
 International Journal of 

Molecular Sciences

Article

Ectomycorrhizal Fungal Strains Facilitate Cd2+ Enrichment in a
Woody Hyperaccumulator under Co-Existing Stress of
Cadmium and Salt

Chen Deng 1,†, Zhimei Zhu 1,† , Jian Liu 1,†, Ying Zhang 1, Yinan Zhang 1,2, Dade Yu 1 , Siyuan Hou 1,
Yanli Zhang 1, Jun Yao 1,3, Huilong Zhang 4 , Nan Zhao 1, Gang Sa 5, Yuhong Zhang 6, Xujun Ma 7, Rui Zhao 1,
Andrea Polle 1,8 and Shaoliang Chen 1,*

����������
�������

Citation: Deng, C.; Zhu, Z.; Liu, J.;

Zhang, Y.; Zhang, Y.; Yu, D.; Hou, S.;

Zhang, Y.; Yao, J.; Zhang, H.; et al.

Ectomycorrhizal Fungal Strains

Facilitate Cd2+ Enrichment in a

Woody Hyperaccumulator under

Co-Existing Stress of Cadmium and

Salt. Int. J. Mol. Sci. 2021, 22, 11651.

https://doi.org/10.3390/ijms222111651

Academic Editor: Ryszard Lobinski

Received: 8 October 2021

Accepted: 26 October 2021

Published: 28 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences
and Technology, Beijing Forestry University, Beijing 100083, China; ced501@163.com (C.D.);
zhimeizhu@163.com (Z.Z.); liujian20170703@163.com (J.L.); zying@bjfu.edu.cn (Y.Z.);
xhzyn007@163.com (Y.Z.); dyu@gwdg.de (D.Y.); housiyuan2020@163.com (S.H.); zhangyl@bjfu.edu.cn (Y.Z.);
yaojun990@126.com (J.Y.); zhaonan19880921@126.com (N.Z.); ruizhao926@126.com (R.Z.);
apolle@gwdg.de (A.P.)

2 Forestry Institute of New Technology, Chinese Academy of Forestry, Beijing 100091, China
3 Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization,

Guangdong Academy of Forestry, Guangzhou 510520, China
4 Research Center of Saline and Alkali Land of National Forestry and Grassland Administration, Chinese

Academy of Forestry, Beijing 100091, China; hlzhang2018@126.com
5 Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University,

Lanzhou 730070, China; sag@gsau.edu.cn
6 State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry,

Chinese Academy of Forestry, Beijing 100091, China; zhangyuhong512008@163.com
7 Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources,

Chinese Academy of Sciences, Lanzhou 730000, China; maxujun@lzb.ac.cn
8 Forest Botany and Tree Physiology, University of Göttingen, 37077 Göttingen, Germany
* Correspondence: Lschen@bjfu.edu.cn; Tel.: +86-10-6233-8129
† These authors contributed equally to the work.

Abstract: Cadmium (Cd2+) pollution occurring in salt-affected soils has become an increasing
environmental concern in the world. Fast-growing poplars have been widely utilized for phytoreme-
diation of soil contaminating heavy metals (HMs). However, the woody Cd2+-hyperaccumulator,
Populus × canescens, is relatively salt-sensitive and therefore cannot be directly used to remediate
HMs from salt-affected soils. The aim of the present study was to testify whether colonization of
P. × canescens with ectomycorrhizal (EM) fungi, a strategy known to enhance salt tolerance, provides
an opportunity for affordable remediation of Cd2+-polluted saline soils. Ectomycorrhization with
Paxillus involutus strains facilitated Cd2+ enrichment in P. × canescens upon CdCl2 exposures (50 µM,
30 min to 24 h). The fungus-stimulated Cd2+ in roots was significantly restricted by inhibitors of
plasmalemma H+-ATPases and Ca2+-permeable channels (CaPCs), but stimulated by an activator of
plasmalemma H+-ATPases. NaCl (100 mM) lowered the transient and steady-state Cd2+ influx in
roots and fungal mycelia. Noteworthy, P. involutus colonization partly reverted the salt suppression
of Cd2+ uptake in poplar roots. EM fungus colonization upregulated transcription of plasmalemma
H+-ATPases (PcHA4, 8, 11) and annexins (PcANN1, 2, 4), which might mediate Cd2+ conductance
through CaPCs. EM roots retained relatively highly expressed PcHAs and PcANNs, thus facilitating
Cd2+ enrichment under co-occurring stress of cadmium and salinity. We conclude that ectomycor-
rhization of woody hyperaccumulator species such as poplar could improve phytoremediation of
Cd2+ in salt-affected areas.

Keywords: annexins; calcium-permeable channels; Cd flux; MAJ; NaCl; NAU; Paxillus involutus;
Populus × canescens; PM H+-ATPase
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1. Introduction

Cadmium (Cd2+) pollution presents a critical threat to ecological environment and
human life [1–5]. The Cd2+ contamination occurring in salt-affected soils has become an
increasing environmental concern in recent years [6–17]. Coastal areas are polluted by
Cd2+ due to rapid urbanization and industrialization. Cadmium is mainly derived from
wastewater discharged by electroplating, mining, smelting, fuel, battery and chemical in-
dustry [18]. In some coastal saline zones, soil heavy metal pollution also comes from sludge
and sewage irrigation [19]. Mining activities cause the release and spread of both hazardous
heavy metals (HMs) and soluble salts in inland regions [11]. The Cd2+ contamination in
salt-affected soils complicates remediation processes [6,7]. Naturally occurring halophytes
may be potentially useful for remediation and phytomanagement [6,20–23]. However,
halophytic species are commonly characterized by slow growth and therefore low biomass
production [24]. Poplar trees have been widely utilized for phytoremediation of soils and
water resources contaminated with HMs, because of their fast-growth, large biomass and
remarkable Cd2+ accumulation in shoots and below-ground [25–31]. Moreover, several
poplars, e.g., Populus tremula, P. × canescens, are known Cd2+ hyperaccumulators [32,33]
in terms of the buildup of heavy metals in aerial parts (i.e., 100 times higher than non-
accumulators) [34–37]. However, despite its high ability to tolerate Cd2+ stress [29,33,38],
P. × canescens is relatively salt-sensitive [39] and therefore cannot be directly utilized to
remediate HMs from salt-affected soils. The use of salt-resistant poplar, P. euphratica, is also
hindered because this species is relatively susceptible to Cd2+ stress [40–43]. Therefore, effi-
cient phytomanagement of heavy metal-contaminated salt soils with fast-growing poplars
requires increased abilities of the plants to deal with the ionic stress situations produced by
heavy metals and salts [6].

Ectomycorrhization offers great potential and feasibility for remediation of cadmium-
contaminated soils [44–50]. Ectomycorrhization is the formation of symbiosis of a soil
fungus with plant roots, whereby the root tip is completely ensheathed by the fungal hy-
phae. The plant benefits from this interaction by improved mineral nutrition and health [51].
Colonization of roots of P. × canescens with Paxillus involutus, an ectomycorrhizal (EM)
fungus, has been repeatedly shown to improve Cd2+ uptake and tolerance [48,52]. The
association of Populus canadensis with P. involutus leads to a highly significant increase
of Cd2+ uptake and root-to-shoot transport, thus enhancing the total Cd2+ extraction by
P. canadensis [44]. P. involutus ameliorates the negative effects of Cd2+ on shoot and root
growth and chlorophyll content of old needles in Norway spruce seedlings (Picea abies) [53].
A protective effect against Cd2+ toxicity in the host was observed in Pinus sylvestris colo-
nized with P. involutus [54,55]. P. involutus strains have also been used for phytoremediation
of other heavy metals. Inoculation with a lead (Pb2+)-tolerant strain of P. involutus improves
growth and Pb2+ tolerance of P. × canescens [56,57]. P. involutus decreases Pb2+ in roots and
the translocation from the roots to the stems in Norway spruce (Picea abies) [58,59]. Simi-
larly, P. involutus fungi act as a safety net that can immobilize large amounts of zinc, thus
preventing transport to the host plant, Pinus sylvestris [60]. Moreover, ectomycorrhization
of P. × canescens with P. involutus increases salt tolerance by maintaining nutrient uptake of
K+, Ca2+ and NO3−, and improves Na+ homeostasis in the symbiotic associations [61–66].
Thus, it can be hypothesized that P. involutus could increase plant ability for Cd2+ enrich-
ment in salt-affected soils. Arbuscular mycorrhizal fungi are able to enhance growth of
pigeonpea (Cajanus cajan) by lowering Cd2+ content and strengthening antioxidant defense
under NaCl and Cd stress [67]. Whether the ectomycorrhizal fungus P. involutus can me-
diate Cd2+ uptake under co-existing stress of NaCl and cadmium needs to be clarified by
further experimental investigations.

Under cadmium stress, the P. involutus-facilitated Cd2+ influx is stimulated by plasma
membrane (PM) H+-ATPases in EM roots [48]. Upregulated transcription of the PM H+-
ATPase genes (HA2.1 and AHA10.1) results in accelerated Cd2+ transport into roots of
transgenic [38] and EM poplars [52]. Increased proton pumping activity and transcrip-
tion of H+-ATPases have also been observed in EM P. × canescens under salt stress [66].
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H+-ATPases maintain a proton gradient across PM to drive the entry of Cd2+ [38,48] and
nutrient elements, such as K+, Ca2+, and NO3

−, in addition to promotion of Na+/H+ an-
tiport [64–66]. Moreover, the P. involutus-activated H+-pumps hyperpolarize the membrane
potential, facilitating Cd2+ influx via hyperpolarization-activated Ca2+-permeable channels
(CaPCs) [48]. Although the P. involutus-stimulated H+-ATPase enhances Cd2+ uptake under
single stress of cadmium [48,52], little is known whether the fungi-activated H+-ATPase
could improve Cd2+ enrichment in combined stress of CdCl2 and NaCl.

Cellular uptake of Cd2+ also involves the PM CaPCs, as demonstrated for various
species [38,41,48,68]. Plant annexins (ANNs) might serve as channels to allow the entry of
Ca2+ [69–76] or indirectly mediate Ca2+ conductance [77,78]. Chen et al. suggested that
OsANN4 mediates the transmembrane Cd2+ influx along rice roots [73]. The P. euphratica
annexin ANN1 facilitates Cd2+ enrichment through CaPCs in roots of transgenic Arabidop-
sis [79]. P. × canescens colonization with P. involutus leads to Cd2+ enrichment [52] due
to stimulation of Cd2+ influx via CaPCs [48]. Cadmium treatment results in increased
transcript levels of annexins in maize (ZmAnx9, [80]), peanut (ANNAh3, [81]), and rice
(ANN4, [73]). Whether P. × canescens annexins are affected by cadmium and contribute
to Cd2+ enrichment in P. involutus ectomycorrhizal associations needs to be investigated.
Under sodium chloride salinity, competition between Na+ and Cd2+ for Ca2+ ion channels
reduced Cd2+ uptake in Amaranthus mangostanus [82]. The salt effects on annexin-mediated
Ca2+ channels remain unclear in ectomycorrhizal roots under co-existing stress conditions
of Cd2+ and NaCl.

In this study, we examined the impact of ectomycorrhizal fungi on root Cd2+ uptake
under combined stress of salt and cadmium, aiming to elucidate the underlying mecha-
nisms. We used two different P. involutus isolates, MAJ and NAU, for this study. Strain
MAJ forms a complete ectomycorrhiza composed of a thick hyphal mantle ensheathing
root tip and a typical Hartig net structure inside the roots for nutrient exchange, while
strain NAU forms only the outer mantle [83]. We studied Cd2+ uptake in the presence
and absence of NaCl and analyzed gene expression of annexins because previous studies
show that PeANN1 facilitates Cd2+ enrichment through CaPCs [79]. P. involutus activates
H+-pumps and hyperpolarizes membrane potential in EM roots [48,64,65]. Therefore, the
PM H+-ATPases-promoted Cd2+ flux was also verified in EM roots under salt stress. Our
data reveal that P. involutus inoculation stimulates Cd2+ influx under salt stress, resulting
from the upregulated H+-ATPases and annexins in the ectomycorrhizal roots. Both MAJ
and NAU conserved the Cd2+ uptake capacities under co-occurring stresses of cadmium
and salinity, regardless of the formation of Hartig net in the ectomycorrhizal symbioses.

2. Results

2.1. Cd2+ Concentrations in Roots and Shoots of Ectomycorrhizal Poplars under NaCl Stress

Cd2+ concentrations were analyzed in roots, stems and leaves of NM and EM
P. × canescens after 24 h exposure to CdCl2 (50 µM) or combined stress of CdCl2 and
NaCl (100 mM). Under CdCl2 stress, non-mycorrhizal (NM) roots displayed remarkably
higher Cd2+ concentrations than stem and leaves (Figure 1). Compared to NM plants, Cd2+

concentrations were 0.8- to 1.4-fold higher in roots and stems of poplars colonized with
P. involutus isolates, MAJ and NAU (Figure 1). However, the addition of NaCl (100 mM)
significantly decreased Cd2+ accumulation in roots and shoots of both NM- and EM-plants
(Figure 1). Of note, EM-plants retained significantly higher Cd2+ concentrations in roots
and stems than NM poplars under salt stress (Figure 1). Therefore, EM fungi enhanced
Cd2+ enrichment in both root and aerial parts of P. × canescens under co-occurring stresses
of cadmium and salinity.
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Figure 1. Cd2+ concentrations in roots, stems and leaves of non-mycorrhizal (NM) and ectomycor-
rhizal (EM) Populus × canescens under cadmium and salt stress. Poplar plantlets inoculated with or 
without Paxillus involutus isolates (MAJ or NAU, 30 d), were hydroponically acclimated and sub-
jected to 24 h of CdCl2 (0 or 50 μM) in combination with NaCl (0 or 100 mM). Mean values of Cd2+ 

concentrations in control (−Cd), CdCl2 stress (+Cd), and combined stress of CdCl2 and NaCl (+Cd + 
NaCl) are shown. Each column is mean ± SD obtained from 3 individual plants. Statistically signif-
icant differences (p < 0.05) among treatments are indicated with different letters (a–d). 

2.2. Steady-State Cd2+ Influx in Ectomycorrhizal Poplar Roots and Fungal Mycelia under NaCl 
Stress 

To determine whether the Cd2+ enrichment in EM P. × canescens resulted from the P. 
involutus-stimulated uptake, Cd2+ fluxes were examined in NM-, EM-roots and fungal my-
celia under CdCl2 and NaCl stress. CdCl2 exposure (50 μM, 24 h) resulted in an apparent 
Cd2+ uptake, 34.9 pmol cm−2 s−1, along NM-roots of the hyperaccumulator, Populus × ca-
nescens (Figures 2 and S1). EM-roots exhibited 36% to 39% higher Cd2+ fluxes than the NM-
roots (Figure 2). The presence of NaCl (100 mM) significantly decreased the flux rates in 
both NM- and EM-roots but the EM-roots still exhibited 1.2–1.4-fold greater Cd2+ uptake 

Figure 1. Cd2+ concentrations in roots, stems and leaves of non-mycorrhizal (NM) and ectomycor-
rhizal (EM) Populus × canescens under cadmium and salt stress. Poplar plantlets inoculated with
or without Paxillus involutus isolates (MAJ or NAU, 30 d), were hydroponically acclimated and
subjected to 24 h of CdCl2 (0 or 50 µM) in combination with NaCl (0 or 100 mM). Mean values of
Cd2+ concentrations in control (−Cd), CdCl2 stress (+Cd), and combined stress of CdCl2 and NaCl
(+Cd + NaCl) are shown. Each column is mean ± SD obtained from 3 individual plants. Statistically
significant differences (p < 0.05) among treatments are indicated with different letters (a–d).

2.2. Steady-State Cd2+ Influx in Ectomycorrhizal Poplar Roots and Fungal Mycelia under
NaCl Stress

To determine whether the Cd2+ enrichment in EM P. × canescens resulted from the
P. involutus-stimulated uptake, Cd2+ fluxes were examined in NM-, EM-roots and fungal
mycelia under CdCl2 and NaCl stress. CdCl2 exposure (50 µM, 24 h) resulted in an
apparent Cd2+ uptake, 34.9 pmol cm−2 s−1, along NM-roots of the hyperaccumulator,
Populus × canescens (Figures 2 and S1). EM-roots exhibited 36% to 39% higher Cd2+ fluxes
than the NM-roots (Figure 2). The presence of NaCl (100 mM) significantly decreased the
flux rates in both NM- and EM-roots but the EM-roots still exhibited 1.2–1.4-fold greater
Cd2+ uptake than the NM-roots (Figures 2 and S1). The effect of NaCl on root Cd2+ fluxes
resembles the trend of Cd2+ accumulation in salinized NM- and EM-roots (Figures 1 and 2).
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Fungal hyphae of the two tested P. involutus isolates, MAJ and NAU, showed a dras-
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treatments. MAJ and NAU mycelia (the youngest and active hyphae) were hydroponically acclimated and subjected to 24 
h of CdCl2 (0 or 50 μM) in combination with NaCl (0 or 100 mM). The short-term Cd- and Cd + NaCl-stressed fungal 
mycelia were treated with an inhibitor of plasmalemma H+-ATPase (sodium orthovanadate, 0 or 500 μM) or an inhibitor 
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shown. Cd2+ flux was not detectable in salt controls that were treated without CdCl2. Each column is mean ± SD obtained 

Figure 2. Steady-state Cd2+ fluxes in non-mycorrhizal (NM) Populus × canescens and ectomycorrhizal
(EM) roots under cadmium and salt stress. Poplar plantlets inoculated with or without Paxillus
involutus isolates (MAJ or NAU, 30 d), were hydroponically acclimated and subjected to 24 h of
CdCl2 (0 or 50 µM) in combination with NaCl (0 or 100 mM). Root tips were excised from EM- and
NM-poplars and equilibrated for 30 min in measuring solution. Net fluxes of Cd2+ along root axis
(100 to 2300 µm) were monitored at an interval of 200–300 µm (Figure S1). Mean values of Cd2+

fluxes in control (−Cd), CdCl2 stress (+Cd), and combined stress of CdCl2 and NaCl (+Cd + NaCl)
are shown. Cd2+ flux was not detectable in salt controls that were treated without CdCl2. Each
column is mean ± SD obtained from 5 individual plants. Statistically significant differences (p < 0.05)
among treatments are indicated with different letters (a–e).

Fungal hyphae of the two tested P. involutus isolates, MAJ and NAU, showed a drastic
Cd2+ influx, 28.9–30.1 pmol cm−2 s−1, under CdCl2 treatment (50 µM, 24 h, Figure 3).
NaCl reduced the Cd2+ influx by 84–85% in the mycelia (Figure 3), which is similar to the
reduction in EM-roots upon salinity stress (Figure 2).
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Figure 3. Net Cd2+ fluxes in fungal hyphae of Paxillus involutus isolates (MAJ and NAU) under cadmium, salt, and inhibitor
treatments. MAJ and NAU mycelia (the youngest and active hyphae) were hydroponically acclimated and subjected to
24 h of CdCl2 (0 or 50 µM) in combination with NaCl (0 or 100 mM). The short-term Cd- and Cd + NaCl-stressed fungal
mycelia were treated with an inhibitor of plasmalemma H+-ATPase (sodium orthovanadate, 0 or 500 µM) or an inhibitor
of Ca2+-permeable channels (LaCl3, 0 or 5 mM) for 30 min. Following 30 min equilibration in measuring solutions, Cd2+

flux recordings were continued for 15 min on the surface of pelleted hyphae. Mean values of Cd2+ fluxes in control (−Cd),
CdCl2 stress (+Cd), and combined stress of CdCl2 and NaCl (+Cd + NaCl) in the presence and absence of inhibitors are
shown. Cd2+ flux was not detectable in salt controls that were treated without CdCl2. Each column is mean ± SD obtained
from 5 fungal cultures. Statistically significant differences (p < 0.05) among treatments are indicated with different letters
(a–e).
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2.3. Transient Cd2+ Kinetics and Membrane Potential upon Salt Shock

CdCl2 shock (50 µM) created a transient Cd2+ influx in roots of NM P. × canescens,
although the flux gradually decreased with prolonged exposure time (Figure 4A). EM-roots
exhibited a pattern similar to NM-roots but with typically higher influx rates (Figure 4A).
The Cd2+ influxes in both NM- and EM-roots were markedly reduced upon the NaCl
addition (Figure 4A), similar to reduction found for the steady-state Cd2+ influx in salinized
roots (Figure 2). Compared with the EM-roots, the restriction effect of NaCl was more
pronounced in NM-roots (Figure 4A).

Transient kinetics of membrane potential upon CdCl2 (50 µM) and NaCl (100 mM)
shocks were compared between roots of NM- and EM-poplars because the membrane
potential indicates activity of PM H+-ATPase [66]. NMT recordings showed that the resting
membrane potential ranged from −54.4 to −59.2 mV in NM-roots under control conditions
(Figure 4B). EM-roots had a more strongly hyperpolarized PM, with a membrane potential
ranging from −71.7 to −80.8 mV (Figure 4B). CdCl2 shock exerted no significant effects
on the membrane potential in NM- and EM-roots, although a marginal rise (5.0–6.1 mV)
was observed after the onset of CdCl2 addition, which returned to the pretreatment level
1–2 min after Cd2+ addition (Figure 4B). However, the addition of NaCl together with
CdCl2 caused an immediate and substantial depolarization of the membrane potential in
NM- and EM-roots, although the PM tended to be rehyperpolarized during prolonged
exposure to NaCl + CdCl2 (Figure 4B). In comparison, the membrane potential in EM-
roots was less depolarized (−22.2 to −41.4 mV) after the onset of CdCl2 + NaCl shock as
compared to NM-roots (−4.1 to −13.0 mV, Figure 4B).
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Populus × canescens and ectomycorrhizal (EM) roots. (A) Cd2+ flux kinetics. (B) Membrane potential. Poplar plantlets
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(100 mM). The recordings continued respectively for 5 and 30 min before and after the cadmium and salt shock. Each data
point is mean ± SD obtained from 5 individual plants.
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2.4. Effects of PM H+-ATPase Inhibitor and Activator on Cd2+ Uptake

Cd2+ transport in poplar trees is accelerated by the PM H+-ATPase [38,48,52]. An
H+-pump inhibitor, orthovanadate, was used to testify the crucial role of H+-pumps for
Cd2+ uptake in NM-, EM-roots, and fungal hyphae under CdCl2 and salt stress. In NM-
roots, orthovanadate decreased the Cd2+ influx approximately two-fold, while in EM-roots
only 17–25% decreases were found (Figures 5 and S2). In mycelia, vanadate also caused
moderately reduced Cd2+ influx (Figure 3). In the presence of NaCl, the inhibition of
orthovanadate was evident in the fungus and roots, although the Cd2+ influx had been
significantly lowered by the salt treatment (Figures 3, 5 and S2).
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Figure 5. Net Cd2+ fluxes in non-mycorrhizal (NM) Populus × canescens and ectomycorrhizal (EM) roots under cadmium,
salt, and inhibitor treatments. Poplar plantlets inoculated with or without Paxillus involutus isolates (MAJ or NAU, 30 d),
were hydroponically acclimated and subjected to 24 h of CdCl2 (0 or 50 µM) in combination with NaCl (0 or 100 mM).
Root tips were excised from EM- and NM-poplars and subjected to an inhibitor of plasmalemma H+-ATPase (sodium
orthovanadate, 0 or 500 µM) or an inhibitor of Ca2+-permeable channels (LaCl3, 0 or 5 mM) for 30 min. Following 30 min
equilibration in measuring solutions, net fluxes of Cd along root axis (100 to 2300 µm) were monitored at an interval of
200–300 µm (Figures S2 and S3). Mean values of Cd2+ fluxes in control (−Cd), CdCl2 stress (+Cd), and combined stress
of CdCl2 and NaCl (+Cd + NaCl) in the presence and absence of inhibitors are shown. Cd2+ flux was not detectable in
salt controls that were treated without CdCl2. Each column is mean ± SD obtained from 5 individual plants. Statistically
significant differences (p < 0.05) among treatments are indicated with different letters (a–f).

Furthermore, the activator of PM H+-ATPase, fusicoccin (FC), was used to test the
effect of H+ pumping on Cd2+ uptake in short-term stressed roots. Following the CdCl2
treatment (50 µM, 24 h), roots of NM- and EM-poplars were subjected to FC activation.
Immediately after the onset of FC addition, a stimulation of Cd2+ influxes was observed at
the surface of NM- and EM-roots (Figure 6A). H+ efflux was correspondingly increased
in FC-treated NM- and EM-roots (Figure 6B), indicating that H+ pumps were transiently
activated [84–87]. The observation that the increase in H+ efflux corresponded to the
Cd2+ influx in P. × canescens roots suggests that the uptake of Cd2+ was promoted by the
H+-ATPases in the PM.
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fluxes were recorded before and after the addition of fusicoccin (10 µM). The recordings continued, respectively, for 5 and
35 min before and after fusicoccin shock. Each data point is mean ± SD obtained from 5 individual plants.

2.5. Transcriptional Activation of H+-ATPase in Ectomycorrhizal P. × canescens

Transcript levels of the PM H+-ATPase-encoding genes, PcHA4, PcHA8 and PcHA11,
were examined in NM and EM roots since these three PcHAs were previously shown to
be differently expressed under control and Na+ stress conditions [66]. EM-roots showed
significantly higher (0.5–4.2 fold) transcript levels of PcHA4, PcHA8 and PcHA11 than NM-
roots (Figure 7A). This observation agrees with Sa et al. (2019) [66]. Cadmium treatment
(50 µM CdCl2, 24 h) resulted in upregulation of PcHA4, PcHA8, and PcHA11 in NM-roots
(Figure 7A). In contrast, Cd2+ caused a 14–45% decline of PcHAs in EM-roots, with the
exception of PcHA4 in NAU roots (Figure 7A). It is notable that the transcript levels, in
particular those of PcHA8, and PcHA11, still remained higher in the EM- than in NM-roots,
despite the decline caused by Cd2+ stress (Figure 7A).

NaCl treatment (100 mM, 24 h) lowers the transcript levels of PcHAs (4, 8, 11) in
NM-roots [66]. Here, exposure to NaCl of the Cd2+-treated roots did not result in decreased
PcHA4 and PcHA8 transcript levels and an increase of PcHA11 was observed (Figure 7A).
Similarly, NaCl did not significantly change PcHAs transcription in EM-roots in the presence
of Cd2+ (Figure 7A). We noticed that EM-roots retained overall higher transcript levels of
PcHAs than NM-roots under co-occurring stresses of cadmium and salinity.
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Figure 7. Effects of CdCl2 as single stress factor or in combination with NaCl on transcriptional profiles of plasmalemma
H+-ATPase (PcHAs) and annexins (PcANNs) in roots of non-mycorrhizal or ectomycorrhizal (EM) Populus × canescens.
(A) PcHA4, 8, 11. (B) PcANN1, 2, 4. Poplar plantlets inoculated with or without Paxillus involutus isolates (MAJ or NAU,
30 d), were hydroponically acclimated and subjected to 24 h of CdCl2 (0 or 50 µM) in combination with NaCl (0 or 100 mM).
Roots were harvested from EM- and NM-poplars and used for total RNA isolation and RT-qPCR. 18S rRNA was used as a
reference gene. Specific primers designed to target PcHA4, 8, 11, PcANN1, 2, 4 and 18S rRNA are shown in Table S1. Mean
values of PcHAs and PcANNs relative transcript levels in control (−Cd), CdCl2 stress (+Cd), and combined CdCl2 and
NaCl stress (+Cd + NaCl) are shown. Each column is mean ± SD obtained from 3 independent experiments. Statistically
significant differences (p < 0.05) among treatments are indicated with different letters (a–d).

2.6. Calcium Channel Inhibitor Blocks Cd2+ Fluxes

Cadmium ions enter the plasma membrane through CaPCs in plant cells [48,79,88].
To determine whether CaPCs contributed to the mediation of Cd2+ influx under combined
CdCl2 and NaCl stress, LaCl3 was used to block Ca2+-channels in the roots of NM- and EM-
poplars. The inhibitor significantly decreased root Cd2+ uptake in the presence and absence
of NaCl, although NaCl treatment reduced the apparent Cd2+ influx under coexisting stress
(Figures 5 and S3). Similarly, the LaCl3 significantly reduced Cd2+ uptake in fungal hyphae
regardless of the NaCl addition (Figure 3).
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2.7. Transcript Levels of Annexin Genes in Ectomycorrhizal P. × canescens

Plant annexins (ANNs), such as ANN1, ANN2, ANN4, function as Ca2+-permeable
channels in higher plants [70–76,79,89]. We have shown that P. euphratica PeANN1 fa-
cilitates cadmium enrichment by regulation of calcium-permeable channels [79]. Here,
we examined the P. × canescens orthologs PcANN1, PcANN2 and PcANN4 in NM- and
EM-roots. In the absence of Cd and salt, PcANN1, PcANN2 and PcANN4 showed signifi-
cantly higher transcripts in EM-roots than in the NM (Figure 7B). This observation is in
accord with previous findings that EM-roots retain typically higher influx of Ca2+ than
NM-roots [64,65]. Short-term cadmium exposure (50 µM, 24 h) caused significant increases
of PcANN transcript levels in NM roots (Figure 7B), supporting Cd2+ enrichment in the
woody hyperaccumulator [29,33,38,52]. The Cd2+ stimulation of annexin transcript levels
was less pronounced in EM-roots (Figure 7B). For example, PcANN1 levels which increased
by 25–70% in MAJ and NAU roots under Cd2+ treatment were still lower than those in
CdCl2-treated NM-roots (Figure 7B). The PcANN2 responded differently to short-term
cadmium exposure in the EM-roots colonized with the strain MAJ (increase) and the strain
NAU (decrease) (Figure 7B). Cadmium exposure also slightly decreased PcANN4 in EM-
roots (4–24%, Figure 7B). In CdCl2-stressed NM roots, NaCl lowered the transcripts of
PcANNs by 3–46% (Figure 7B). As a result, the cadmium stimulation of annexin genes
(with the exception of PcANN1) was lost by the addition of NaCl (Figure 7B). Compared to
NM-roots, PcANNs was either less (PcANN1, PcANN2) or not reduced (PcANN4) by NaCl
in EM-roots under cadmium treatment (Figure 7B).

3. Discussion

3.1. The P. Involutus-Activated PM H+-ATPase Contributes to Cd2+ Enrichment in EM Roots

Our data show that the woody hyperaccumulator, P. × canescens, exhibited strong Cd2+

uptake and accumulation in root and shoots, which is further enhanced by colonizing with
EM-fungus P. involutus (Figure 1). These findings are similar to previous reports in long-
term studies [29,33,48,52]. The root flux recordings confirmed that the enhanced Cd2+ entry
in P. × canescens roots was due to the colonization with MAJ and NAU isolates, which were
characterized by a remarkable Cd2+ enrichment in the hyphae (Figures 2, 3 and S1) [48,90].
However, we observed that salt stress caused by NaCl reduced the Cd2+ influx in roots
and fungus (Figures 2, 3 and S1). Similarly, NaCl reduced root cadmium uptake and
translocation in the halophyte Carpobrotus rossii [7,8] and Atriplex halimus [91]. An important
novel result was that the P. involutus could alleviate the salt suppression of Cd2+ uptake
in P. × canescens roots (Figures 2, 4 and S1). To obtain a mechanistic understanding of the
underlying processes, we inhibited and stimulated the Cd2+ fluxes with pharmacological
agents. The entry of Cd2+ in the roots and fungal hyphae declined when the plasmalemma
H+-ATPase was inhibited by vanadate (Figures 3, 5 and S2) [48] and increased when the
plasmalemma H+-ATPase was stimulated by FC (Figure 6). These data suggest that Cd2+

uptake required a proton gradient [48,52]. Moreover, P. involutus colonization resulted in
a higher H+ efflux and correspondingly a more negative membrane potential (Figure 6),
indicating that the PM H+-ATPases were activated by the ectomycorrhiza [48,64,66]. This
is similar to the enhanced proton-ATPase in arbuscular-mycorrhizal symbiosis [92,93]. The
highly activated H+-pumps hyperpolarize the PM, thereby facilitating Cd2+ influx via
hyperpolarization-activated CaPCs [48,73]. In accordance with our flux analyses, transcript
levels of the PM H+-ATPase-encoding genes, PcHA4, PcHA8, PcHA11, generally remained
at higher levels in ectomycorrhizal roots under control and CdCl2 stress compared to NM
P. × canescens roots, although two or three of the tested PcHAs were down-regulated by
CdCl2 in MAJ and NAU roots (Figure 7). Of note, EM-roots maintained higher transcripts of
PcHA4, 8, 11 than non-colonized roots under combined stress of CdCl2 and NaCl (Figure 7).
Similarly, Sa et al. showed that both MAJ and NAU roots retain higher transcript levels
of PcHA4 and/or PcHA8 than NM-roots under control and NaCl stress conditions [66].
Increased abundances of PM H+-ATPase transcripts are expected to contribute to the
activated H+-pumps because the plasmalemma H+-ATPases are transcriptionally regulated
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in poplars [85,86,94]. Thus, the retained H+-pumping activity resulted in less depolarization
of membrane potential under NaCl stress (Figure 4) [66], thereby upkeeping Cd2+ influx
into the EM-roots. This result concurs with those of Ma et al. (2014), who found that
upregulation of HA2.1 and AHA10.1 leads to Cd2+ uptake in EM poplar roots [52].

3.2. The Fungus-Elicited Annexins Mediated Cd2+ Uptake in EM Roots

Since LaCl3 inhibited Cd2+ uptake into roots and fungal hyphae, our results support
that Cd2+ uptake involves CaPCs in the PM (Figures 3, 5 and S3) [41,48,68,73,88]. Plant
annexins, in particular ANN1, ANN2 and ANN4, have been shown to function as CaPCs in
Arabidopsis, maize and rice [70–73,75,76]. Zhang et al. suggested that PeANN1 facilitates
the flow of cadmium ions through CaPCs [79]. CdCl2 treatment upregulated transcripts
of PcANN1, PcANN2 and PcANN4 in roots of NM P. × canescens (Figure 7), similar to
the findings in crop species, such as maize, peanut and rice [73,80,81]. Accordingly, the
cadmium-elicited annexins might mediate root Cd2+ inflow through CaPCs in the poplar,
contributing to its hyperaccumulator character [33]. Noteworthy, PcANN1, PcANN2 and
PcANN4 showed remarkably higher transcripts in EM-roots than in the non-colonized un-
der control conditions; CdCl2 treatment caused a further increase in PcANN1 in EM-roots
and PcANN2 was specifically increased in MAJ-colonized roots (Figure 7). The arbuscu-
lar mycorrhiza-stimulated transcription of GmAnn1a was observed in soybean roots [95].
In addition, annexin proteins also showed enhanced accumulation in arbuscular mycor-
rhizal roots of Medicago sativa and M. truncatula following cadmium application [96,97].
Therefore, the fungus-induced annexins might have collectively contributed to the CaPCs-
mediated Cd2+ enrichment in root cells of the poplar [73,79]. In accordance with this
notion, we have previously shown that Paxillus-colonized roots showed higher Ca2+ and
Cd2+ influxes than NM-roots [48,64,65]. We noticed that the transcripts of PcANN1, 2, 4 in
EM-roots exhibited lower levels than non-colonized roots under CdCl2 stress (Figure 7).
However, root Cd2+ influx remained higher in EM than in NM (Figures 2 and 4). Thus, it
can be inferred that the annexin-mediated uptake of Cd2+ was mainly promoted by the elec-
trochemical gradient across the PM that was established by H+-ATPases. NaCl decreased
PcANN2 and PcANN4 in NM-roots, but the transcript levels of PcANN1, 2, 4 were less
reduced by NaCl in EM-roots (Figure 7). It is worth noting that in these ectomycorrhizal
roots, transcription of PcHAs was retained at high levels under cadmium and salinity
stress (Figure 7). Taken together, this suggests that the fungus-stimulated transcription of
annexins contributed to Cd2+ enrichment in EM-roots under combined stresses of cadmium
and salt.

4. Materials and Methods
4.1. Fungal Inoculation with Populus × canescens

The two isolates of EM fungus P. involutus (MAJ and NAU) from Büsgen-Institute: For-
est Botany and Tree Physiology (Göttingen University, Büsgenweg 2, Göttingen, Germany)
were cultured on modified Melin Norkrans medium [83]. P. × canescens plantlets were
micropropagated and rooted in modified Murashige and Skoog (MMS) medium [98]. Uni-
form and healthy plantlets were inoculated with MAJ or NAU for 30 d using a Petri-dish
culture system [99].

4.2. Cadmium and NaCl Treatment

The agar plugs with hyphae, and plants colonized with or without EM fungus, were
hydroponically acclimated in MMS nutrient solution for 2–3 d [66]. Then fungal mycelia,
NM- and EM-plants were treated with CdCl2 (0 or 50 µM) in combination with NaCl (0
or 100 mM) in MMS solution. Following 24 h of CdCl2 treatment and combined stress
of CdCl2 and NaCl, steady-state Cd2+ fluxes were recorded in fungal mycelia, NM- and
EM-roots. Transcript levels of genes encoding annexins (PcANN1, 2, 4) and PM H+-ATPases
(PcHA4, 8, 11) were examined in control and stressed roots.



Int. J. Mol. Sci. 2021, 22, 11651 12 of 18

4.3. Inhibitor and Activator Treatment

The fungal mycelia, NM-, and EM-roots pretreated with short-term CdCl2 or
CdCl2 + NaCl were exposed to inhibitors of Ca2+ channels (LaCl3, 0 or 5 mM) [48,100] or
PM H+-ATPases (sodium orthovanadate, 0 or 500 µM) [100,101] for 30 min. Steady-state
Cd2+ fluxes were recorded on the surface of roots and pelleted hyphae, respectively [48].

After 24 h exposure to 50 µM CdCl2, roots from NM- and EM-poplars were sub-
jected to an activator of PM H+-ATPase, Fusicoccin (FC). FC produced by Fusicoccum
amygdali, has the function of activating H+-ATPase in the PM [102,103]. Cd2+ and H+

transient kinetics were continuously recorded for 35 min after FC (10 µM) were added to
measuring solutions.

4.4. Assessed of Cd2+ Concentrations

After 24 h exposure to CdCl2 (0 or 50 µM) in combination with NaCl (0 or 100 mM),
roots, stems and leaves of NM- and EM-poplars were sampled and oven dried at 70–80 ◦C
for 5 d. Dried samples was weighed 0.1 g and digested in 5 mL of concentrated HNO3 and
2 mL 30% H2O2 in a microwave accelerated reaction system (Titan MPS Microwave Sample
Preparation System, Perkin-Elmer, Waltham, MA, USA). Concentrations of Cd2+ were
assessed by a PerkinElmer Optima 8000 ICP-OES Spectrometer (Perkin-Elmer, Waltham,
MA, USA).

4.5. Flux Recordings of Cd2+ and H+

4.5.1. Microelectrodes Preparation and Calibration

Cd2+ and H+ flux profiles were recorded using an NMT system (NMT-YG-100,
Younger USA LLC, Amherst, MA, USA). The glass microelectrodes were prepared as
previously described [42,43,48,84,104]. Prior to flux recordings, the calibration of Cd2+- and
H+-selective microelectrodes were carried out in the following standards (concentrations
in mM):

(a) H+ microelectrodes: 0.1 NaCl, 0.1 CaCl2, 0.1 MgCl2, and 0.5 KCl, pH 4.5, 5.5, and 6.5
(pH was adjusted to 5.3 during H+ flux recordings); and

(b) Cd2+ microelectrodes: 0.05 CaCl2, 0.1 MgCl2, 0.5 KCl, 0 or 100 NaCl, and CdCl2
series (0.01, 0.05, and 0.1), pH 5.3 (Cd2+ concentration was 0.05 mM during Cd2+

flux recordings).

After calibration, the microelectrodes that showed Nernstian slopes of 58 ± 6 mV/decade
(H+) and 29 ± 4 mV/decade (Cd2+) were used in our NMT recordings.

4.5.2. Steady-State Cd2+ Flux Recordings

After 24 h exposure to CdCl2 (0 or 50 µM) in combination with NaCl (0 or 100 mM),
sodium orthovanadate (0 or 500 µM), and LaCl3 (0 or 5 mM), fungal mycelia and root tips
excised from NM- and EM-poplars were subjected to 30 min equilibration in the following
measuring solutions (concentrations in mM), respectively:

(i) Control (−Cd): 0.05 CaCl2, 0.1 MgCl2, 0.5 KCl, pH 5.3;
(ii) +Cd: 0.05 CaCl2, 0.05 CdCl2, 0.1 MgCl2, 0.5 KCl, pH 5.3; and
(iii) Cd+NaCl: 0.05 CaCl2, 0.05 CdCl2, 0.1 MgCl2, 0.5 KCl, 100 NaCl, pH 5.3.

Following equilibration, net fluxes of Cd2+ along root axis (100 to 2300 µm) were
monitored at an interval of 200–300 µm. The flux recording at each point was continued
for 6–8 min [41,64,101,105]. For the fungal mycelia, Cd2+ flux recording of pelleted hyphae
was continued 15 min [48]. Cd2+ fluxes were recorded from at least five individual plants
or fungal cultures for each treatment. The flux oscillations in EM fungus and poplars are
not so pronounced as that observed in crop seedlings [48,106].
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4.5.3. Transient Recordings of Cd2+, H+ Flux and Membrane Potential

Transient Cd2+ Kinetics and Membrane Potential.
NM- and EM-roots were incubated in basic solutions of Cd2+ (concentration in mM:

0.05 CaCl2, 0.1 MgCl2, 0.5 KCl, pH 5.3) and H+ (0.1 CaCl2, 0.1 MgCl2, 0.1 NaCl, 0.5 KCl,
pH 5.3) for 30 min. Cd2+ fluxes and membrane potentials at apical regions were recorded
for 5 min prior to CdCl2 and NaCl shocks. Membrane potential was measured using
Ag/AgCl microelectrodes (XY-CGQ03; Xuyue (Beijing) Sci and Tech Co. Ltd., Suzhou street
49, Haidian District, Beijing, China) as previously described [66]. Then, CdCl2 (100 µM)
stock, or a combined stock solution of CdCl2 (100 µM) and NaCl (200 mM) was added
slowly to reach final concentrations of 50 µM (CdCl2) and 100 mM (NaCl). Kinetics of
membrane potential and Cd2+ uptake were recorded up to 30 min in NM- and EM-roots.
Cd2+ fluxes and membrane potentials were recorded from at least five individual plants
for each treatment.

Transient Kinetics of Cd2+ and H+ upon FC.
The NM- and EM-roots pretreated with CdCl2 (50 µM, 24 h) were excised and equili-

brated in measuring solutions of Cd2+ or H+ for 30 min. Fluxes of Cd2+ and H+ at apical
regions were recorded for 5 min before the addition of FC (Sigma-Aldrich, St. Louis, MO,
USA). Then, FC stock solution (dissolved in DMSO) was added to Cd2+ and H+ measuring
solutions, reaching a final concentration of 10 µM [103]. Cd2+ and H+ transient kinetics in
FC-treated roots were further recorded for 35 min. Fluxes of Cd2+ and H+ were recorded
from at least five individual plants for NM-, MAJ- and NAU-roots.

4.6. Determination of Gene Expression of Annexins and PM H+-ATPases

After 24 h exposure to CdCl2 (0 or 50 µM), or to CdCl2 (50 µM) in combination with
NaCl (100 mM), total RNA was isolated from NM and fungus-colonized roots and used for
real-time quantitative PCR (RT-qPCR) [66]. The primer sequences for annexins (PcANN1,
2, 4) [79], plasmalemma H+ ATPase (PcHAs, PcHA4, 8, 11) [66], and reference genes (18S
rRNA) [107], are shown in Table S1. The RT-qPCR amplification was performed as previ-
ously described [66,79,86]. Expression profiles for PcANNs and PcHAs were normalized to
the transcripts of 18S rRNA [108]. The RT-qPCR experiment was repeated three times.

4.7. Data Analysis

The calculations of flux rate and membrane potential were processed using JCal
V3.2.1 program (Xuyue (Beijing) Sci and Tech Co. Ltd., Suzhou street 49, Haidian District,
Beijing, China, Available online: http://www.xuyue.net/, accessed on 12 March 2021). All
experimental data were subjected to SPSS version 19.0 (IBM Corporation, Armonk, NY,
USA). Differences between means were considered significant at p < 0.05.

5. Conclusions

Our data provide further evidence that cadmium can be enriched in ectomycorrhizal
poplars under co-existing stress conditions of Cd2+ and NaCl. P. involutus stimulated
Cd2+ influx through CaPCs in ectomycorrhizal P. × canescens roots, depending on the
plasmalemma H+-ATPase. NaCl lowered the uptake of Cd2+ in poplar roots, which was
alleviated by ectomycorrhization with P. involutus. Ectomycorrhizal fungus colonization
upregulated transcription of PM H+-ATPases (PcHA4, 8, 11) and increased transcripts of
annexins (PcANN1, 2, 4), which might mediate Cd2+ conductance through PM CaPCs.
NaCl-treated EM-roots retained relatively highly expressed PcHAs and PcANNs. We
hypothesize that the sustained transcription of PcHAs resulted in H+ pumping activity and
PM hyperpolarization in the ectomycorrhiza, thus promoting Cd2+ enrichment through the
PcANNs-mediated Ca2+ channels in EM-roots under co-occurring stresses of cadmium and
salinity. Although the colonization of MAJ and NAU varies with regard to the formation of
intraradical hyphae, i.e., the Hartig net, both strains conserved higher Cd2+ uptake under
salt stress than NM-roots. We propose that P. involutus strains, which have been repeatedly

http://www.xuyue.net/


Int. J. Mol. Sci. 2021, 22, 11651 14 of 18

shown to improve salt tolerance, may be applied as beneficial microbes to improve plant
phytoremediation for cadmium in salt-affected areas.
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13. Pastuszak, J.; Kopeć, P.; Płażek, A.; Gondek, K.; Szczerba, A.; Hornyák, M.; Dubert, F. Cadmium accumulation in the grain of
durum wheat is associated with salinity resistance degree. Plant Soil Environ. 2020, 66, 257–263. [CrossRef]
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