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Abstract

Tauopathies are neurodegenerative diseases that affect millions of people worldwide includ-

ing those with Alzheimer’s disease. While many efforts have focused on understanding the

role of tau protein in neurodegeneration, there has been little done to systematically analyze

and study the structures within tau’s encoding RNA and their connection to disease pathol-

ogy. Knowledge of RNA structure can provide insights into disease mechanisms and how to

affect protein production for therapeutic benefit. Using computational methods based on

thermodynamic stability and evolutionary conservation, we identified structures throughout

the tau pre-mRNA, especially at exon-intron junctions and within the 50 and 30 untranslated

regions (UTRs). In particular, structures were identified at twenty exon-intron junctions. The

50 UTR contains one structured region, which lies within a known internal ribosome entry

site. The 30 UTR contains eight structured regions, including one that contains a polyadeny-

lation signal. A series of functional experiments were carried out to assess the effects of

mutations associated with mis-regulation of alternative splicing of exon 10 and to identify

regions of the 30 UTR that contain cis-regulatory elements. These studies defined novel

structural regions within the mRNA that affect stability and pre-mRNA splicing and may lead

to new therapeutic targets for treating tau-associated diseases.

Introduction

RNA structures function in normal cellular processes, such as splicing, protein synthesis, and

regulation of gene expression.[1] At the same time, mutations that disrupt RNA structure or

formation of ribonucleoproteins (RNPs) can be deleterious and cause disease.[2] This has gen-

erated interest in targeting RNA with therapeutics. Evolutionarily conserved RNA structures

across species may have common functions.[3] However, the superficial lack of sequence con-

servation in noncoding RNA (ncRNA) may complicate the search for conserved structures.

[4,5] Thus, specialized techniques are needed for discovery of homologous structured regions
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in RNA.[4,6] One method to identify stable, conserved structures combines sequence align-

ment with thermodynamic-based folding algorithms.[6]

Tauopathies are a class of neurodegenerative diseases characterized by the presence of tau

inclusion bodies.[7] Tauopathies such as Alzheimer’s and Parkinson’s diseases (AD and PD,

respectively) are burdensome socioeconomically and affect more than 35 million and 6.3 mil-

lion people, respectively, worldwide.[8] Currently available treatments are largely focused on

symptoms and do not target underlying disease mechanisms.[7] The tau protein, which binds

to microtubules and promotes microtubule assembly and stability, is encoded by the microtu-

bule associated protein tau (MAPT) gene on chromosome 17.[8–11] The MAPT gene is well

conserved, with 97 to 100% homology among primates.[12] This 134 kb gene is comprised of

16 exons, among which exons 2, 3, and 10 are known to be alternatively spliced, generating six

isoforms ranging from 352 to 441 amino acids in length.[8,10–12] Exons 2 and 3 encode for

N-terminal domains while exons 9 to 12 encode microtubule binding domains (MBD).[9]

With such complex processing, the MAPT mRNA is likely rich in conserved regulatory struc-

tures that may have important functions and may be implicated in tau-associated diseases.

Tau proteins bind to and stabilize microtubules via their MBD repeat sequences that inter-

act with negatively charged tubulin residues via their net positive charge.[9] Alterations in the

protein coding content of the mRNA, including the number of MBDs, are due to alternative

splicing. For example, exon 10 encodes an MBD and is alternatively spliced, resulting in pro-

tein isoforms with four (4R) or three (3R) microtubule-binding domains. In normal tissues,

the 3R-to-4R (repeat) ratio is approximately 1. Deregulation of exon 10 alternative splicing

due to mutation manifests itself in various diseases,[8–11] including frontotemporal dementia

with parkinsonism-17 (FTDP-17) and Pick’s disease, which express 4R and 3R tau at aber-

rantly high levels, respectively.[8] In FTDP-17, various mutations at the exon 10-intron 10

junction destabilize a stem-loop structure, resulting in increased interaction of the 50 splice site

with U1 snRNA and hence increased exon 10 inclusion and 4R tau levels.[13,14] These studies

suggest that structures in MAPT pre-mRNA intron-exon junctions affect MAPT biology and

that structures elsewhere in the mRNA could as well. Indeed, previous studies have shown that

regions of the 30 untranslated region (UTR) affect translation of the tau mRNA.[15]

Previous studies have identified conserved sequences in MAPT mRNA including the exon

6-intron 7 junction,[16] an intronic sequence upstream of exon 6 (180 nucleotides),[16] the

intron downstream of exon 2,[17] and the intron downstream of exon 10, which contains sev-

eral islands of conserved sequence.[18] Herein, computational studies were carried out to

search for potentially conserved structures in MAPT pre-mRNA. Specifically, structured

regions were identified at exon-intron junctions and within the long 30 UTR isoform that may

control tau expression. This method may be applied to diseases, such as tauopathies, in which

RNA dysfunction contributes to disease development. Knowledge of RNA structure in the

MAPT gene may lead to new therapeutics against RNA, such as small molecules for treatment

of tauopathies.[19]

Methods

Structure analysis

RNA sequences were obtained from the National Center for Biotechnology Information

(NCBI). Sequences were folded using RNAfold from the ViennaRNA 2.4.0 package.[20]

Sequences 500 nt in length centered around each exon-intron junction were folded in 30 nt

windows every 10 nt from the 50 end. 500 nt sequences were used to identify potential long-

range interactions near the splice site that may otherwise not be predicted with shorter

sequences. Separately, a 4163 nt 30 UTR sequence of the MAPT gene was folded in 150 nt
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windows every 10 nt from the 50 end.[15] For each sequence, the free energy of each window,

the average free energy of a set of 50 randomized sequences for the same window, and a z-

score for the difference between the native and average random free energies were calculated.

Additionally, the native sequence ensemble diversity (ED) was calculated from a partition

function.[6,21,22] The z-score is a measure of the number of standard deviations (SDs) by

which the free energy of the minimum free energy (MFE) structure deviates from the average

free energy of structures formed by randomized sequences.[23,24] A low z-score indicates that

a structure is more stable than random and may be ordered to form structure (e.g. by evolu-

tion). The p-value represents the fraction of sequences in the randomized sequences whose

free energy is lower than the MFE of a given sequence.[21] The ED is a measure of the differ-

ence (in base pairs) among Boltzmann-weighted structures in a predicted ensemble; here, a

lower than average ED for a sequence indicates less conformationally diversity (e.g. a single

dominant conformation).[24,25] Folded sequences whose z-scores were more than one SD

below the average z-score of all windows were compiled and refolded to generate a new set of

structures. Next, 250 nt sequences centered on each exon-intron junction were folded using 70

nt windows and 1 nt base step size. These parameters were chosen to identify relatively small

motifs at exon-intron junctions that may be not be predicted by larger window or base step

sizes.

NCBI BLASTn was used to search for sequence fragments in non-human primates from

stable regions. Resulting sequence fragments were filtered to exclude duplicate fragments and

fragments with less than 80% length of the query sequence. Sequences were aligned with the

Multiple Alignment using Fast Fourier Transform (MAFFT) program[26] and folded with

RNAalifold[20] to generate a consensus structure. The number of base pairs from each aligned

sequence in the consensus structure was counted. The percent of canonical base pairs for each

nucleotide pair and the total average percent of canonical base pairs were calculated.

Probabilities of loops in predicted and SHAPE-constrained structures of the 50 UTR were

calculated using ProbScan.[27] ProbScan estimates the probabilities of loops in secondary

structure according to the frequency that a particular loop appears in an ensemble of struc-

tures, which corresponds to its approximate probability in the ensemble.[27] The APSI is a

measure of similarity between aligned sequences.[6,28] The effects of mutations on structures

at exon-intron junctions on structure were analyzed with RNA2DMut.[29] Using RNAfold,

RNA2DMut calculates for a given input sequence, an MFE structure and its Gibbs folding

energy (ΔG˚37) in kcal/mol.[29] Additionally, it calculates a partition function, a centroid

structure, defined as the structure that is most similar to other structures in the ensemble, and

the ED for the input sequence.[29] Alternative algorithms such as CMFinder predict 2D struc-

ture from a set of unaligned sequences, but they are not suitable for identifying structures in

single sequences, as reported in this work.[30]

To account for structural homology after motifs were identified, covariation among multi-

ple MAFFT-aligned homologous motif sequences was measured using R-scape.[31] Covaria-

tion between two sites of an RNA molecule is observed when nucleotide changes occur at

those sites in two or more species but base pairing is retained, and provides evidence for evolu-

tionary conserved structure.[32,33] For each alignment column pair, an E-value is calculated

to estimate the number of false positives relative to a covariation score.[31] A significant E-

value is defined as 0.05 or lower.

Cell-based assays

Mini-gene reporters of exon 10 splicing, whether wild type tau, tau with intron 9 G(−10)T,

intron 10 G(+3)A, or intron 10 C(+14)T mutations[34], or fragments of a long 30 UTR
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isoform[15] were used in cell-based experiments. Mini-genes expressing wild type tau, tau

with intron 10 C(+14)T mutations, and a long 30 UTR isoform (4163 nt) were provided by

Prof. Michael S. Wolfe (The University of Kansas).[34–36] Mini-genes expressing tau with

intron 9 G(−10)T, intron 10 G(+3)A, and fragments of the long 30 UTR isoform were

generated using a QuikChange Site-Directed Mutagenesis Kit (Agilent) and the manufactur-

er’s recommended protocol. Mini-genes containing mutations within intron 9 or 10 express a

firefly luciferase reporter gene in-frame with exon 10, which leads to a decrease in signal when

exon 10 is excluded (Fig 1).

HeLa cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) with 10%

fetal bovine serum (FBS) and 1% GlutaMax at 37 ˚C. For experiments with mini-genes con-

taining intron 9-exon 10 or exon 10-intron 10 junctions, cells were transfected at ~90% con-

fluency in a 100 mm dish using jetPRIME (PolyPlus-transfection SA) with 10 μg of mini-gene.

A 60 mm dish was mock transfected using jetPRIME as a control. Cells were resuspended in

growth medium, seeded in a 384-well plate at 10,000 cells per well, and incubated at 37 ˚C for

24 h. After, 5 μL of CellTiter Fluor reagent (Promega) was added to each well, the cells were

incubated at 37 ˚C for 30 min, and fluorescence was measured (380 nm/505 nm excitation/

emission wavelegnths with a 495 nm cutoff filter) using a SpectraMax M5 plate reader (Molec-

ular Devices). Next, 25 μL of ONE-Glo reagent (Promega) was added to each well, and cells

Fig 1. Schematic representation of cell-based assays with mini-genes expressing wild type tau or tau with mutations in intron 9 or 10. [34,36] Mini-genes contain

exon 10 in frame with a firefly luciferase reporter gene. Wild type mini-genes express tau in a 4R-to-3R ratio of ~1. Mutations in this study (indicated in bold) that affect

structures at splice sites adjacent to exon 10 lead to increased exon 10 inclusion and consequently, increased luciferase signal.

https://doi.org/10.1371/journal.pone.0219210.g001
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were incubated at room temperature for 3 min. Luminescence was measured on a SpectraMax

M5 plate reader with a 500 ms integration time.

Mini-genes expressing fragments of a long 30 UTR isoform were fused to firefly luciferase

in the context of pmiRGLO vector, which also express Renilla luciferase used for normaliza-

tion (see S1 File for cloning methods). Fragments can either increase or decrease firefly lucifer-

ase signal, corresponding to increased or decreased tau expression, respectively. HeLa cells

were seeded at 250,000 cells per well in 6-well plates and 2 mL of growth medium. At ~60%

confluency, cells were transfected with the mini-gene of interest, resuspended in growth

medium, seeded in a 96-well plate at 50,000 cells per well density, and incubated at 37 ˚C.

After 24 h, growth medium was removed from each well, and the cells were washed with 50 μL

of 1× DPBS and lysed with 20 μL of lysis buffer. A 50 μL aliquot of firefly luciferin buffer was

added to each well, and luminescence was measured as described above. Next, 50 μL of Renilla

luciferase buffer was added to each well, the cells were incubated for 10 min at room tempera-

ture, and luminescence was measured as described above.

Results and discussion

Overview of computational analysis

The prediction of RNA secondary (2D) structure is an active area of research, and a number of

algorithms attempt to find the native 2D conformation from sequence.[37] Despite varying

approaches, almost all folding algorithms use the thermodynamic energy of folding in predic-

tion. The free energy change (ΔG˚) going from the unfolded to the folded state of RNA 2D

structure measures its energetic favorability. The ΔG˚ of RNA 2D structure can be calculated

from the “Turner Rules,” a compilation of free energy parameters for RNA 2D structures that

is based on experimental measurements of small motifs.[38,39] In the most widely applied

folding algorithms (e.g. mFold[40], RNAfold[41] and RNAstructure[42]) the Turner Rules are

used to find the minimum free energy (MFE) 2D structure of a sequence in silico;[38,43] here

the MFE (most stable) fold is assumed to best reflect the native structure.

The MFE ΔG˚ indicates the stability of a 2D structure, but not its potential for function. It

was observed, however, that compared to random sequences, the MFE ΔG˚ of functional

RNAs is lower.[44] This is attributed to the evolved order and composition of functional RNAs,

which require structure to function; disrupting this ordered sequence also disrupts stabilizing

base pairs leading to less favorable ΔG˚ values. This propensity for folding is quantified by the

ΔG˚ z-score (z � score ¼ ½DG�native � DG� random�=s). That is, ΔG˚ z-score measures the stability

of the native sequence vs. random sequence and suggests an evolved property of the RNA.

[23,44] The z-score metric is indeed at the heart of functional 2D structure prediction

approaches[45,46] and was used to identify conserved functional regions in the genomes of

influenza viruses[6,47] and EBV,[21] as well as the mammalian Xist long noncoding (lnc)

RNA.[48] These analyses led to the discovery of functional cis-regulatory RNA structures[49–

51] and novel structured ncRNAs[21,52] that play important roles in both viruses, as well as

multiple highly-conserved (across mammals) structures in Xist that are likely important to the

mechanism of X chromosome inactivation.[48] This same approach was used to discover con-

served regions of structure with MAPT pre-mRNA that may dictate biological function.

Global structure of tau pre-mRNA

The tau pre-mRNA has 21 predicted structured exon-intron junctions, one predicted struc-

tured region in the 50 UTR, and nine predicted structured regions in the 30 UTR. Altogether,

approximately 1000 bps at exon-intron junctions, 60 bps in the 50 UTR, and 2,500 bps in the 30
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UTR have structure. Five alternatively spliced exon-intron junctions have structures, which

may regulate splicing. Base pair conservation at these junctions is generally high, but in rela-

tively few non-human primates (typically less than 10). Within the 30 UTR, eight of the nine

structured regions have base pair conservation of ~90% or greater.

Structures at exon-intron junctions

Structures were predicted at 19 exon-intron junctions, including five of the six that are adja-

cent to alternatively spliced exons (Table 1 and Figs 2 and 3 and Figure A in S1 File). Base pair

conservation for all of these structures was above 90%. Thus, they are highly conserved. Regu-

lation of splicing at these exon-intron junctions may be achieved by recognition of structures

or splicing elements by splicing factors. Thus, mutations within sequences near the junctions

that affect structure may disrupt normal splicing and cause disease.

Below, we focus on the stable predicted structures at exon-intron junctions that are adja-

cent to alternatively spliced exons (exons 2, 3, and 10). Each contains a U1 snRNA binding

Table 1. Exon-intron junctions containing predicted wild type structures.

Junction Nucleotides ΔG37˚ (kcal/mol) Average base pair conservation (%) Number of speciesa

E1-I1 137–150 of E1 and E1+1 to E1+7 of I1 −9.5 94.3 5

I1-E2 E2−29 to E2−1 of I1 and 1–3 of E2 −9.0 97.4 6

E2-I2 82–87 of E2 and E2+1 to E2+27 of I2 −11.6 99.2 6

E2-I2 68–87 of E2 and E2+1 to E2+46 of I2 −19.2 99.0 6

E3-I3 18–87 of E3 −25.9 92.9 18

I3-E4 E4−43 to E4−1 of I3 and 1–15 of E4 −14.0 100.0 2

I3-E4 E4−25 to E4−1 of I3 and 1–6 of E4 −6.4 100.0 1

I4-E4A E4A−38 to E4A−1 of I4 and 1–31 of E4A −24.1 97.5 3

I4A-E5 E5−63 to E5−1 of I4A and 1–5 of E5 −15.4 100.0 5

E5-I5 4–56 of E5 and E5+1 to E5+15 of I5 −13.5 100.0 2

E5-I5 50–56 of E5 and E5+1 to E5+53 of I5 −16.5 100.0 2

E6-I6 133–198 of E6 and E6+1 of I6 −18.2 98.8 8

E6-I6 164–198 of E6 and E6+1 to E6+29 of I6 −11.7 100.0 1

I6-E7 E7−35 to E7−1 of I6 and 1–28 of E7 −14.5 99.0 4

I6-E7 E7−1 of I6 and 1–48 of E7 −17.0 96.3 9

E7-I7 E7+1 to E7+21 of I7 −2.7 100.0 2

I7-E8 E8−19 to E8−1 of I7 and 1–27 of E8 −13.0 100.0 1

I7-E8 E8−26 to E8−1 of I7 and 1–40 of E8 −17.9 98.7 4

I8-E9 E9−41 to E9−1 of I8 and 1–21 of E9 −11.0 100.0 4

I8-E9 E9−15 to E9−1 of I8 and 1–5 of E9 −0.4 100.0 1

I9-E10 E10−14 to E10−1 of I9 and 1–7 of E10 −4.5 94.1 7

E10-I10 73–93 of E10 and E10+1 to E10+31 of I10 −19.3 93.3 4

I10-E11 E11−3 to E11−1 of I10 and 1–30 of E11 −6.4 94.4 5

I10-E11 E11−10 to E11−1 of I10 and 1–40 of E11 −10.9 90.0 4

E11-I11 78–82 of E11 and E11+1 to E11+60 of I11 −17.7 92.1 5

I11-E12 E12−61 to E12−1 of I11 and 1–8 of E12 −20.1 94.6 6

I11-E12 E12−11 to E12−1 of I11 and 1–51 of E12 −16.0 95.4 5

E12-I12 77–113 of E12 and E12+1 to E12+22 of I12 −17.9 96.1 5

E12-I12 100–113 of E12 and E12+1 to E12+53 of I12 −11.9 94.9 5

I12-E13 E13−9 to E13−1 of I12 and 1–32 of E13 −6.8 94.0 7

a Non-human primates.

https://doi.org/10.1371/journal.pone.0219210.t001
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site, where U1 50 splice site recognition occurs by forming a duplex beginning at +1G of the

50 splice site and C8 of U1 snRNA.[53] A maximum of 11 bps may form between the 50 splice

site and U1 snRNA, spanning the last 3 nt of the exon and first 8 nt of the intron.[53] RNA

structure at the 50 splice site may regulate splicing or compete with U1 snRNA for base pair-

ing.[53]

The remainder of the structures and their associated metadata can be found in Supplemen-

tary Results in S1 File and Figures A and B in S1 File. There is interesting biology at these

other intron-exon junctions. For example, a structured region was predicted at the exon

6-intron 6 junction. Deletion mutagenesis on exon 6 revealed that the 50 and 30 ends, the latter

of which includes a 25–30 nt sequence within the predicted hairpin structure, decreased exon

6 inclusion, indicating that these regions act as strong splicing enhancers.[54] Exon 6 has two

cryptic 30 splice sites, which, when used, result in frameshift mutations and yield variants of

tau protein lacking in microtubule binding domains.[54,55] These splice sites, termed 6p and

6d, are 101 and 170 nt long, respectively, are downstream of the canonical splice site. A stable

structure was predicted at the 6p splice site (Fig 3A).[56] This same structure was predicted to

Fig 2. Overview of structured regions in the tau pre-mRNA. (a) Conserved structures in the 50 UTR and exon-intron junctions. White boxes indicate constitutive

exons. Black boxes indicate exons that are excluded in the human brain. Green boxes indicate exons that are alternatively spliced. (b) Conserved structures identified in

the 30 UTR.

https://doi.org/10.1371/journal.pone.0219210.g002
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form from the 250 nt sequence centered on the exon 6-intron 6 junction, but its z-score and

ED were within 1 SD of average for all windows.

Exon 10. Exon 10 alternative splicing is the most well studied splicing event in tau pre-

mRNA, owing to identified mutations that cause disease (Fig 4A to 4C and 4F to 4I).

[13,57,58] Among 70 nt windows spanning the intron 9-exon 10 junction, the window with

the lowest z-score (−1.05) contains a hairpin structure modeled using SHAPE mapping (Fig

3B).[59] A G-to-U mutation at position E10−10 near this junction was observed to increase the

4R-to-3R tau ratio (Fig 4D and 4E).[60] The previously validated hairpin and splice site regula-

tor at the exon 10-intron 10 junction was predicted as part of a larger hairpin spanning nt 73–

93 of exon 10 and E10+1 –E10+31 of intron 10, which contains a U1 snRNA binding site (Fig

3C). The 70 nt window containing this structure has a z-score and ED of −1.15 and 3.39,

respectively, which were more than 1 SD below their respective averages.

This hairpin structure was also supported by SHAPE mapping.[59] Splicing of exon 10 is

regulated by cis-elements, such as exonic splicing enhancers, silencers (ESEs and ESSs, respec-

tively) and structured RNAs, and trans-factors, such as serine-arginine (SR) proteins that bind

to ESEs adjacent to the 50 and 30 splice sites and promote association with U1 and U2 snRNP,

respectively.[55,59,61,62] These splice sites are weak, and their activities (and exon 10 inclu-

sion) are dependent on the ESEs.[62] Consistent with ESE-dependent splice sites is the

Fig 3. Predicted structures at alternatively-spliced exon-intron junctions. Splice sites are denoted with red arrowheads.

Potential U1 snRNA binding sites are denoted by bold nucleotides. The enhancer in the hairpin structure at the exon 3-intron

3 junction is colored orange. Usage note: at a 30 splice site, intronic nucleotides are denoted by a minus (−) sign and their

position upstream of the adjacent exon, while exonic nucleotides are denoted by their position relative to the first nucleotide of

the exon. At a 50 splice site, intronic nucleotides are denoted by a (+) sign and their position downstream of the adjacent exon.

https://doi.org/10.1371/journal.pone.0219210.g003
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Fig 4. Predicted structures at exon-intron junctions that contain mutations and experimental results with minigenes at exon-intron junctions. Shown are

structures containing mutations that affect the wild type structure. Mutations are denoted in green. Splice sites are denoted with red arrowheads. (a) to (c)

Extended structures of hairpins at the exon 10-intron 10 junction containing S305N, G(+3)A, and C(+14)T mutations, respectively. (d) and (e) Wild type

and G(−10)T mutant hairpin structures, respectively, at the intron 9-exon 10 junction. (f) to (i) Minimal wild type and mutant S305N, G(+3)A, and C
(+14)T hairpin structures, respectively, at the exon 10-intron 10 junction. (j) Effect of mutations at the 50 and 30 splice sites of exon 10 on luciferase activity in

transfected HeLa cells. (k) Effect of mutations at the 50 and 30 splice sites of exon 10 on 3R and 4R tau mRNA levels in HeLa cells as measured by RT-qPCR.

https://doi.org/10.1371/journal.pone.0219210.g004
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presence of a weak polypyrimidine tract at the 30 splice site.[62] Deletion of nt 7–15 of exon 10

inhibited binding and inhibition of splicing by SRp30c and SRp55.[63] This region is upstream

of an enhancer, defined by a 5 0-AAG motif spanning nt 16–18 of exon 10 that binds splicing

activator htra2β1.[63–65] Deletion of this region, also known as the Δ280K mutation,

decreased exon 10 inclusion and formation of 4R tau.[63–65] Co-transfection of HEK293 cells

with SRp54 (signal recognition particle 54) and a mutant mini-gene without nt 16–21 of exon

10, which consists of a purine-rich 5 0-AAGAAG enhancer element, eliminated the binding of

SRp54.[66] These results indicate that htra2β1 and SRp54, which antagonizes its activity, bind

to these regions.[63–66]

On the other hand, the N279K mutation, which changes a U to a G, increases exon 10 inclu-

sion by strengthening an AG-rich region that acts as a splicing enhancer.[63–65] Similar to

exon 2, the default splicing pattern is inclusion and regulation primarily occurs through inhi-

bition.[55,63] The S305N mutation, caused by a NG_007398.1:c.914G>A substitution (cDNA

numbering starting from A in the AUG initiation codon in the noted GenBank cDNA reference

sequence),[67] converts a GC pair to a noncanonical AC pair (Table 2).[68] The result is desta-

bilization of the exon 10-intron 10 SRE and increased exon 10 inclusion, similar to other intro-

nic mutations at this junction (Table 2).[68] RNA2DMut predicted consistent MFE and

centroid structures for this mutation, which increased ED from 3.39 to 11.16 and destabilized

the structure by 3.8 kcal/mol. A G(+3)Amutation at the exon 10-intron 10 junction decreases

the stability of the stem-loop by 4.7 kcal/mol by disrupting a GC pair and stabilizes formation

of the U1 snRNP complex by changing a GU pair to an AU pair.[69] For this mutation,

RNA2DMut predicted an increase in ED of 8.02 relative to WT for the centroid structure. A

C(+14)Tmutation converts a GC pair in the stem-loop to a GU pair, destabilizing the helix by

1.9 kcal/mol. RNA2DMut predicted a small 0.24 increase in ED.

Experimentally-determined structures at exon 10-intron junctions

The splicing regulator at the exon 10-intron 10 junction was predicted to form, with 93.3%

base pair conservation (Figs 3 and 4). The C(+14)U mutation causes the disinhibition-

Table 2. Exon-intron junctions containing predicted mutant structures.

Junction Nucleotides Mutation ΔG37˚ (kcal/mol)

I9-E10 E10−14 to E10−1 of I9 and 1–7 of E10 G(−10)T −4.9

E10-I10 73–93 of E10 and E10+1 to E10+31 of I10 S305N −16.6

E10-I10 73–93 of E10 and E10+1 to E10+31 of I10 G(+3)A −14.6

E10-I10 73–93 of E10 and E10+1 to E10+31 of I10 C(+14)T −17.4

E11-I11 78–82 of E11 and E11+1 to E11+60 of I11 P332S −14.0

I11-E12 E12−61 to E12−1 of I11 and 1–8 of E12 G335S −20.5

I11-E12 E12−61 to E12−1 of I11 and 1–8 of E12 G335V −17.4

I11-E12 E12−11 to E12−1 of I11 and 1–51 of E12 G335S −16.0

I11-E12 E12−11 to E12−1 of I11 and 1–51 of E12 G335V −14.8

I11-E12 E12−11 to E12−1 of I11 and 1–51 of E12 Q336H −13.7

I11-E12 E12−11 to E12−1 of I11 and 1–51 of E12 Q336R −15.3

I11-E12 E12−11 to E12−1 of I11 and 1–51 of E12 V337M −16.6

E12-I12 77–113 of E12 and E12+1 to E12+22 of I12 V363I −17.9

E12-I12 77–113 of E12 and E12+1 to E12+22 of I12 P364S −14.9

E12-I12 77–113 of E12 and E12+1 to E12+22 of I12 G366R −16.9

E12-I12 77–113 of E12 and E12+1 to E12+22 of I12 K369I −17.9

E12-I12 100–113 of E12 and E12+1 to E12+53 of I12 K369I −11.9

https://doi.org/10.1371/journal.pone.0219210.t002
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dementia-parkinsonism-amyotrophy (DDPAC) disease, one type of FTDP-17.[13,57,70] A

4R-to-3R ratio of 30:1 relative to wild type was measured by RT-PCR in HeLa cells transfected

with mini-genes expressing the stem-loops.[34] In transfected luciferase assays, the 4R-to-3R

ratio of DDPAC tau to wild type tau was similar.

A C-bulge was predicted to form in the structure containing the G(+3)A mutation. This

mutation results in the multiple system tauopathy with presenile dementia (MSTD) form of

FTDP-17.[58,69] A 4R-to-3R ratio of ~20:1 relative to wild type was measured in transfected

luciferase assays with this mutation. No occurrence of this mutation was found in non-human

primates.

A hairpin at the intron 9-exon 10 junction was predicted to form by SHAPE-constrained

RNA folding algorithms (Fig 4D).[59] A G-to-U mutation at position E10−10 of this splice

junction (Fig 4E) weakens a polypyridine tract and a 2 nt bulge loop was predicted to form as a

result of the G-to-U mutation, which stabilizes the wild type hairpin by 0.4 kcal/mol. This

mutation leads to increased selection of the splice site and exon 10 inclusion.[60,62] In cell-

based assays completed herein, the G-to-U mutation led to an 11.5-fold increase in luciferase

expression over wild type (Fig 4J).

Structure of the 50 UTR

The tau 50 UTR contains a conserved oligopyrimidine sequence, 50-CCTCCCC-30that pro-

motes cap-dependent translation by activation of the mTOR pathway.[71,72] Separately,

eukaryotic internal ribosome entry sites (IRESs) allow initiation of cap-independent transla-

tion of mRNA.[73,74] IRES activity may be mediated by RNA structure, short sequence motifs

in unstructured or structured regions that bind to IRES trans-acting factors (ITAFs), or base

pairing with 18S ribosomal RNA (rRNA).[73,74] Additionally, sequence motifs within loop

regions of IRESs may allow for RNA-RNA interactions and formation of secondary or tertiary

structure essential for IRES function.[73,74] The tau 50 UTR contains a cis-regulatory internal

ribosomal entry site (IRES) that contributed to 30% of the total translation of tau mRNA in

luciferase assays.[71–73] Truncations to the IRES reduced or abolished IRES activity, suggest-

ing that the entire sequence is required for IRES activity.[73] A secondary structure model of

the 240 nt IRES generated by SHAPE analysis yielded two domains. Among them, Domain I is

a hairpin and Domain II is a multibranch loop.[73] Mutations that disrupted the stem regions

of Domains I and II abolished IRES activity.[73] Therefore, sequences and/or structures in

these regions are required for IRES function.[73]

Our analysis predicts a structured region corresponding to nt 120–176 of the 304 nt 50

UTR, which lies within Domain I of the IRES and has a favorable z-score and low ED (−1.03

and 5.82, respectively) (Fig 5). The structure is similar to Domain I, although the base pairs

around the internal loop below the apical loop were shifted, resulting in a 3 × 1 instead of 3 × 4

internal loop. This may result from the lone cytidine on the 30 side of the loop having SHAPE

reactivity in experiments with transfected SK-N-SH cells, whereas other neighboring nucleo-

tides were unreactive.[73] The free energies of 42 nt segments of the unconstrained and

SHAPE-constrained Domain I hairpin structures (−21.0 and −20.6 kcal/mol, respectively) are

relatively close. Therefore, these conformations may exist in equilibrium. The probabilities of

formation of loops in the predicted and SHAPE-constrained 50 UTR was analyzed with ProbS-

can as a measure of the accuracy of structure prediction compared to experiment.[27] The

probabilities of the 3 × 4 internal loop and 9 nt hairpin loop calculated by ProbScan for the

predicted structure are 0.584 and 0.601, respectively. Folding of the same fragment of sequence

of the predicted structure into the SHAPE-constrained 3 × 1 internal loop and 10 nt hairpin

loop resulted in loop probabilities of 0.301 and 0.323, respectively. These results suggest that
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the predicted 3 × 4 loop and associated hairpin loop may be more likely to form than those in

the SHAPE-constrained structure and are consistent with the slightly more favorable folding

free energy of the conformation of the predicted structure relative to the SHAPE-constrained

structure. When the full 50 UTR was queried, a region within the human structure correspond-

ing to base pairs C133:G160 to G142:C150 and containing a 3 × 4 internal loop was predicted

from alignment and folding of the resulting sequences. Base pair conservation for this consen-

sus structure is 94.6% in up to 20 non-human primates. R-scape predicted up to 39 potentially

covarying base pairs in this region (Table D in S1 File). Altogether, a hairpin structure consis-

tent with a SHAPE-constrained IRES structure was predicted to form in the 50 UTR and con-

tains structural and sequence elements required for IRES activity.

Structure of the 30 UTR

The 30 UTR of mRNAs regulate various cellular events such as translation, and transcript sta-

bility, polyadenylation, and localization.[75] One mechanism by which regulation of gene

expression occurs is by alternative polyadenylation (APA).[22,28,76,77] Polyadenylation at

alternative sites in the 30 UTR results in transcripts with 30 UTRs of different lengths.[76] Lon-

ger 30 UTRs may contain more miRNA binding sites or regulatory sequences that cause the

mRNA to be more prone to negative regulation.[76] The human tau 30 UTR contains two

polyadenylation signals, which results in 30 UTR isoforms 256 nt and 4163 nt in length.[15]

Fig 5. Predicted and SHAPE constrained structures of the human 50 UTR. Predicted structure corresponds to nt 120–176. Structure determined by SHAPE analysis

corresponds to the 240 nt tau IRES.[73] The conserved 50-CCUCCCC-30sequence that promotes cap-dependent translation is colored orange. Blue nucleotides in the

SHAPE constrained structure correspond to those in the predicted structure. Nucleotides in the SHAPE constrained structure that were modified in SHAPE analysis are

indicated by circles colored according to SHAPE reactivity (see figure key). For reference, nucleotides in the predicted structure that correspond to those in the SHAPE-

constrained structure are labeled with the respective colored circles. SHAPE reactivities were obtained from ref. [73].

https://doi.org/10.1371/journal.pone.0219210.g005
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Dickson et al. found that the short isoform was expressed significantly higher than the long

isoform.[15] The differential regulation of the 30 UTR isoforms may be mediated by cis-ele-

ments and trans-factors.[15] Dickson et al. identified a binding site for miR-34a, which inhib-

its expression of endogenous tau, and reported that a luciferase reporter vector containing a

mutant miR-34a binding site was insensitive to pre-miR-34a.[15] Additionally, cloning of frag-

ments of the long 30 UTR isoform into a luciferase reporter vector increased or decreased lucif-

erase activity in transfected M17D and SH-SY5Y cells, suggesting that these fragments may

differentially affect tau expression.[15,78] Secondary structures within the 30 UTR are vital

determinants of gene levels, and mutations affecting secondary structure or a polyadenylation

signal can cause disease.[75]

Indeed, the tau 30 UTR has been implicated in stabilization of tau mRNA in neuronal cells.

[79] The ratio of 30 UTR to coding DNA sequence is balanced in normal brain tissue but ele-

vated in the AD brain, suggesting that the 30 UTR may have regulatory roles in the disease.[78]

The 30 UTR contains several microRNA binding sites such as miR-34a, miR-132, miR-181c,

miR-219, miR-485-5p, and miR-642 (Table B in S1 File).[15,78,80,81] In particular, expression

of miR-219-5p and miR-485-5p are decreased in AD and may be attributed to overexpression

of tau.[78,80–82] Thus, targeting structured regions containing microRNA binding sites may

be an approach for treating tauopathies.

Eight regions within the long 30 UTR isoform were predicted to have z-scores less than 1

SD below the average of all windows (Table 3). Six of the regions had base pair conservation

above 90%. Positions 151–300 have an average canonical base pair conservation of 97.6%.

Within this region is a 50-AAUAAApolyadenylation signal, which lies within a 5 × 5 internal

loop and spans nt 230–235 of the 30 UTR.[35] Cleavage and polyadenylation at this site gener-

ates the short 30 UTR isoform.[35]

The structured region predicted to form between nt 1961–2110 in the 30 UTR (average

canonical base pair conservation of 89.2%) is similar to the multibranch loop formed in the

tau coding region (nt 1989–2015). Positions 2281–2490 and 2931–3240 have an average

canonical base pair conservation of 95.2% and 89.2%, respectively. R-scape predicted that two

hairpin structures in the nt 2931–3240 region contain base pairs with evidence of covariation

(Table G in S1 File). These results suggest that these regions are highly likely to form functional

structure.

Other regions in the 30 UTR are also highly conserved, which span (or are adjacent to)

microRNA binding sites, nt 661–1020 (94.0%) and nt 1241–1850 (93.8%). Interestingly, dele-

tion of nt 986–1479, which includes binding sites for miR-34a and miR-485-5p and partly

overlaps with this region, from a luciferase reporter construct significantly increased luciferase

activity in transfected HEK293 and differentiated SH-SY5Y cells compared to cells expressing

Table 3. Regions of the 30 UTR with predicted structure. Secondary structures for these regions are in Fig 6 and Fig-

ures C–H in S1 File.

Nucleotides ΔG37˚ (kcal/mol) Average base pair conservation (%)

151–450 −91.1 97.7

661–1020 −147.1 94.0

1241–1850 −219.6 93.8

1961–2110 −50.2 89.2

2281–2490 −81.7 95.2

2601–2800 −66.0 43.7

2931–3240 −98.3 89.2

3471–3840 −149.6 94.9

https://doi.org/10.1371/journal.pone.0219210.t003
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a wild type 30 UTR construct.[35] This suggests that this region may contain a cis-element

that downregulates expression of tau.[35] Indeed, a binding site for miR-485-5p is located

upstream of the structured region comprised by nt 1241–1850, in addition to the RNA struc-

ture itself.[80] 43 potentially conserved base pairs in this region were predicted by R-scape in a

consensus structure containing a multibranch loop that resembles one predicted in this region

of the human sequence (Table E in S1 File). Together, these may control expression of tau.

Two structured regions, corresponding to nt 1961–2110 and 3471–3870, lie in segments

that upregulated luciferase activity in transfected cells reported by Dickson et al (Fig 6A and

6B).[15] In cell-based assays carried out in this work, three fragments of the 30 UTR were

found to upregulate luciferase activity (Fig 6C). These three fragments, corresponding to nt

2041–2079, 3471–3691, and 3695–3859, contain regions that were predicted to be structured.

In other studies, deletion of nt 3501–4000 increased luciferase activity in cells relative to those

Fig 6. Structured regions of the 30 UTR that upregulated luciferase activity in Dickson et al[15] and results of cell-nased luciferase assays completed herein with

fragments of the 30 UTR.

https://doi.org/10.1371/journal.pone.0219210.g006
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expressing WT tau.[35] Therefore, the predicted structures may contain binding sites for cis-
elements or trans factors that regulate tau expression.

Conclusions

In summary, stable structures were predicted throughout the MAPT pre-mRNA. Structures

were predicted at 19 exon-intron junctions, including five adjacent to alternatively spliced

exons (Fig 1). Two folds were predicted at the exon 2-intron 2 junction, the larger of which is

an extended form of a hairpin where the stem contains two single nucleotide bulges. The pre-

dicted structures at the 50 and 30 splice sites of exon 10 were previously identified by experi-

ment. The G(+3)Aand C(+14)Tmutations that are associated with disease were verified by

cell-based assays to upregulate exon 10 inclusion. These mutations destabilize the hairpin

structure at the exon 10-intron 10 junction. A structure was predicted to form in exon 6 at a

cryptic splice site, which results in frameshift. The IRES within the 50 UTR contains a predicted

structure, mutations within which had been demonstrated to decrease IRES activity. Eight

structured regions were identified throughout the 30 UTR, including regions that regulate

expression of tau. RNA secondary structure plays important roles in regulating gene expres-

sion, and splice site junctions and UTRs are known to contain gene regulatory element. These

regions of pre-mRNA may interact with cis-elements or trans-factors via sequence- or struc-

ture-specific binding. The results of this study may be applied to future studies to identify new

therapeutic targets against tau-associated diseases.[36,83–86]
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