92), multi-subgoal

trials (× 16), and multi-subgoal control trials (× 4). In this paper, we report data from the base

and the subgoal trials. The base trials contained the full set of 12 unique trial layouts used in

Experiment 1 (see Table 1). The subgoal trials used the same set of advantage pairings but

replaced the goal block in the base trials with a cell leading to a bottleneck (Fig 2). In the sub-

goal trials, the final goal block appeared on both ends of the goal column, as illustrated in the

figure. Similar to Experiment 1, all trials were mirrored vertically except for the NT trials.

The multi-subgoal trials have two openings on the wall prior to the final goal which

were structured so that the candidate paths through the two subgoals were equally optimal.

On these trials, the start and the goal locations were fixed, but the subgoal locations

varied and one of the subgoals was always closer to the goal. We also included the multi-

subgoal control trials where we closed the subgoal further from the goal. The layout of

these control trials did not overlap with any subgoal trials (see more information in the

OSF repository).

PLOS COMPUTATIONAL BIOLOGY Decision making as dynamic constraint weighting

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009553 June 16, 2022 12 / 23

https://osf.io/w78hu
https://osf.io/w78hu
https://doi.org/10.1371/journal.pcbi.1009553


Exclusions. All 100 participants successfully completed the experiment. At the trial level, we

implemented the same set of exclusion criteria used in Experiment 1, excluding trials where

participants took more than one minute to execute a first move (19 trials) or solved with five

steps or more than the longer of the two main path candidates (ten trials), as well as trials with

ill-identified initial path direction (180 trials). The exclusions resulted in a total of 13595 trial

observations (98.5% of original dataset) for the reported analyses.

Drift-diffusion modeling. We tested whether, compared to the base trials, initial path choices

and response times in the subgoal trials are accounted for by a different non-decision time or

by changes to constraint weighting during the drift process. The baseline model capturing the

decision process in the base trials was the winning model from Experiment 1, which includes

six parameters (t0, a,md, fd, sz, sd). We modeled a third addend to the trial drift rate in the

subgoal trials, gd, representing the weight the final goal may carry during weighted informa-

tion integration. gd drives decision toward the upper decision bound (i.e., selecting the path

that satisfies the myopic advantage) when the goal location is on the same direction with an

initial move that satisfies the myopic advantage, and drives decision away from the upper deci-

sion bound otherwise. We also tested whether, and if so how, the advantage weightsmd and fd
in the subgoal trials differed from those in the base trials, including shared additive change or

independent changes tomd and fd. We subsequently added another variant, modeling a

shared proportional change to bothmd and fd. Response variables, model fitting, and

model comparison were the same as in Experiment 1 (see Experiment 1Methods), except that

we used a 60/40 split for sampling the training data and the test data in the cross-validation

folds.

Analysis of individual differences. Model fitting and parameter comparison for this analysis

followed the same methods used for Experiment 1 (see Experiment 1Methods), except that the

median choice accuracy split resulted in N = 50 in each of the higher and lower accuracy

groups, and we used a 35/15 train/test split for cross-validation in each group.

Results and discussion

We compared how participants considered the various task factors when the same maze

task either appeared alone (base trials) or as an initial subtask that leads to a subgoal (subgoal

trials). In the subgoal trials, optimal initial paths are constrained by the same myopic and

future path advantages as in the base trials, because final goal information is initially irrelevant.

Before we turn to the drift-diffusion modeling results, we first review the overall response time

and choice accuracy across the two task conditions.

Overall, performance degraded in the subgoal trials with both an accuracy cost and a

response time cost. Participants selected the optimal initial direction more often in the base tri-

als (mean optimal rate: 92.30%, range: 52.78%–100.0%) than in the subgoal trials (mean opti-

mal rate: 88.03%, range: 51.43%–100.0%), t(99) = 6.61, p< 0.001. The group-average median

response time of the first step in the subgoal trials (mean: 1.91 sec, range: 0.55 sec–9.45 sec)

was about 0.40 sec longer than that in the base trials (mean: 1.53 sec, range: 0.58 sec–6.16 sec),

t(99) = 5.86, p< 0.001. The accuracy and response time costs were seen across different trial

advantage types (Fig 5).

The increased first move response times in the subgoal trials may reflect time taken to

decompose the task and identify the final goal information as irrelevant to the subtask, but the

simultaneous change in choice accuracy suggested that participants did not deploy the exact

same decision process to solve the identical two-constraint task that is at core to selecting ini-

tial paths in both task conditions. We note that the benefit from congruent or single optimal-

ity-relevant constraints (as opposed to incongruent ones) was preserved, as path choices and

response times showed similar patterns across the different trial advantage pairings in both
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task conditions (Fig 5B and 5C). This is confirmed by extending the path choice model and

the median zscored response time model from Experiment 1 with task condition (base vs. sub-

goal) as a second predictor and accounting for interaction effects. We observed no significant

interaction in either the choice model (χ2(8) = 8.19, p = 0.42, main-effects model as compared

to an interaction model) or the response time model (F(11, 2376) = 1.23, p = 0.26).

Building on the winning model from Experiment 1 as a baseline, we next compared the

decision process in the subgoal IA trials to that in the base IA trials. Model comparison sug-

gested that changes in what and how different pieces of information are weighted in the deci-

sion process, but not an increase in initial non-decision time, accounted for the slowed and

less accurate initial path choices in the subgoal trials. As shown in Fig 6B, adding a goal weight

(gd, see Experiment 2Methods) to the drift rate resulted in a significantly better model

Fig 5. Accuracy and time cost in initial path choices when the two-constraint maze is embedded as a subtask. A. Path selection in the trials with equally optimal

initial directions. As in Fig 3A, the value for NT trials was defined to be 0. B. Path selection across advantage pairings in base and subgoal trials. As in Fig 3B, the

proportion of optimal trials for each individual was converted into a probit score, with individual probit scores larger than 3 or smaller than -3 capped at 3 or -3 before

averaging. C. Response times in the base and subgoal trials. As in Fig 3C, the median zscore response times were projected back to the raw time scale in seconds.

https://doi.org/10.1371/journal.pcbi.1009553.g005

Fig 6. Weighted consideration of subgoal-relevant and -irrelevant constraints approximated optimal choice behavior when the base task was embedded as an

initial subgoal task. A. Path choices in the IA trials. As in Figs 3B and 5B, the proportion of optimal trials for each individual was converted into a probit score, with

individual probit scores larger than 3 or smaller than -3 capped at 3 or -3 before averaging. B. Test data objective (summed negative log-likelihood) of the candidate

drift-diffusion models compared to the baseline model. Asterisk marks the winning model. For empirical and predicted response time distributions, see S4 Fig. C.

Parameter estimates from the winning model. t0, non-decision time. a, decision bound.md and fd, myopic and future advantage weights. gd, goal weight. sz, inter-trial

variability of the starting point. sd, inter-trial variability of the drift rate. p, proportional change tomd and fd in the subgoal trials.

https://doi.org/10.1371/journal.pcbi.1009553.g006
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compared to the baseline model (adjusted p< 0.001, pairwise EMM comparisons based on a

linear mixed-effects model fit to the test objectives from all model variants, Bonferroni cor-

rected). This echos the pattern of the initial path choices in the IA trials, which clearly showed

a biasing influence from the irrelevant final goal (Fig 6A).

We also found that a proportional decrease (modeled by a weight multiplier p) in the

weights of the optimality-relevant path advantages (md and fd) further accounted for the

decreased choice optimality and slowed response times in the subgoal trials (Fig 6B). This ech-

oed the similarity in the response patterns across advantage pairings shown in Fig 5, suggesting

an overall degradation in the weighting of the two relevant constraints in the more complex

task. The proportional weight change model was better than the model with an equal decre-

ment inmd and fd (adjusted p< 0.001), and on par with the independent weight change

model (adjusted p> 0.9) with one less free parameter. Moreover, modeling a separate non-

decision time in the subgoal trials for the proportional weight change model did not lead to

significantly better test data likelihood (adjusted p = 0.13), indicating that the process of decid-

ing between the path choices could initiate after about equal time in both task conditions, as

the slowed response time was accounted for by reduced weighting of the relevant constraints.

The winning model estimated that the weight placed on the irrelevant final goal (gd) was

about 0.31 (SD = 0.06; Fig 6C). It is a much smaller weight compared to the weights associated

with the optimality-relevant myopic and future advantages in the subgoal trials, which were

estimated atmd = 1.27 (SD = 0.12), fd = 1.04 (SD = 0.10) after about a 30% (SD = 2%) decrease

compared to their values in the base trials, with their ratio preserved at 1.22 (SD = 0.03).

Individual differences. As in Experiment 1, there were large individual differences in par-

ticipants’ overall accuracy (S3 Fig). As before, the qualitative pattern of effects exhibited in the

combined results across all participants was also exhibited by participants in both the higher

accuracy group (accuracy rate: 91.67%–100.0%) and the lower accuracy group (accuracy rate:

53.85%–91.59%). When fitting the model separately to data from the group with overall higher

accuracy and the group with overall lower accuracy, the lower accuracy group showed a higher

degree of drift-rate variability (S5 Fig), consistent with that found in Experiment 1.

The groups also differed in the relative weighting of the different task factors, with the more

accurate group again showing a tendency to place more nearly optimal (i.e., equal) weighting

of the initially-relevant myopic and future constraints (Fig 7C). For the more accurate group,

the ratio of myopic to future weights was 1.17, compared to 1.30 for the less accurate group.

The difference between the weight ratio estimated from the full split-group fits (-0.14) was

Fig 7. Individual differences in weighting subgoal-relevant factors and the subgoal-irrelevant final goal. A. and B. Subgoal trial path choices associated with the two

accuracy groups. As in Fig 6A, the proportion of optimal trials for each individual was converted into a probit score, with individual probit scores larger than 3 or smaller

than -3 capped at 3 or -3 before averaging. C. Drift weight estimates in both task conditions for the two accuracy groups.

https://doi.org/10.1371/journal.pcbi.1009553.g007
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again very close to the lower end of the baseline difference distribution obtained from 1000

pairs of randomly-split participant groups: the 95% CI spanned the interval [-0.15, 0.16] and

only 36 of the 1000 random splits produced a more negative difference. The probability that

the difference between the high and low accuracy groups would have been as far down in the

negative tail of the baseline distribution as it was in both experiments is very low (the joint

probability of the two events occurring by chance under random splits is .066 × .036 = .0024).

More strikingly, the influence of the final goal on initial path choices in the subgoal trials is

clearly much smaller for the more accurate participants (Fig 7A) than it is for the less accurate

participants (Fig 7B). This is reflected in the markedly different goal drift weights estimated in

the DDM model fits of the two accuracy groups (Fig 7C). For the group with higher overall

accuracy, the goal carried a reliable, but very small weight (0.08). For the group with lower

overall accuracy, however, the goal weight was estimated at 0.68 (difference from full split-

group estimates: -0.58, 95% CI of the baseline distribution: [-0.30, 0.29]). Both groups showed

around 30% degradation in the weighting of the optimality-relevant myopic and future advan-

tages in the complex task (more accurate group: 30.89%; less accurate group: 27.49%; differ-

ence from full split-group estimates: -3%, 95% CI of the baseline distribution: [-10%, 10%]).

General discussion

In this work, we have proposed a weighted constraint satisfaction approach to goal-directed

decision making, contrasting this with a hierarchical task decomposition approach. If partici-

pants were strictly optimal, task-decomposing planners, we would expect that their decision

processes in the complex maze task would correspond to finding the best subgoal-reaching ini-

tial path and thus resemble the choices made in the base maze task. Instead, we found that par-

ticipants’ initial path choices were less likely to be optimal in the complex task, and that their

choices were influenced by both the subgoal-relevant constraints and a subgoal-irrelevant fac-

tor (the location of the final goal).

We used a drift-diffusion modeling (DDM) framework to jointly account for path choices

and response times in our experiments. The results of the modeling effort revealed several

things. First, when confronted with the base task, participants’ decisions were influenced by

both the relevant starting-point proximal (myopic) constraint and the goal-proximal (future)

constraint, but to differing degrees. This was accounted for in the drift-diffusion model by

assigning a greater weight for the myopic over the future constraint in determining the overall

drift direction of the diffusion process. In the more complex task, the weighting of the same

two optimality-relevant constraints was reduced, and participants’ weighting of the final goal

was strong enough to lead to suboptimal initial step choices on some trials. Responses were

overall slower in the more complex task, a finding that, taken by itself, might seem to reflect

the time required to focus in on the embedded subgoal in a hierarchical task decomposition

process. However, changes in the degree to which the optimality-relevant or -irrelevant task

factors were weighted, rather than a simple additive offset on the total time to make the deci-

sion, accounted simultaneously for the reduction in choice accuracy and for the slowed

responses in the more complex task.

While participants’ responses usually favored the optimal path, they did not always do so,

and there were individual differences in how closely participants approximated optimal choice

behavior in our tasks. The drift-diffusion model implementation of our weighted constraint

satisfaction account can exhibit varying degrees of optimality in the predicted initial path

selection, allowing us to capture these variations across participants. When the weights

assigned to optimality-relevant constraints are strong compared to the magnitude of sources

of variability, and when the decision criterion is chosen sufficiently conservatively, the optimal
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path will be selected by a drift-diffusion process with a probability approaching 1. We explored

what factors differed between participants who were more or less accurate in selecting the opti-

mal path and found that more accurate participants showed less trial-to-trial variability in the

overall drift direction and placed greater weight on the relevant constraints than less accurate

participants. These differences were also accompanied by differences in how well the partici-

pants conformed to the ideal pattern of constraint weighting in our experiments (Fig 7C).

More accurate participants placed much less weight on the irrelevant final goal compared to

the less accurate participants, and also tended to exhibit more balanced weighting of the rele-

vant myopic and future constraints. Thus, greater approximation to optimality was not only

associated with a stronger overall signal-to-noise profile in the decision process, but also with a

greater degree of optimality in weighting the different constraints.

Weighted constraint satisfaction and optimization

Taken together, these findings support the view that goal-directed planning can usefully be

viewed as a weighted constraint satisfaction process, at least within the current task setting, and

that optimizing planning can be viewed as occurring through adjusting the weighting of con-

straints toward values that favor ones relevant to selecting the optimal action. We do not intend

to suggest that explicit task decomposition never occurs. However, even when it does, it may

still be the case that information not strictly necessary within a subtask context contributes a

graded influence within the subtask context. In this context, it is important that even partici-

pants who made overall highly accurate choices showed some imbalance in their weighting of

the myopic and future constraints and placed some weight on the irrelevant final goal. This con-

sistency across groups of higher overall accuracy and lower overall accuracy is consistent with

the idea that all participants relied on the same constraint weighting mechanism, but that partic-

ipants in the more accurate group modulated their constraint weightings more successfully.

A weighted consideration of multiple aspects of a situation, especially including some that

are irrelevant, can sometimes lead to suboptimal decision outcomes in the context of a particu-

lar task. Such a tendency, however, might be viewed as a consequence of a more global, per-

haps evolutionary, adaptation. Studies have separately suggested that optimal task

decomposition and decision suboptimality can both result from optimizing meta-level costs

associated with representation and computation [7–9, 11, 25, 26]. One of the motivations for

the idea that humans might consistently adopt a weighted constraint satisfaction approach

stems from a similar consideration. The computational cost associated with switching between

parallel or hierarchical planning processes when facing different situations may in fact be

higher compared to the consistent use of parallel processing of multiple exploitable factors,

which would result in approximately optimal behavior as long as information is appropriately

weighted. The simultaneous consideration of multiple pieces of potentially relevant informa-

tion can also be useful in problems where an exact hierarchical decomposition may not be pos-

sible, and also support the flexible incorporation of new information as it arises in a

dynamically-changing environment. The myopic bias that is suboptimal in our task context

may also reflect a rational allocation of attention to the greater certainty of the near than the

distant future or the tendency to plan only partially as a result of sensitivity to meta-level plan-

ning costs [26, 27]. The suboptimal consideration of the irrelevant final goal can also be seen

as rational or at least natural for its possible value, considering that future information can

often be relevant to the choices we make in the early stages of complex task situations, such as

the packing stage of planning for a long trip, as mentioned in the Introduction.

Our results echo the simultaneous consideration of immediate and future constraints

found in other cognitive domains (e.g., typing and speech production), as similarly revealed
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through both optimal and suboptimal aspects of participants’ behavior when planning and

executing a sequence of actions [16, 28]. The models used to account for this behavior gener-

ally weight considerations relevant to the immediate next action most heavily, with succes-

sively less weight to items more remote in the sequence. Indeed, we may understand at least

the myopic bias we have observed in our participants’ behavior in terms of such a general ten-

dency, in that we place the largest weight on the constraints most proximal to the immediate

action at hand (accounting for the myopic bias) while allocating successively decreasing weight

to future constraints (accounting for the reduced weight of the relevant future constraint and

even less weight of the irrelevant final goal). Optimizing goal-directed planning can thus be

thought of as eliciting an adjustment from a default or baseline future-discounting weighting

toward the optimal weighting values in a given task setting.

Cognitive control as modulation of constraint weightings

A long history of research in the fields of attention and cognitive control has argued for the

view that cognitive control occurs through the modulation of the weight placed on relevant vs.

irrelevant factors [29–31]. The details of how such weighting is implemented have varied, but

a common thread in much of this work is that strong, relatively automatic behavioral tenden-

cies may often be sufficient to explain aspects of routine action, such as reading and typing of

relatively familiar words or taking the same route to work that one has taken over a period of

years. When current task demands require modification of these tendencies, these approaches

argue that we do not simply replace the habitual mechanisms with others, but that we modu-

late these mechanisms, biasing their operation so that the relevant factors are more dominant.

This approach provides a natural way of accounting for the fact that habitual tendencies (e.g.,

to produce the utterance “red” when looking at the word RED) still appear to influence pro-

cessing even when participants are instructed to do something that may be less habitual (e.g.,

name the color of the ink used to print the word; [29]). Indeed, it has been argued that the abil-

ity to exert such control is a key mechanism underlying the positive correlation in task perfor-

mance across a very wide range of cognitive tasks, including so-called fluid or culture-fair

intelligence tests thought to measure the general intelligence factor g [32]. In this light, our

finding that more accurate participants showed more optimal weighting than less accurate par-

ticipants could be interpreted as indicating that they exerted a greater degree of task-relevant

control than less accurate participants.

Visual factors and shifts of attention

It is worth noting that some aspects of our findings may depend at least in part on particular

features of the experimental design, including the fact that information about the starting

point, final goal, and subgoal in the complex task condition of Experiment 2 is visually avail-

able throughout the experiment. One possibility is that the visual salience of the final goal may

have strengthened its biasing influence in the complex task. While our experiment does not

rule this out, the extent of any such effect may be modulated by other specific aspects of our

experiments. The same visual marker is used to indicate the optimality-relevant goal in the

base task, possibly increasing participants’ weighting of the irrelevant final goal in the complex

task as a carry-over effect. In this context, though, it is worth pointing once again at the fact

that more accurate participants were far better at reducing the biasing effect of the optimality-

irrelevant goal cue, indicating that, like other constraints operating on the weightings people

place on various factors, the biasing effect of this cue is not a simple invariant effect of visual

distraction but is subject to cognitive control. It is also worth noting that the fact that the two

tasks were interleaved may have encouraged the realization that the same two constraints were
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the only ones relevant to selecting the initial step, potentially contributing to the equal non-

decision time cost found across both tasks. Future work would be needed to fully disentangle

these different contributing factors.

Given the visual availability of all of the constraining influences, the time course and outcomes

that are captured by the drift-diffusion model could arise from a process that involves several

alternations of constraint weightings, possibly associated with changes in eye fixation. Some

models of preferential choice include such alternations [33, 34], and eye movement data provides

evidence that such alternations do occur in preferential choices between visually presented

options [20]. Viewed in this light, the overall weightings we obtained in our model fits could

reflect in part the fraction of the decision time devoted to attending to one or the other sources of

constraint, with the variability parameters of the DDM approximately capturing the variability in

the selection and timing of attentional shifts. In this context, it is interesting to note that the

weightings did not seem to shift in an all-or-none fashion with shifts in eye position in the study

of preferential choice between alternatives [20]. Instead, the weighting of the fixated choice alter-

native was enhanced relative to the weighting of the other alternative, so that the weightings

changed in a graded fashion as the eyes moved. In future work, it would be possible to investigate

whether a similar effect would be observed in planning situations such as the one we have

explored in our experiments. In any case, it is worth emphasising that, even if there is attention

shifting underlying the combined influences of different sources of information, the overall out-

come of the decision process still reflects the weighted influences of multiple constraining factors.

Extensions, related models, and future directions

An important future step will be to examine whether a weighted constraint satisfaction mecha-

nism also supports more complex human problem solving beyond the navigational or other

everyday tasks we have considered up to this point, for example, in tasks that require a larger

number of intermediate steps or more abstract forms of reasoning. One such example is mathe-

matical theorem proving, in which successful reasoning depends on constraining search for a

proof based both on the givens in a problem and the statement-to-be-proven at the end of the

proof sequence [35]. We may therefore expect a weighted constraint satisfaction mechanism to

also underlie more advanced forms of reasoning, with immediate and long-range information

(e.g., known conditions and the goal statement) being simultaneously processed to facilitate

finding important intermediate steps, and a strengthened weighting of a subset of the constraints

marking a temporarily enhanced focus on an intermediate subtask (e.g., proving a lemma).

We have focused on understanding the weighting of different constraints leading to the

very first action, but our account naturally extends to multi-step decision making over time. In

the more complex task, the initially-irrelevant goal information would eventually constrain the

path after the bottleneck location. In general, generating consecutive steps in this task may be

supported by a weighting shift as decision making progresses, so that, for example, as a person

proceeds to and through the bottleneck leading to the passageway containing the goal, they

will place greater weight on the final goal to support subsequent action selection. Investigating

how constraint weightings are modulated over time is another exciting future direction.

The drift-diffusion framework has illuminated human cognition across multiple domains,

including perception, memory, and decision making [1, 3, 20–22]. In our tasks, it has provided

a useful characterization of the constraint weighting dynamics of the underlying decision pro-

cess. Existing work on planning and hierarchical computation in a variety of tasks has lever-

aged probabilistic models or the reinforcement learning framework to model the hierarchical

task decomposition approach [6, 8, 10, 36]. An important direction for future work will be to

explore how these alternative approaches to modeling goal-directed planning inter-relate. It is
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possible to envision, for example, that adjustments to constraint weights are driven by a pro-

cess like reinforcement learning, or, as suggested above, that the path choices can be viewed as

Bayes-optimal when resource constraints are also taken into account.

One particularly exciting direction for our own future investigations will be the exploration

of contemporary attention-based neural network architectures as a mechanistic instantiation

of the process of assigning and using weightings of various factors in a decision making con-

text [37, 38]. These architectures have been used for machine translation, in which weighted

attention to relevant words in a source sentence in one language is used to guide choices of

words to produce in the translation [38]. Such models adapt their attention weights for each

successive item in an output sequence and acquire sensitivity to latent hierarchical structures

[39]. We are excited by the prospect of adapting such models to the goal of understanding how

humans generate sequential goal-directed actions and acquire sensitivity to latent hierarchical

structures in a wide range of task contexts and by the prospect of the potential convergence

between such an approach and other frameworks [40].

Conclusion

In summary, we propose that goal-directed decision making can be characterized as a parallel,

weighted constraint satisfaction process. In our experiments, simultaneous and appropriately-

weighted consideration of multiple constraints helped account for the detailed choice and

response time patterns from human participants, both when a simple maze navigation task

was presented alone and when it was embedded in a larger maze. In both task settings, partici-

pants adapted their weighting of the relevant myopic and future constraints in the direction of

optimizing their initial path choices, but deviations from optimality revealed gradations in the

weighting of optimality-relevant constraints and revealed suboptimal consideration of opti-

mality-irrelevant factors which biased decision outcomes. These results suggest that human

choice behavior can be usefully viewed as a context-sensitive modulation of the weighting of

multiple constraints, which can both exploit multiple pieces of information relevant to deci-

sion making and produce an approximation to the optimal choice outcomes predicted by a

hierarchical task decomposition process.
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