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ABSTRACT: Skin is the first defense barrier of the human body, which can resist the invasion
of external dust, microorganisms and other pollutants, and ensure that the human body
maintains the homeostasis of the internal environment. Once the skin is damaged, the health
threat to the human body will increase. Wound repair and the human internal environment are
a dynamic process. How to effectively accelerate the healing of wounds without affecting the
internal environment of the human body and guarantee that the repaired tissue retains its
original function as much as possible has become a research hotspot. With the advancement of
technology, researchers have combined new technologies to develop and prepare various types
of materials for wound healing. This article will introduce the wound repair materials
developed and prepared in recent years from three types: nanofibers, composite hydrogels, and
other new materials. The paper aims to provide reference for researchers in related fields to
develop and prepare multifunctional materials. This may be helpful to design more ideal
materials for clinical application, and then achieve better wound healing and regeneration
effects.

1. INTRODUCTION
The skin is the largest organ in the human body and the first
defense barrier. It can protect the human body from the
external environment.1,2 Human skin is composed of kerati-
nized stratified epidermis and collagen-rich dermal connective
tissue, in which dermal connective tissue can provide support
and nutrition.3 Skin trauma can be divided into acute and
chronic. Acute wounds can usually be repaired through the
normal wound healing process, whereas chronic wounds do
not heal properly and often lead to inflammation, pain, serious
complications, etc.4,5

Wound repair is a dynamic process that generally consists of
four overlapping but not identical phases: hemostasis,
inflammation, proliferation, and remodeling.6−9 During hemo-
stasis, platelet plugs and then fibrin clots are formed.10,11

Following tissue injury, neutrophils and monocytes are
recruited to the wound, and inflammatory cells promote
wound healing by engulfing bacteria to control wound
infection.7 Subsequently, the newly formed blood vessels in
the tissue can promote the proliferation of fibrous cells by
transporting oxygen and nutrients.12,13 In most lesions,
excessive cellular fibrosis leads to the production of partially
dysfunctional tissue, which is often referred to as scar.14−17

The formed scar tissue is nonesthetic and may even affect the
mental health of the patient.
Traditional wound dressings such as cotton, bandages, and

gauze.18 They have been widely used in clinical practice and
generally serve to stop bleeding and insulate wounds against
infection.19 However, they are less effective at stopping
bleeding, are easily contaminated, and need to be replaced
frequently.20 If the dressings are in contact with the wound for

a prolonged period of time, then they may cause tissue
adhesion, leading to difficulty in removal, and may cause
secondary injury when changed.20 In addition, conventional
dressings are not suitable for large wounds with diffuse and
incompressible bleeding or organ tissue wounds, which require
surgical closure.21,22 Sutures are usually invasive and may also
cause unsatisfactory tissue integration or result in leakage of
tissue contents due to incomplete closure.23,24 These draw-
backs have stimulated interest in exploring novel wound
dressings, and sutureless wound closure strategies are a hot
research topic today, such as nanofibers, hydrogels, etc.
In recent years, nanofibers and composite hydrogels have

attracted the interest of a wide range of researchers due to their
unique properties, and a large amount of literature has been
published on their application to wound repair.25−28 Nano-
fibers have the advantage of having a high specific surface area
and high porosity, which can mimic the natural extracellular
matrix (ECM).29 It can also be adjusted in structure or loaded
with drugs to achieve increased permeability, resistance to
infection, and induction of cellular phenotypic differentiation
to further accelerate wound healing.30−33 Composite hydrogels
have obvious advantages in wound healing due to their three-
dimensional network structure, high water content, good
adhesion, and biocompatibility.34−37 Wound repair is a
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complex, dynamic process affected by multiple factors.3,14 As
technology develops, more and more new technologies
emerge. Researchers have applied new technologies in the
preparation of biomaterials, developing and preparing new
materials such as nanoadhesives, microrobots, mRNA sensors,
and exosomes. Therefore, biomaterials applied to wound repair
may be more conducive to wound healing if they can have
multiple functions. This paper summarizes the outstanding
work on wound repair in recent years and provides important
reference cases for the design of relevant treatment strategies.
We hope that this review can provide references for the design
of advanced biological material preparation methods in terms
of wound healing and tissue regeneration, including the
selection of materials, the design of preparation methods, and
the improvement of properties. It is beneficial for researchers
to improve their research design so that biological materials
can achieve more clinical practice. In the following section,
nanofibers, composite hydrogels, and other new materials will
be introduced.

2. NANOFIBERS
Nanofibers have attracted much attention in recent years,
especially in wound repair, due to their large specific surface
area and unique nanosize.29 Nanofibers are divided into pure
natural and synthetic preparations. Some natural products have
nanostructures themselves, such as bacterial cellulose (BC).38

BC can adjust the nanofibers produced by adjusting the
medium composition of the bacteria or customizing the culture
device.38,39 Gmach et al. prepared oriented BC by designing a
special inclined-plane bioreactor.39 In addition, there are many
methods to prepare nanofibers, such as self-assembly,40−42

phase separation,43,44 electrospinning,30,45 and so on.
Self-assembly has the advantages of a simple method, easy

operation, and low cost.46 Self-assembly of micro- and
nanofibers can use noncovalent interactions such as hydrogen
bonds, hydrophobic interactions, van der Waals forces, and
metal-hydrophilic interactions, and chemical cross-linking can
also be used.40,41 In a study,42 cellulose nanofibers were self-
assembled into hydrogels by hydrogen bonding, and two
strategies of suspension casting and vacuum filtration were
compared and evaluated. In the experiment, the performance
of the samples prepared by vacuum-assisted filtration was
compared with that of commercial BC. The results showed
that the liquid absorption capacity of the samples was
comparable to that of BC, but the mechanical strength and
stiffness were lower than those of BC hydrogels. Although the
self-assembly strategy is of great convenience, the long-term

stability of nanofibers, especially the self-assembly of protein
peptides,47 should be paid attention to when using self-
assembly to prepare nanofibers. At the same time, if the design
strategy depends on pH and temperature,48,49 then the
influence of the wound microenvironment should be fully
considered.
Phase separation is a common method of preparing

nanofibers by forming two or more phases in solution and
then selectively removing the phases, ultimately maintaining
one phase.50 For example, hollow fiber membranes can be
prepared using thermally induced phase separation.44,51,52 Sun
et al. used nonsolvent-induced silk fibroin solution phase
separation to prepare films with tunable nanopores.43 This
method optimizes the preparation method of silk fibroin film
and saves time-consuming steps such as dialysis. It is worth
noting, however, that the applicability of phase separation
methods may not be relatively broad. It may only be applicable
to specific polymer/solvent systems. In addition, careful study
of parameters may be required to control fiber diameter.
Electrostatic spinning is a method of applying an electric

field to make various polymers into nanofiber structures on a
collector. It has the advantages of high porosity, a large aspect
ratio, and a large specific surface area.53 The design of an
electrospinning device is of great significance to the structure
and properties of nanofibers. The commonly used devices are
emulsion electrospinning, roller electrospinning, coaxial
electrospinning, and so on.54−57 Coaxial electrostatic spinning
can be used to fabricate nanofibers with core−shell or hollow
structures. The core−shell structure may be effective in
preventing the burst release of drugs, which will be beneficial
for conducting the next step of drug-measured release
studies.57−59 Besides, covalent polymer grafting, plasma
treatment, and ionized jet deposition techniques can be used
for drug loading to achieve controlled drug release.60,61 The
structure of nanofibers prepared by electrostatic spinning is
also inextricably linked to the collector. The commonly used
collectors include flat collectors,33 drum collectors,54 angle
collectors,62 pattern collectors,63 etc. The way of placing the
collector is also classified as fixed placement,62 rotating
placement,54 and so on. Yin et al. designed a self-made
spherical cross-section free-surface electrospinning device to
control the porous structure of nanofibers by adjusting the
weight ratio of solvent and solute mixing.45 Also, due to the
change in solvent system and weight ratio in the mixture, the
electrical conductivity and solution viscosity of the spinning
solution changed, which further affected the nanofiber yield.
The development of new technologies for preparing high-yield

Table 1. Nanofibers for Wound Healing Applications

type characteristics material ref

nanofibers induction of cell
phenotype
or differentiation

poly(L-lactide) (PLLA) 30

nanofibers induction of cell
phenotype or
differentiation

poly (ε-caprolactone) (PCL); pluronic F-127 31

nanofibers antimicrobial polyacrylonitrile; moringa leaf; ethanol; dimethyl formaldehyde 65
nanofibers antimicrobial ε-polylysine; dopamine hydrochloride; gelatin (Type A); polycaprolactone; 2,2,2-trifluoroethanol (TFE); acetic acid 64
nanofibers antimicrobial Komagataeibacter xylinus (strain ATCC 23770); 3-aminopropyltrimethoxysilane; glutaraldehyde (APTES); glacial acetic acid

(AA); ethanol; pullulan; zinc oxide nanoparticles (ZnO-NPs, 30 nm)
75

nanofibers intelligent response glycerol; sebacic acid; polycaprolactone; silver ink; anhydrous chloroform; ethanol 27
nanofibers intelligent response N-isopropylacrylamide (NIPAAm); N-hydroxymethylacrylamide (HMAAm); 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP);

N,N-dimethylformamide (DMF); 2,2′-azobis (2-methylpropionitrile) (AIBN);
moxifloxacin hydrochloride (MOX); silver ink

33
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nanofibers is conducive to mass production and can even be
put into factory production to achieve result conversion.
Nanofibers can be endowed with different properties by

adjusting the type of compound, the ratio of precursor
solution, and the preparation device during the preparation
process.29 It can endow nanofibers with the functions of
inducing cell phenotypic differentiation,30,31 resisting infec-
tion,64,65 etc., thus further accelerating wound healing.
Nanofibers are classified and discussed below according to
induced cell phenotype or differentiation, antimicrobial
properties, and smart response properties. The materials of
some nanofibers are listed in Table 1.
2.1. Induction of Cell Phenotype or Differentiation.

The phenotype of macrophages plays an important role in

wound healing. Polarization of the macrophage M1 to M2
phenotype typically involves a decrease in the expression of
multiple pro-inflammatory cytokines and an increase in the
expression of anti-inflammatory cytokines. It is the shift in
macrophage phenotype that facilitates the transition of wound
repair from the inflammatory to the proliferative
phase.7,30,66−69 Xie et al. used polylactic acid to obtain aligned
electrospun by directional preparation on a cage drum
collector (Figure 1A).30 The results show that aligned
nanofibers has better mechanical properties and lower water
contact angle than random nanofibers, and it can also induce
M2 polarization of macrophages.
As mentioned above, simply arranging nanofibers can attain

the effect of improving performance. In order to further

Figure 1. (A) The fabrication schematic diagram and SEM diagram of oriented electrospun PLLA nanofibers. (a) Schematic diagram showing the
preparation of oriented electrospun nanofibers. (b) Oriented nanofibers promote macrophage M2-type polarization. (c) SEM image of oriented
nanofibers. Reprinted with permission from ref 30. Copyright 2022, Springer Nature. (B) A schematic illustration of the rapid transformation of 2D
nanofibrous membranes into preformed, molded 3D scaffolds with oriented porous structures and SEM images of the 3D scaffolds. The schematic
illustrates the process of transforming 2D nanofibrous membranes into cylindrical nanofibrous scaffolds (a) and hollow tubular scaffolds (b) by
expanding them in a custom-made mold. (c) Photographs of cylindrical, hollow tubular, rectangular, and spherical nanofiber scaffolds. (d) Cross-
sectional and longitudinal SEM images of cylindrical, hollow tubular, rectangular, and spherical scaffolds. Reprinted with permission from ref 31.
Copyright 2020, AIP Publishing. (C) Preparation schematic diagram and mechanism diagram of nanofiber membrane. APTES: hydrolysis of 3-
aminopropyltrimethoxysilane; AA: acetic acid; BNC: bacterial nanocellulose; A-g-BNC: BNC membrane, Pul-ZnO: pullulan polysaccharides and
zinc oxide nanoparticles. Reprinted with permission from ref 75. Copyright 2021, American Chemical Society.
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enhance the performance, the researchers continue to expand
the structure or composition into the 3D scaffold assembly by
means of technical improvements.31,70,71 Chen et al. mixed 2D
polycaprolactone nanofibers with Pluronic F-127 of different
proportions and prepared 3D nanofiber components with pore
size gradients through gas foaming expansion technology
(Figure 1B).31 These components can load bone marrow
mesenchymal stem cells and induce their expression and
differentiation. After a series of studies, the research team
successively deposited fibers of different order by increasing
the rotation speed of the mandrel during the electrospinning
process, and then prepared 3D nanofiber scaffolds by gas
foaming expansion technology.70 Furthermore, the team also
prepared 3D nanofiber assemblies with composition gradients
by diffusion, encapsulation, and cross-linking.71 All of these
designs provide a new strategy for the establishment of an
induced cell expression differentiation model.
It is worth considering that wounds have a variety of

constituent cells. Whether the oriented structure of nanofibers,
while favoring the induction of macrophage phenotypes, may
have an effect on other cells has not been reported
conclusively. In addition, the oriented structure of the
nanofibers needs to be stable in the wound environment so

as to ensure that the structural guidance is maintained during
the induction of cellular phenotype or differentiation.
2.2. Antimicrobial Properties. Infection is one of the

major threats to wound healing. With the increasing use of
antibiotics in clinical practice, the incidence of multidrug-
resistant bacteria is also increasing.72 The recommendation of
the World Health Organization is to limit the abuse of
antibiotics in order to avoid the evolution and spread of drug-
resistant bacteria.73 Nanofibers have an extremely fine pore size
and high porosity, which can promote gas exchange at the
wound site while isolating bacteria from the wound area.20

Recently, plant extracts,65,74 antimicrobial peptides,32,64 and
metal nanoparticles have been loaded into nanofibers as
alternatives to antimicrobials for wound repair applica-
tions.75,76 Fayemi et al. used Moringa leaf extract and
polyacrylonitrile to prepare nanofibers for wound repair.65

Ghomi et al. collected nanofibers doped with ε-polylysine on a
drum-type collector at different rotational speeds before cross-
linking the samples using dopamine hydrochloride.64 The
results of the study showed that the nanofibers containing ε-
polylysine exhibited antimicrobial activity against methicillin-
resistant Staphylococcus aureus, Staphylococcus aureus, Escher-
ichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa.

Figure 2. Schematic and photographs of the preparation of flexible, breathable skin electronics with temperature sensing capability and
temperature-sensitive on-demand drug release. (a) Nanofiber film. (b) Nanofiber film after cross-linking. (c) Nanofiber film after printing
conductive patterns. (d) Schematic diagram of the assembly of flexible, breathable skin electronics with an integrated temperature sensor. (e)
Schematic of temperature-sensitive on-demand Moxifloxacin hydrochloride (MOX) release. (f) Photographs of patterned nanofibrous film and (g)
flexible nanofibrous film attached to a finger. (h) Photograph of the nanofiber film (R = 24.3 Ω) in a circuit to light up a light-emitting diode bulb
(applied voltage of 3.0 V). Reprinted with permission from ref 33. Copyright 2019, John Wiley and Sons.
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In another study, Shahriari et al. prepared a spinning solution
with a mixture of pullulan polysaccharides and zinc oxide
nanoparticles and chemically grafted aminoalkylsilanes onto
bacterial nanocellulose membranes. The membrane was used
as a support to collect electrostatic spinning to prepare hybrid
electrospun nanofibers (Figure 1C).75

Developing alternatives to antimicrobials for wound repair
without causing the emergence of mutant strains. This is what
all researchers are willing to accept and will be a great blessing
for mankind. However, it should be noted that the extract may
involve the use of toxic reagents, such as organic solvents,
during the extraction process.65,74 Residues from organic
solvents may be cytotoxic. Whether metal nanoparticles are
toxic to humans due to their particle size and surface loading
has also been the subject of controversy.77,78 Therefore,
maintaining the effectiveness of the ingredients and ensuring
the nontoxicity of the materials are the primary prerequisites
for the development of antimicrobial alternatives.
2.3. Intelligent Response Performance. Current

commercial dressings rely heavily on passive therapy.19 Given
the complexity of the wound healing process, active and
effective proactive therapy may be a more effective treatment
strategy.8 Intelligent wound dressings with real-time monitor-
ing and regulation of the wound microenvironment are
promising as a way to provide reliable and optimal care.33

With the emergence and development of wireless sensor
technology, new materials combined with wireless sensor
technology can be connected to smart phones to prepare
wearable sensors.79−81 The emergence of wearable sensors has
brought new ideas for real-time monitoring of wound repair
dynamics. Intelligently responsive wound conditions generally
include: temperature,33 pH,48 deoxyribonuclease,82 reactive
oxygen species,83 etc.
Electronic devices with different conductive patterns can be

fabricated by screen printing with silver ink.27 Gong et al.
prepared an electrospinning solution by free radical polymer-
ization. Moxifloxacin hydrochloride was added to the solution
to prepare a spinning sheet, and a conductive pattern was
printed in combination with silver ink (Figure 2).33 The
conductive polymer nanomeshes prepared by this method
show excellent flexibility, reliable air permeability, and strong
stability. It can also display the linear relationship between the
resistance and temperature on the mobile phone device, so as
to monitor the temperature of the wound tissue in real time.
Wound infection is a major clinical challenge, and timely

detection of wound tissue environment is the key to effective
interventions.84,85 We all know that the wound environment is
complex. Therefore, the specificity and sensitivity of the
material’s intelligent response need to be guaranteed, which is
highly relevant to both the choice of the detectors and the
nature of the material itself. Furthermore, focusing on the
quorum sensing of bacterial populations or the combination of
multiple monitoring methods may also be an effective
strategy.86−88

3. COMPOSITE HYDROGEL
Hydrogel have obvious advantages in wound healing due to
their 3D network structure, high water content, and strong
swelling ability.89 Good moisture content makes the hydrogel
have good moisturizing ability and can promote wound
autolysis debridement.90,91 Moreover, the appearance of most
hydrogels after application is transparent, which is convenient
for monitoring wound healing.92 Nowadays, due to the

multistage nature of the wound healing process, researchers
are favoring the preparation of multiperformance composite
hydrogels.62,93−98 It includes, but is not limited to high
mechanical strength, high self-healing ability, intelligent
responsiveness, high biocompatibility, and high biodegrad-
ability.
The cross-linking of composite hydrogels is generally

classified into physical and chemical cross-linking.99 Physical
cross-linking refers to the bonding of polymer chains by
noncovalent bonds, generally without the need for cross-
linking agents, including hydrogen bonding, hydrophobic
interaction forces, crystallization, and et al.96,99−101 The
interaction force between the physically cross-linked networks
is generally relatively weak, and the hydrogel can form a
reversible dynamic network. This property endows the
hydrogel with self-adaptability and intelligent responsive-
ness.102 Yu et al. prepared hydrogels with self-healing and
adhesion properties using humic acid and polyvinylpyrrolidone
by dynamic reversible hydrogen bond cross-linking.96

Chemical cross-linking is the formation of covalent bonds
between the internal networks of hydrogels, including
enzymatic reactions, free radical polymerization, etc.103−105

The chemically cross-linked networks are bonded by covalent
bonds and have strong and lasting interaction forces. The
hydrogel network exhibits good stability and superior
mechanical properties. For instance, lithium phenyl-2,4,6-
trimethylbenzoylphosphonate is commonly used as a cross-
linking agent to initiate free radical polymerization.103

Covalent bonding is generally irreversible. Dynamic covalent
bonds, which have recently been reported, have bond energies
similar to those of covalent bonds and, at the same time, can
dissociate and recombine in hydrogel networks.106,107 Includ-
ing the imine bond, boric acid bond, disulfide bond, Diels−
Alder reaction, Michael addition reaction, and so on.108−112

Liang et al. designed a dynamic hydrogel by cross-linking via
Schiff base bonds and catechol-Fe coordination bonds.106

However, the performance of hydrogels prepared by simple
physical cross-linking, chemical cross-linking, or dynamic
covalent cross-linking may still be unsatisfactory. Therefore,
many studies have used a mixture of cross-linking methods to
enhance hydrogel properties.100 Hua et al. used poly(vinyl
alcohol) as a stencil system to induce intense aggregation and
crystallization of polymer chains using directional freezing and
the Hofmeister effect. This method resulted in the preparation
of hydrogels with high strength, toughness, and fatigue
resistance.113

The cross-linking of composite hydrogels involves a variety
of groups, with different groups giving the compounds different
properties. Wang et al. used the reaction of hydroxyl groups
with acryloyl chloride to graft carbon−carbon double bonds
onto the surface of hydrogels, which were then copolymerized
in situ to form hydrophobic lipogels.114 Due to the positive
charge of the carboxyl group and the negative charge of the
amino group, the reduction of different sizes of hydrogels was
achieved by using the condensation and drainage of the
opposite charge.115 Therefore, researchers can endow hydro-
gels with more functions by modifying the hydroxyl, carboxyl,
sulfonic acid, amide, and other groups in the hydrogel
matrix.73,114,115 With various studies, researchers have given
hydrogels a variety of functions.108,116,117 For example,
injectable hydrogels can increase fluidity and sealing, and can
also fill irregular wounds.118,119 The following section focuses
on composite hydrogels by function into four levels of high
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mechanical properties, adaptive, photothermal, and electrical
conductivity to develop a specific introduction.
3.1. High Mechanical Properties. Natural compounds

have received extensive attention due to their good
biocompatibility and biodegradability.120 However, the me-
chanical properties of hydrogels made from a single natural
compound may not be satisfactory. The performance of natural
compounds can be optimized by modification, mixing, or
mixing after modification.121 Gelatin-modified hydrogels have
the advantages of similar microstructure to ECM, which can
promote cell interaction and contain biological coupling
groups.122,123 If methacrylic anhydride is added to chemically
modify alginate, then it will have stronger water absorption
capacity.124 Tavafoghi et al. used methacryloylate gelatin and
methacrylate-modified alginate as materials for photo-cross-

linking, and then used CaCl2 for physical cross-linking to
prepare a hybrid hydrogel with high toughness and
stretchability.103 This strategy provides a new idea for the
development of sutureless sealing materials for highly
stretchable tissue wounds.
In recent years, many researchers have focused on the use of

interpenetrating networks, dual/multiple networks, topologies,
etc. to enhance hydrogel properties. Inspired by ECM, Wu et
al. prepared a double-network hydrogel.23 When the hydrogel
swells or is stretched, the double network structure plays a role
of mutual restriction, so as to prevent the hydrogel from
absorbing water and bursting, or being stretched and broken.
In another study, Chen et al. made a three-network hydrogel
with a double-tube syringe.125 The three networks are
composed of carboxymethyl chitosan, oxidized dextran, and

Figure 3. Composite hydrogels with gradient modulus. (a) Design and application for wound closure and antitear in dynamic and fluid-rich
environments. (b) Three components: bioadhesive matrix, gradient modulus micromesh, and oil-injected antiadhesion surface. (c) Fabrication
process. Photographs in dry (d) and wet (e) states. (Scale bar: 2 mm). Reprinted with permission from ref 62. Copyright 2022, John Wiley and
Sons.

Table 2. Composite Hydrogel for Wound Healing Applications

type characteristics material ref

composite
hydrogel

high
mechanical

gelatin; sodium alginate; methylacrylic anhydride; CaCl2 103

composite
hydrogel

high
mechanical

genipin (GP); high-viscosity chitosan (HV-CS); NaOH; ethanol; acrylamide; N,N′-methylene bis(acrylamide) (MBAA);
ammonium persulfate (APS); 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide
hydrochloride (EDC); N-hydroxy succinimide (NHS); metronidazole; amoxicillin

23

composite
hydrogel

high
mechanical

carboxymethyl chitosan; oxidized glucan; γ-polyglutamic acid. 125

composite
hydrogel

high
mechanical

polycaprolactone; acrylic acid; gelatin; N-hydroxysuccinimide acrylate; gelatin methacrylate;
α-ketoglutaric acid; silicone oil

62

composite
hydrogel

self-adaptive anhydrous ferric chloride; tris; protocatechualdehyde (PA); gelatin (GT); sodium alginate (SA) 106

composite
hydrogel

self-adaptive gelatin; deferoxamine; chitosan; 3-carboxyl-4-fluorophenylboronic acid; polyvinyl alcohol 107

composite
hydrogel

self-adaptive hyaluronic acid; methacrylic anhydride; graphene oxide; gelatin; carrageenan; 2-hydroxy-2-methylpropiophenone;
silica nanoparticles; silicone oil; amoxicillin; vascular endothelial growth factor

13

composite
hydrogel

photothermal poly(γ-glutamic acid) (γ-PGA); EDC; MgCl2; KOH; gallic acid; graphene oxide (GO); AgNO3 141

composite
hydrogel

photothermal methylacrylic anhydride; gelatin; 2-methoxy-4-methylphenol; 1-propanol; sodium periodate;
sodium alginate; vancomycin; quaternary ammonium salt chitosan; curcumin; zinc acetate

7

composite
hydrogel

conductive gelatin (Type A); methacrylate anhydride; chitosan; GO; glycidyltrimethylammonium chloride (GTMAC);
glycidyl methacrylate; APS; TEMED

142

composite
hydrogel

conductive chitosan; glacial acetic acid; GTMAC; glycidyl methacrylate (GMA); PF127;
triethylamine; anhydrous dichloromethane; acryloyl chloride; multiwalled CNTs; APS; TEMED

143
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γ-polyglutamic acid by forming intramolecular amide bonds,
intermolecular amide bonds, and dynamic Schiff base bonds.
The 3D network of the hydrogel provides stronger mechanical
properties for the hydrogel and avoids secondary damage when
removing the hydrogel.
In addition to the multinetwork hydrogel, double-layer

hydrogel dressing is a new wound healing strategy that can
simulate the skin bilayer structure.126−128 The upper layer acts
as a protective layer to prevent water loss and bacterial

infection, and the lower layer has high absorption and
adhesion. Li et al. made polycaprolactone solution into
gradient modulus microgrid by electrostatic spinning com-
bined with angle collector, and added antiadhesion silicone oil
layer on the surface of microgrid by penetration principle
(Figure 3).62 The hydrogel layer was prepared by mixing
acrylic acid, gelatin, N-hydroxysuccinimide acrylate, gelatin
methacrylate, and α-ketoglutarate. Finally, the composite patch
was prepared by ultraviolet (UV) cross-linking. In the study,

Figure 4. (A) schematic diagram of the preparation process and the physical self-binding and controlled release of drug-carrying particles and
images of the self-healing process of the scaffolds. (a) Photonic crystal templates. (b) Light-cured polymer hybrid microspheres. (c) Hyaluronic
acid methacryloyl/gelatin methacryloyl (HAMA/GelMA) inverse opal. (d) Drug-coated readhesive particles. (e) Drug-carrying particles at the
wound site. (f) The self-binding process and the release of drug from the particles (g). (B) (a) Schematic representation of the self-healing process.
Patterns are formed by mixed particles with single (b), dual (c), or multiple (d) structural colors. (e) A three-dimensional pattern formed by
particles. The scale bar is 200 μm. Reprinted with permission from ref 13. Copyright 2022, American Chemical Society.
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the patch can be firmly adhered to the surface of the nonplanar
wet tissue and play a role in sealing the wound to prevent
leakage. Concomitantly, the top layer of the oil-immersed
surface can prevent the patch from adhering to the
surrounding tissue. Surprisingly, the patch can also adjust the
Young’s modulus of the entire patch by changing the number
of layers of the spinning microgrid, and adapt to the stress
changes of different organ tissue wounds with the best gradient
modulus. These effects are difficult to achieve with sutures or
ordinary hydrogel adhesives.
It is worth noting that the complexity of preparation

methods for high-strength hydrogels may be prevalent, which
may be an obstacle limiting their development. Simplifying the
preparation method of high-mechanical-property hydrogels
and realizing mass production are promising future develop-
ment directions. It is a difficult challenge for biomaterials to
have both high mechanical properties and flexibility. In
addition, hydrogels with high mechanical properties should
also allow the coexistence of biological tissue growth. The
materials of high-mechanical-property hydrogel are listed in
Table 2.
3.2. Self-Adaptive. It is well-known that the traumatic

microenvironment is constantly undergoing dynamic changes
as the repair process proceeds.8 Self-adaptive hydrogels, like
human tissues, have the ability to dynamically respond to the
wound microenvironment.106 Reversible interactions (non-
covalent or covalent bonds) are considered to be an effective
method to induce the self-adaptability of hydrogels.99 It mainly
includes the hydrogen bond, host−guest interaction, metal
coordination, imine bond, boric acid bond, disulfide bond,
Diels−Alder reaction, Michael addition reaction, and so
on.106−112,129 They confer self-healing properties to the
composite hydrogel through constant sacrifice and regener-
ation between bonds.129 Polydopamine contains unique
structures such as catechol and amine, which can undergo
noncovalent binding (hydrogen bonding, π−π interaction,
etc.) and covalent binding (Schiff base reaction, Michael
addition reaction, etc.).130 Therefore, polydopamine is widely
used in tissue engineering as an important component for self-
adaptation.
Liang et al. inspired by mussels and brown algae, a dynamic

hydrogel was designed by Schiff base bond and catechol-Fe
coordination bond cross-linking.106 Because the catechol
structure is noncovalent cross-linked by chelating iron ions,
the hydrogel is endowed with self-healing properties. In this
paper, the temperature-dependent adhesion ability of the
hydrogel makes it have shape adaptability, fault tolerance and
repeatable thermal response adhesion properties. These
properties increase operation convenience and patient
compliance. In another study, Shao et al. designed an adaptive
multifunctional hydrogel with self-healing and injectability
based on borate ester bonds.107 Experiments show that the
hydrogel can scavenge reactive oxygen species (ROS) and
release deferoxamine on demand to promote angiogenesis and
cell proliferation. Wang et al. developed and prepared a self-
adhesive hydrogel inverse opal particle used in the form of
spray (Figure 4).13 They used methacryloylate hyaluronic acid,
methacryloylate gelatin and graphene oxide quantum dots to
make inverse opal scaffolds. The hydrogel particles obtained by
adding drug-loaded gelatin and carrageenan into the scaffold
undergo liquid conversion under near-infrared irradiation to
form a flexible patch. This patch has a three-dimensional
interconnected porous structure. The most novel is that it can

monitor the release of drugs by visualizing the structural color
changes of the photonic band gap.
Self-healing hydrogels have significant advantages as

injectable delivery platforms due to their excellent properties
and can also be combined with intelligent systems to prepare
smart delivery platforms, which are promising for clinical
applications. However, clinical translation of adaptive hydro-
gels should also ensure that the materials are nontoxic,
nonimmuno-rejection, and well biodegradable after implanta-
tion into the human body. Table 2 shows some examples of
self-healing hydrogel.
3.3. Photothermal Performance. Studies have shown

that human tissues can produce a “hot spring effect” at 30−42
°C, thereby stimulating local microcirculation blood flow,
promoting cell proliferation, and promoting angiogene-
sis.131−133 However, the human body cannot withstand this
temperature condition for a long time. Therefore, how to use
this temperature locally in wound healing for wound repair
treatment has attracted the research interests. As an important
platform for photothermal therapy, photothermal hydrogel
shows attractive advantages in antibacterial therapy and wound
healing due to its excellent biochemical properties.134 Photo-
thermal agents are usually added to the hydrogel system to
prepare photothermal hydrogels.135 Photothermal agents
include metals and metal compounds,136,137 carbon materi-
als,138 and organic materials (e.g., polydopamine130,136). Qi et
al. prepared photothermal hydrogel by loading Ag on the
surface of polydopamine nanoparticles and encapsulating it
into a cationic guar gum hydrogel network.136

Metal−organic framework (MOF) has good photothermal
properties.139 Under the irradiation of 808 nm near-infrared
light, MOF can form a low-high temperature environment in
the wound.140,141 Huang et al. synthesized a MOF multifunc-
tional composite hydrogel (QCSMOF-Van) loaded with
vancomycin (Van) and coated with quaternary ammonium
salt chitosan (QCS) by free radical polymerization and Schiff
base reaction (Figure 5).7 Due to the addition of metal Zn2+
and vancomycin, the hydrogel has intelligent bacterial capture
ability and can quickly kill the bacteria after capture. In
addition, the addition of curcumin makes the hydrogel have
anti-inflammatory properties. The experimental results show
that it can also accurately regulate the balance of macrophage
M1/M2 phenotype, thereby accelerating the wound healing
process.
It is worth drawing our attention to the fact that in

photothermal therapy for wound repair, the intensity and
penetration of the light used should be different compared to
oncological treatments because the therapeutic purpose is not
exactly the same. When applying photothermal therapy to
wound repair, special attention should be paid to whether it
will cause thermal damage to tissues (whether injured tissues
or surrounding healthy tissues). Combining photothermal
therapy with other treatment modalities may be a promising
strategy compared to photothermal therapy alone. The
materials of photothermal hydrogel are listed in Table 2.
3.4. Conductive. With the emergence and development of

new nanomaterials, it provides a new idea for the performance
improvement of hydrogels.94,95 The introduction of new
nanomaterials can endow hydrogel patches with unique
electrical and optical properties, so that they can be directly
combined with physical therapy, photothermal therapy or
biosensing.127,142,143 When the appropriate frequency of
electrical stimulation is introduced in the treatment of
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wound healing, it has the advantages of high efficiency, small
side effects, and local small area application.144 The
preparation of conductive hydrogels usually involves introduc-
ing conductive substances into the hydrogel system, including
metal and metal compounds,145,146 carbon materials,20,142

conductive polymers,147 etc. Wang et al. fabricated conductive
hydrogel patches from antibacterial silver nanowires (AgNW)
and methacrylic acid alginate (Figure 6).145 Experiments show
that the patch not only has antibacterial properties, but also

can promote orderly cell proliferation, improve re-epithelializa-
tion and tissue remodeling, induce directional regeneration and
reduce scar formation. Different from traditional wound
dressings and intravenous injection, as a new drug delivery
system composed of microneedle arrays, microneedles have
attracted extensive attention due to their noninvasive, simple
operation, local controllable administration, and different drug
loading.97,98,148 Zhang et al. used polyethylene glycol diacrylate
and 2-hydroxy-2-methylpropiophenone as materials to prepare
eagle claw-like clamped microneedles.146 The W-shaped liquid
metal (LM) is embedded to connect the tip of the
microneedle, and finally connected with the ventilated gauze.
The double-layer conductive hydrogel microneedle patch is
formed by UV irradiation. The eagle-claw-like clamping
structure of the patch enables the patch to adhere firmly to
the skin, and the stable space electric field provided by LM can
guide cell migration and accelerate wound healing.
Conductive hydrogels have great potential for wound

healing due to their softness and wide adjustability. However,
there are still many challenges to be addressed. The dispersion
and stability of conductive materials need to be guaranteed.
Hydrogels have swelling properties. It should be ensured that
there is a difference in conductivity before and after hydrogel
swelling. The stability of the conductivity of conductive
hydrogels under physiological conditions should also be
explored to ensure the stable transmission of electrical signals.
The stability of the electrode and power supply connecting the
conductive hydrogel is also an important factor to be
considered. The materials of conductive hydrogels for wound
repair and regeneration are shown in Table 2.

4. OTHERS
In addition to the nanofibers and composite hydrogels
discussed above, new biomaterials such as nanoadhesives,
microrobots, mRNA nanosensors, and exosomes have been
developed for wound repair. The introduction will be
expanded below. Table 3 summarizes other types of materials
used in wound repair.
4.1. Nanoadhesives. In recent years, nanoadhesives have

received widespread attention due to nanobridging effects.

Figure 5. Schematic diagram of photohydrothermal gel preparation
and the characterization images of MOF and QCSMOF. (a) Synthesis
of QCSMOF-Van. (b) Synthesis of gelatin methacrylate (GelMA)
and sodium methacrylic acid oxidized alginate (OSAMA). (c)
QCSMOF-Van Hydrogel was applied to chronic wounds. TEM
images of (D) MOF and (E) QCSMOF. (F) QCSMOF
corresponding EDX element mapping analysis. Reprinted with
permission from ref 7. Copyright 2022, American Chemical Society.

Figure 6. Conductive hydrogels. (a) Schematic diagram of the preparation. (b) SEM images of AgNW and electrode cross section. (c) Photograph
of the sample. Reprinted with permission from ref 145. Copyright 2022, Elsevier.
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Nanobridging has significant advantages over other biomate-
rials in promoting deep and narrow wound closure.149

Nanobridging allows nanoparticles to function not simply as
individual dispersions in the wound environment but rather
guarantees that the nanoparticles will fulfill their unique role
while also possessing the ability to adhere to the wound
interface.66 At the physiological level, ROS act as a messenger
of cell redox reaction.150 When its concentration is too high, it
acts as an oxidant to induce oxidative stress in vivo and
resulting in cytotoxicity. Therefore, it is of great significance to
control the level of ROS during wound healing. Huang et al.
prepared silica hybrid mesoporous nanoparticles with highly
integrated polydopamine by template synthesis method, and
prepared polymer entangled porous nanobinder by mixing the
particles with PVA solution through hydrogen bond
entanglement (Figure 7).66 Another study has shown that
the prepared nanocomposites can enhance ROS scavenging
ability, and also has anti-inflammatory and angiogenesis
functions.151

4.2. Microrobots. Most of the biomaterials are based on
passive transport for drug release, which is susceptibly limited
by the concentration difference. The development of self-
propelled power systems with navigation and high tissue
penetration capabilities has now become a research boom.152

Swimming biohybrid microrobots can have navigation,
penetration, and drug release capabilities without additional
fuel. This allows the opportunity for highly sensitive biosensing
and active drug release.153 Inspired by microalgae, Choi et al.
used the electrostatic interaction between chitosan and heparin
to prepare nanocomposites for the surface coating of
Chlamydomonas reinhardtii, and designed a biological hybrid
microrobot (Figure 8).154 In the study, a microfluidic device155

simulating blood clots was used to evaluate the fluidity of the
robot, and the experimental data confirmed its ability to
penetrate medium-density blood clots. The research shows
that the microrobot can move autonomously at a speed of 33.3
μm/s and has the ability of photosynthesis. In addition, it can
also regulate the immune response by binding to the
inflammatory chemokine interleukin-8 and monocyte chemo-
attractant protein-1.
4.3. mRNA Nanosensors. Since wound healing is a

dynamic process, it is meaningful to accurately determine
which healing stage the wound is in. This will reduce the need
to replace or remove the dressing for examination and enable
targeted treatment. Such inventions are especially suitable for
patients with chronic wounds. RNA-based therapeutics has
great application prospects.156 Hwang et al. designed a mRNA
nanosensor that can be used to monitor the healing process of
diabetic wounds (Figure 9).157 The sensor monitors the state
of wound healing in real time by locally applying nano-optical
sensors. After a large number of screenings of biomarker genes,
the final prepared PECAM1 sensor can reveal the inflamma-
tory stage of ischemic wounds, and the FSP1 sensor can
monitor the progress from inflammation to proliferation.
However, since mRNA may also be expressed in other types of
cells, the signal monitoring of these biomarkers may not have
excellent specificity. Therefore, a lot of efforts are still needed
to apply mRNA nanosensor to clinical practice. Nevertheless,
this study still provides a new direction strategy for new wound
healing materials.
4.4. Exosomes. The discovery of exosomes provides a new

idea for the preparation of nanocarriers with good biocompat-
ibility, more accurate and efficient targeting. Exosomes areT
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recognized as an effective carrier for intercellular communica-
tion, with a size of 30−150 nm,158 less cytotoxicity, and
immunogenicity. As previously reported, almost all cells
produce and secrete exosomes. Therefore, the selection of
exosome donor cells is very important. It can prevent allergic
reactions after administration, and can maintain the stability of
the exosome system in the blood, and finally successfully
deliver the drug to the targeted site.159−162 Recent studies have
shown that exosomes are also associated with the progression
of various diseases, including cancer.163 It can be seen that
effective identification of cell markers related to wound healing
can provide ideas for precise targeted therapy of exosomes.
The extraction methods of exosomes include: density

gradient centrifugation (including ultracentrifugation),164

ultrafiltration,165 and size exclusion chromatography,158 etc.
At present, mesenchymal stem cells used for exosome research
are bone marrow-derived mesenchymal stem cells, embryonic-
derived mesenchymal stem cells, umbilical cord-derived
mesenchymal stem cells, and adipose-derived mesenchymal
stem cells, etc.166

With the further study of the purification, separation, and
application of exosomes, it has been found that simple

exosome delivery is prone to problems such as uncontrollable
release and short survival time. The hydrogel has multifunc-
tional adjustability and is used to encapsulate exosomes
(Figure 10).167,168 Yuan et al. made a methacrylate gelatin/
polyethylene glycol diacrylate microneedle patch (MNs).169

The MNs patch was loaded with Tazarotene and exosomes
derived from HUVECs. The results show that the patch can
accelerate collagen deposition, epithelial regeneration, and
angiogenesis in wound tissue.
With the development of research, exosomes have also

developed methods such as ultrasonic targeted release and
multifunctional mesoporous bioactive glass release.170 The
intrinsic properties of exosomes in regulating complex
intracellular pathways make them have potential application
value in the treatment and control of many diseases.

5. CONCLUSIONS AND FUTURE PROSPECTS
In this review, we discuss the current status of the development
and preparation of wound materials in wound healing and
tissue regeneration. Through analysis and summary, we
introduce the great potential of such materials in managing
and promoting the wound healing process.

Figure 7. (A) Preparation and application of a nanoadhesive schematic. (B) The morphology and structure of MS-PDA particles. TEM and
elemental mapping images of (a) MS-PDA-34, (b) MS-PDA-45, and (c) MSPDA-56. Reprinted with permission from ref 66. Copyright 2022,
Elsevier. MS-PDA: hybrid mesoporous silica nanoparticles with highly integrated polydopamine.
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Once the tissue is damaged, it is difficult to fully recover for
various reasons, and it is impossible to have complete functions
as the original tissue. Therefore, it is of clinical significance to
make new materials with ideal properties for wounds. The ideal
wound dressing needs to meet the following requirements: (1)
good biocompatibility and biodegradability; (2) the ability to
maintain a moist microenvironment to promote the migration
of host cells to the wound; (3) the ability to protect the
internal environment of the tissue as a defensive barrier; (4)
good tissue adhesion; (5) rapid hemostasis; (6) antibacterial
and anti-inflammatory effects; (7) enhanced cell activity by

delivering therapeutic drugs; (8) allowing wound tissue to
deform and function like intact tissue before injury; and (9)
real-time monitoring of wound healing process and regulation.
With the development of science and technology, more and
more advanced technologies (such as microfluidic generation;
electrostatic spinning; 3D printing and wireless sensing) have
been introduced into the strategy. The research and develop-
ment trend of wound dressings also tends to be more
multifunctional and specific. Wound fluid pH, temperature,
oxygen and moisture can also be used as diagnostic parameters
to evaluate wound condition. However, for different skin
tissues and structures, functional materials with unique and
special intelligent response are needed. This also further
promoted the development of medicine, physical chemistry,
computer science, and other disciplines.
Although the prospect is promising, there is currently no

uniform measurement standard for the performance of novel
materials applied to wound repair. Most of the studies used
conventional dressings as a control group, and whether this is
comparable may need to be further explored. It can be seen
that the clinical transformation of materials is a key issue,
which needs to be solved urgently and is of great significance.
This challenge would require concerted efforts from scientists,
designers, researchers, and clinicians. It is also important to
optimize the preparation process before the clinical trans-
formation of the material. The process steps for the
preparation of biomaterials should be as stable and simple as
possible, and the biomaterials should be prepared in a way that

Figure 8. (A) Schematic diagram for making biohybrid microrobots. (B) Biorobots act as oxygen deliverers and enhance inflammatory cytokine
clearance during wound healing. Reprinted with permission from ref 154. Copyright 2022, John Wiley and Sons.

Figure 9. (A) Schematic diagram of the mRNA nanosensor. (B)
Schematic of coculturing the nanoflares with 3D spherical cells.
Reprinted with permission from ref 157. Copyright 2022, John Wiley
and Sons.
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guarantees the stability of their properties. Existing research
needs a lot of effort if it is to be put into mass production.
Increasing numbers of biological material can be put into
clinical reality and can alleviate the pain of patients are what we
look forward to.
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