
INTRODUCTION

In 1969, Cosens and Manning (1969) discovered that Dro-
sophila with mutations in a peculiar gene was defective and 
displayed transient light-induced receptor potentials (TRPs) 
in response to continuous light exposure, causing visual im-
pairment in photoreceptor cells. This phenomenon was ex-
plained by a deletion in ion channels, and led to the discovery 
of “TRP genes” that were named TRP channels. To date, the 
TRP channels superfamily contains 28 members in mammals 
and is subdivided into six subfamilies: TRPA, TRPC, TRPML, 
TRPM, TRPN, TRPV and TRPP, all of which permeate cat-
ions (Montell, 2005). The canonical transient receptor poten-
tial channels (TRPCs) are the first encoded TRP gene family 
in mammals and are the most dominating non-voltage-gated, 
Ca2+-permeable cation channels in various cells (Zhu et al., 
1995). TRPCs fall into four groups in terms of their amino acid 
homology and similarities in function: TRPC1, TRPC2 (as a 
pseudogene in humans), TRPC4/5, and TRPC3/6/7 (Table 1) 
(Nilius and Voets, 2005; Minke, 2006). The seven subtypes 
have an invariant sequence in common in the C-terminal tail 
called a TRP box (Philipp et al., 2000) and include three to 

four ankyrin-like repetitive sequences in the N-terminus (Mon 
tell et al., 2002). Many subunits of TRPCs are able to coas-
semble. There exist heteromultimeric channels that consist of 
heterologously expressed and endogenous TRPC monomers 
(Nilius et al., 2007). Indeed, TRPC1, TPRC4 and TRPC5 can 
form heteromers. Similarly, TRPC3, TRPC6, and TRPC7 form 
heteromers. In terms of activation mechanisms, members of 
the TRPC3, TRPC6 and TRPC7 subtypes can be stimulated 
by diacylglycerol (DAG) (Hofmann et al., 1999), which is the 
phospholipase C (PLC)-derived production regulating their 
physiological activation. In contrast, the TRPC1/4/5 subgroups 
are completely insensitive to DAG, which is still a controversial 
mechanism (Venkatachalam et al., 2003).

Most TRPCs are inserted in the plasma membrane (PM) 
and can be hindered by blockers (Zhang et al., 2013). Gen-
erally speaking, G protein-coupled receptors (GPCRs) have 
important roles in the regulation of TRPCs. In some cases, 
lipid signals can regulate the signals from GPCRs to TRPCs 
(Kukkonen, 2011).

A cytosolic Ca2+ change may be induced by activation of 
specific GPCRs, including an initial transient increase result-
ing from release of calcium ions from the endoplasmic retic-
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ulum (ER)/sarcoplasmic reticulum (SR) and a subsequent 
sustained plateau phase via receptor-operated channels 
(ROCs) (Berridge et al., 2003). This latter manner of Ca2+ en-
try is named “receptor-operated Ca2+ entry” (ROCE) (Soboloff 
et al., 2005; Inoue et al., 2009). Another manner of Ca2+ en-
try has been termed “store-operated Ca2+ entry” (SOCE) via 
store-operated channels (SOCs) (Shi et al., 2016). SOCE oc-
curs linked to depletion of intracellular Ca2+ stores (Putney, 
1986; Ng and Gurney, 2001). Ca2+ refills depleted intracellular 
Ca2+ storages, directly accessing the SR/ER via SOCE. Al-
though the exact functional relationship between TRPC and 
SOCE/ROCE is still indistinct, it is clear that TRPCs are the 
main channels of SOCs and ROCs. In recent years, SOCs 
and ROCs have gained increased attention for their role in 
mediating Ca2+ influx in response to cell function and disease. 
Previous studies suggested that TRPC family members, ex-
cept TRPC2, are detectable at the mRNA level in the whole 

heart, vascular system, cerebral arteries, smooth muscle cells 
(SMCs) and endothelial cells (ECs) (Yue et al., 2015). TRPCs 
may participate in most cardio/cerebro-vascular diseases (Ta-
ble 2) and play important roles in reactive Ca2+-signaling in the 
cardio/cerebro-vascular system (Fig. 1).

Role of TRPCs in hypertension
Hypertension is a chronic cardiovascular disease charac-

terized by persistently elevated blood pressure and is a major 
risk factor for coronary artery disease, stroke, heart failure, 
and peripheral vascular disease. In recent years, numerous 
studies have focused on the relationship between primary hy-
pertension and TRPCs (Fuchs et al., 2010). In pathological 
states, some signaling factors are involved in the transition of 
SMCs into the proliferative phenotype, leading to an exces-
sive growth of SMCs (Beamish et al., 2010). Abnormal over-
growth of SMCs is implicated in various vascular diseases, 

Fig. 1. Molecular mechanism underlying cardiovascular diseases associated with the changing of intracellular Ca2+ through TRPCs. GP-
CRs, releasing DAG and IP3 via PIP2 with the subsequent activation of PLC, were stimulated by Ang II and PE, which were hypertrophic 
stimuli. DAG stimulated ROCs, including TRPC3 and TRPC6, resulting in extracellular Ca2+ influx. IP3 activated SOCE in response to deple-
tion of intracellular Ca2+ stores by Ca2+ release in the SR/ER and subsequently activated TRPCs. The sustained TRPC-mediated Ca2+ entry 
directly activated the calcineurin-NFAT pathway, subsequently resulting in the activation of hypertrophic gene expression, including TRPC1, 
TRPC3 and TRPC6. Simultaneously, after activating, NFAT might activate TRPC gene expression through a positive feedback mechanism. 
TRPCs interacted with the LTCC through membrane depolarization, playing a role in regulation of cardiac pacemaking, conduction, ven-
tricular activity, and contractility. Mechanical stretch caused arrhythmia through the activation of SACs to elevate cytosolic Ca2+ levels. Fibro-
blast regulated by Ca2+-permeable TRPCs might be associated with AF, and fibroblast proliferation and differentiation are a central feature 
in AF-promoting remodeling. TRPCs maintained adherens junction plasticity and enabled EC-barrier destabilization by suppressing SPHK1 
expression to induce endothelial hyperpermeability, leading to atherosclerosis. In addition, the omission of extracellular Ca2+ with channel 
blockers (SKF96365, Pyr3) reduced monocyte adhesion and ATP-induced VCAM-1 and also relieved the progress of atherosclerosis. The 
rise of cytosolic [Ca2+]i promoted SMC proliferation. TRPC channels associated with vascular remodeling caused hyperplasia of SMCs. More-
over, TRPCs participated in blood pressure regulation due to receptor-mediated and pressure-induced changes in VSMC cytosolic Ca2+. Sig-
naling via cGKI in vascular smooth muscle, by which endothelial NO regulated vascular tone, caused VSMC contraction. Activated TRPCs 
can activate downstream effectors and CREB proteins that have many physiological functions; TRPCs activated in neurons are linked to 
numerous stimuli, including growth factors, hormones, and neuronal activity through the Ras/MEK/ERK and CaM/CaMKIV pathways. GP-
CRs, G protein-coupled receptor; Ang II, Angiotensin II; PE, phenylephrine; ROCs, receptor-operated channels; SOCE, store-operated Ca2+ 
entry; LTCC, L-type voltage-gated calcium channel; SACs, stretch-activated ion channels; AF, atrial fibrillation; SPHK1, sphingosine kinase 
1; VCAM-1, Vascular cell adhesion molecule-1; SMCs, smooth muscle cells; VSMC, vascular smooth muscle cells; cGKI, cGMP-dependent 
protein kinase I; CREB, cAMP/Ca2+- response element-binding.
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including hypertension (Beamish et al., 2010). Previous stud-
ies have convincingly suggested that several TRPC members 
are involved in hyperplasia of SMCs. TRPC1/3/6 all have been 
involved in enhanced proliferation and phenotype switching of 
SMCs (Dietrich et al., 2005; Takahashi et al., 2007; Koenig et 
al., 2013). Kumar et al. (2006) suggested that TRPC1 was up-
regulated in rodent vascular injury models and in human neo-
intimal hyperplasia after vascular damage. In coronary artery 
SMCs, upregulation of TRPC1 results in angiotensin-II (Ang 
II)-mediated human coronary artery SMC proliferation (Taka-
hashi et al., 2007). Moreover, other studies found that the vis-
ible whole-cell currents were triggered by passive depletion 
of Ca2+ storages in vascular smooth muscle cells (VSMCs) in 
wild type mice, but not in Trpc1-/- mice (Shi et al., 2012), sug-
gesting TRPC1 contributed to the alteration of whole-cell cur-
rents in VSMCs (Shi et al., 2012).

In addition, TRPC3 also plays a pivotal role in Ca2+ signal-
ing and a pathophysiological role in hypertension. The pre-
vious studies suggested TRPC3 levels were elevated in pa-
tients with hypertension as well as in the pressure-overload 
rat and the spontaneous hypertensive rat (SHR) models (Liu 
et al., 2009; Onohara et al., 2006; Thilo et al., 2009). In mono-
cytes, DAG-, thapsigargin- and Ang II-induced Ca2+ influxes 
were elevated in response to pathological state in SHR. How-
ever, further studies proved that downregulating TRPC3 by 
siRNA or applying with Pyrazole-3 (Pyr3), a highly selective 
inhibitor of TRPC3, reduced DAG-, thapsigargin- and Ang II-
induced Ca2+ influx in monocytes from SHR (Liu et al., 2007a; 
Chen et al., 2010), prevented stent-induced arterial remodel-
ing, and inhibited SMC proliferation (Yu et al., 2004; Schleifer 
et al., 2012). Similarly, compared with normotensive patients, 
increased expression of TRPC3 and a subsequent increase 
in SOCE has been noticed in monocytes from hypertension 
patients (Liu et al., 2006, 2007b). These data show a positive 
association between blood pressure and TRPC3, indicating 
an underlying role for TRPC3 in hypertension.

TRPC6 is a ubiquitous TRPC isoform expressed in the 
whole vasculature, which plays a pivotal role in blood pres-
sure regulation because of its physiological importance in both 
receptor-mediated and pressure-induced increases of cyto-
solic Ca2+ in VSMCs (Toth et al., 2013). Studies suggested that 
cGMP-dependent protein kinase I (cGKI), which was implicat-
ed in the regulation of smooth muscle relaxation, inhibited the 
activity of TRPCs in SMCs (Kwan et al., 2004; Takahashi et 
al., 2008; Chen et al., 2009; Dietrich et al., 2010) and regulat-
ed vascular tone via endothelial nitric oxide (NO) (Loga et al., 
2013). However, the knockout of TRPC6 might injure endothe-
lial cGKI signaling and vasodilator tone in the aorta (Loga et 
al., 2013). Although deletion of TRPC6 decreases SMC con-
traction and depolarization induced by pressure in arteries, 
the basal mean arterial pressure in Trpc6-/- mice is about more 
than 7 mm Hg higher than that in wild type mice (Welsh et al., 
2002; Dietrich et al., 2005), indicating that TRPC6 participated 
in smooth muscle contraction. Similarly, in deoxycorticoste-
rone acetate (DOCA)-salt-hypertensive rats, overexpression 
of TRPC6 strengthened agonist mediated VSMC contractil-
ity companied with increased mean blood pressure (Bae et 
al., 2007). Additionally, mineralocorticoid receptor-induced 
TRPC6 mRNA level was elevated in the aldosterone-treated 
rat A7r5 VSMCs, suggesting that heightened TRPC6 expres-
sion importantly participates in increased VSM reactivity (Bae 
et al., 2007).

Role of TRPCs in pulmonary arterial hypertension
Pulmonary arterial hypertension (PAH) is characterized by 

a thickening of the pulmonary arterial walls, which can cause 
right heart failure (Yu et al., 2004). Increased pulmonary vas-
cular resistance is a primary factor in the progression of PAH. 
Ca2+ entry from the extracellular space, acting as a crucial 
mediator, is implicated in vasoconstriction (through its pivotal 
effect on pulmonary artery smooth muscle cells (PASMCs) 
contraction) and vascular remodeling (through its stimulatory 
effect on PASMC proliferation) (Kuhr et al., 2012; Weber et 
al., 2015). The most frequently expressed isoforms of TRPC 
in VSMCs are TRPC1, TRPC4, and TRPC6; TRPC3, TRPC5, 
and TRPC7 are less frequently detected (Inoue et al., 2006; 
Maier et al., 2015). Studies showed that Ca2+ entry improved 
the level of cytosolic Ca2+ through SOCs and ROCs (which 
is formed by TPRCs), and sufficient Ca2+ in the SR induced 
VSMC proliferation (Birnbaumer et al., 1996; Golovina et al., 
2001; Bergdahl et al., 2003; Satoh et al., 2007; Seo et al., 
2014).

TRPC1, TRPC4 and TRPC6 are involved in hypoxic pul-
monary vasoconstriction, which is related to increased SOCE. 
Additionally, SOCE contributes to basal intracellular Ca2+ 
concentration ([Ca2+]i) and the proliferation and migration of 
PASMCs in rat (Lu et al., 2008). Malczyk et al. (2013) dem-
onstrated that TRPC1 played an important role in hypoxia-
induced PAH, as hypoxia-induced PAH is alleviated in Trpc1-/- 

mice. Xia et al. (2014) found that TRPC1/6 are crucial for the 
regulation of neo-muscularization, vasoreactivity, and vaso-
motor tone of pulmonary vasculatures; the combined actions 
of the two channels have a distinctly larger influence using 
Trpc1-/-, Trpc6-/- and Trpc1-/-/Trpc6-/- mice. Significantly, another 
study confirmed the upregulation of TRPC1/6 expression in 
murine chronic hypoxia PAH models (Wang et al., 2006). Si-
lence of TRPC1 and TRPC6 specifically attenuated thapsigar-
gin- and 1-oleoyl-2-acetyl-sn-glycerol (OAG)-induced cation 
entries, respectively, indicating that TRPC1-mediated SOCE 
and TRPC6-mediated ROCE are upregulated by chronic hy-
poxia (Lin et al., 2004). TRPC4 is also involved in PAH. In 
monocrotaline-induced PAH rats, TRPC1 and TRPC4 protein 
levels were both increased significantly, resulting in enhanced 
vasoconstriction to endothelin-1 (ET-1) (Liu et al., 2012). In 
addition, siRNA specifically targeting TRPC4 reduced increas-
es in TRPC4 expression and capacitative calcium entry (CCE) 
amplitude and inhibited ATP-induced PASMC proliferation 
(Zhang et al., 2004).

The expression and function of TRPCs are variously regu-
lated by molecules in PAH. Wang et al. (2015) implied that 
both bone morphogenetic protein-4 (BMP4) and hypoxia in-
ducible factor-1a (HIF-1a) upregulated TRPC1 and TRPC6, 
leading to elevated basal [Ca2+]i in PASMCs, driving the devel-
opment of chronic hypoxia-induced PAH (Wang et al., 2015). 
Another study found that TRPC expression was found absent 
in mice partially deficient for HIF-1a (Wang et al., 2006). In hu-
man PASMCs, siRNA of the HIF-1a reduced hypoxia-induced 
BMP4 expression and knockout of either HIF-1a or BMP4 
abrogated hypoxia-induced basal cytosolic Ca2+ increase and 
TRPC expression (Zhang et al., 2014; Wang et al., 2015). 
Also, TRPCs have been recognized as reactive oxygen spe-
cies (ROS)-activated channels and it is suggested that they 
are critical for hypoxia associated with vascular regulatory pro-
cedures in lung tissue.

TRPCs could be regulated by pharmacological intervention 
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during PAH. The treatment of experimental PAH with sildenafil 
and sodium tanshinone IIA sulfonate suppresses TRPC1/6 ex-
pression (Lu et al., 2010; Wang et al., 2013a). SAR7334, an 
inhibitor of TRPC6, suppresses native TRPC6 activity in vivo 
(Maier et al., 2015) and opens new opportunities for the inves-
tigation of TRPC function. In the lung and PASMC from idio-
pathic PAH patients, the mRNA and protein expression levels 
of TRPC6 were much higher than that from normotensive or 
secondary PAH patients. Also, inhibition of TRPC6 expres-
sion markedly attenuated idiopathic PAH-PASMC prolifera-
tion (Yu et al., 2004). As a consequence, the participation of 
TRPC1/4/6 are crucial for PAH.

These results suggest that overexpression of TRPC may 
partially contribute to the increased PASMC proliferation, hint-
ing at a promising therapeutic strategy for PAH patients.

Role of TRPCs in cardiac hypertrophy
Cardiac hypertrophy serves as a common pathway in car-

diovascular diseases. It is the most important pathological 
foundation resulting in cardiogenic death. Although one study 
showed that the knockout of some TRPC genes did not re-
sult in abnormality in normal mice hearts (Yue et al., 2015). 
TRPCs have been demonstrated to play an important role in 
the pathological progress of cardiac hypertrophy through the 
mediation of ion channel activities and downstream signaling. 
Dysregulation of TRPCs may lead to maladaptive cardiac hy-
pertrophy.

Numerous studies have shown that TRPC expression and 
activity are up-regulated in pathological cardiac hypertrophy 
(Bush et al., 2006; Kuwahara et al., 2006; Ohba et al., 2007; 
Seth et al., 2009). Cardiac hypertrophy induced by transverse 
aortic constriction (TAC) was improved in Trpc1-/- mice. Mean-
while, downregulation of TRPC1 reduced SOCE and prevent-
ed ET-1-, Ang II-, and phenylephrine (PE)-induced cardiac hy-
pertrophy, indicating that deletion of TRPC1 avoided harmful 
influences in response to increased cardiac stresses in Trpc1-/- 

mice (Ohba et al., 2007). Also verified that TRPC1-mediated 
Ca2+ entry stimulated hypertrophic signaling in cardiomyo-
cytes (Seth et al., 2009). Similarly, cardiac pathological hyper-
trophy could be caused by stimulation of pressure overload or 
overexpression of the TRPC3 gene in cardiomyocytes from 
TRPC3 transgenic mice, and could be selectively inhibited 
by Pyr3 (Nakayama et al., 2006; Kiyonaka et al., 2009). Also, 
TRPC6 has been proposed as a critical target of anti-hyper-
trophic effects elicited via the cardiac ANP/BNP-GC-A path-
way (Kinoshita et al., 2010). However, a recent study showed 
Trpc6-/- mice resulted in an obvious augment in the cardiac 
mass/tibia length (CM/TL) ratio after Ang II, while the Trpc3-/- 
mice showed no alteration after Ang II injection. However, the 
protective effect against hypertrophy of pressure overload was 
detected in Trpc3-/-/Trpc6-/- mice rather than in Trpc3-/- or Trpc6-/- 

mice alone (Seo et al., 2014). Similarly, the newly developed 
selective TRPC3/6 dual blocker showed an obvious inhibition 
to myocyte hypertrophy signaling activated by Ang II, ET-1 
and PE in a dose-dependent manner in HEK293T cells as well 
as in neonatal and adult cardiomyocytes (Seo et al., 2014).

Although the TRPCs role in myocardial hypertrophy is con-
troversial, it is generally believed that calcineurin-nuclear fac-
tor of activated T-cells (Cn/NFAT) is a critical factor of microdo-
main signaling in the heart to control pathological hypertrophy. 
Studies found that transgenic mice that express dominant-
negative myocyte-specific TRPC3, TRPC6 or TRPC4 attenu-

ated the reactivity following either neuroendocrine-like or pres-
sure overload-induced pathologic cardiac hypertrophy through 
Cn/NFAT stimulation in vivo, demonstrating that blockades of 
TRPCs are necessary adjusters of hypertrophy (Dietrich et al., 
2006; Wu et al., 2010; Eder and Molkentin, 2011). 

Undoubtedly, TRPCs play an important role in cardiac hy-
pertrophy and can be regarded as new therapeutic target in 
the development of new drugs.

Role of TRPCs in atherosclerosis
Atherosclerosis is commonly considered a chronic disease 

with dominant accumulation of lipids and inflammatory cells of 
the arterial wall throughout all stages of the disease (Tabas et 
al., 2010). Several types of cells such as VSMCs, ECs, mono-
cytes/macrophages, and platelets are involved in the patho-
logical mechanisms of atherosclerosis. 

It has been reported that the participation of proliferative 
phenotype of VSMCs is a consequential part in atheroscle-
rosis. Cytoplasmic Ca2+ dysregulation via TRPC1 can medi-
ate VSMC proliferation (Edwards et al., 2010). Studies have 
established that TRPC1 is implicated in coronary artery dis-
ease (CAD), during which the expression of TRPC1 mRNA 
and protein are elevated (Cheng et al., 2008; Edwards et al., 
2010). Kumar et al. (2006)  showed the upregulated TRPC1 in 
hyperplastic VSMCs was related to cell cycle activity and en-
hanced Ca2+ entry using a model of vascular injury in pigs and 
rats. In addition, the inhibition of TRPC1 effectively attenuates 
neointimal growth in veins (Kumar et al., 2006). These results 
indicate that upregulation of TRPC1 in VSMCs is a general 
feature of atherosclerosis.

The vascular endothelium is a polyfunctional organ, and 
ECs can generate extensive factors to mediate cellular ad-
hesion, smooth muscle cell proliferation, thromboresistance, 
and vessel wall inflammation. Vascular endothelial dysfunc-
tion is the earliest detectable manifestation of atherosclerosis, 
which is associated with the malfunction of multiple TRPCs 
(Poteser et al., 2006). Tauseef et al. (2016) showed that 
TRPC1 maintained adherens junction plasticity and enabled 
EC-barrier destabilization by suppressing sphingosine kinase 
1 (SPHK1) expression to induce endothelial hyperperme-
ability. Also, Poteser et al. (2006) demonstrated that porcine 
aorta endothelial cells, which co-expressed a redox-sensitive 
TRPC3 and TRPC4 complex, could give rise to cation channel 
activity. Furthermore, mice transfected with TRPC3 showed 
increased size and cellularity of advanced atherosclerotic le-
sions (Smedlund et al., 2015). In addition, studies further sup-
ported the relevance of EC migration to the healing of arterial 
injuries, suggesting TRPC5 and TRPC6 were activated by hy-
percholesterolemia, which impairs endothelial healing in vitro 
and in vivo (Rosenbaum et al., 2015; Chaudhuri et al., 2016). 

Monocyte activation, adhesion to the endothelium, and 
transmigration into the sub-endothelial space are critical for 
early pathogenesis of atherosclerosis. The roles of TRPCs 
have been identified in the macrophage efferocytosis and sur-
vival, two crucial events in atherosclerosis lesion development 
(Tano et al., 2012). It has been shown that high D-glucose or 
peroxynitrite-induced oxidative stress significantly increased 
the expression of TRPCsin human monocytes (Wuensch et 
al., 2010). Vascular cell adhesion molecule-1 (VCAM-1) is im-
portant in monocyte recruitment to the endothelium as a criti-
cal factor in the development of atherosclerotic lesions. Smed-
lund et al. suggested that inhibition of TRPC3 expression 
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could significantly attenuate ATP-induced VCAM-1 and mono-
cyte adhesion (Smedlund and Vazquez, 2008; Smedlund et 
al., 2010), indicating TRPC3 is involved in atherosclerosis le-
sion development. The platelet also plays important roles in 
cardiovascular diseases, especially in atherosclerosis, by par-
ticipating in the formation of thrombosis and the induction of 
inflammation (Wang et al., 2016). Liu et al. (2008) investigated 
platelets in type II diabetes mellitus (DM) patients and found a 
time-dependent and concentration-dependent amplification of 
TRPC6 expression on the platelet membrane after challenge 
with high glucose. These results indicate that the incremental 
expression and activation of TRPC6 in platelets of DM pa-
tients may result in the risk of increasing atherosclerosis.

In summary, the pathophysiological relevance of TRPCs in 
several critical progresses has been linked to atherosclerosis.

Role of TRPCs in arrhythmia
Arrhythmia is a group of conditions in which the electrical 

activity of the heart is irregular, either too fast (above 100 beats 
per minute, called tachycardia) or too slow (below 60 beats per 
minute, called bradycardia). Several experiments have shed 
light on TRPC-regulated Ca2+ entry in arrhythmia. Sabourin et 
al. (2011) found that the existence of TRPC1,3,4,5,6 and 7 in 
the atria and ventricle, via association with the L-type voltage-
gated calcium channel (LTCC), plays a role in the modulation 
of cardiac pacemaking, conduction, ventricular activity, and 
contractility during cardiogenesis. Mechanical stretch is one 
of the causes of cardiac arrhythmia. It has been demonstrated 
that mechanical transformation of ventricular myocytes can 
modulate TRPC6. The process can be inhibited by GsMTx-4, 
which is a peptide isolated from tarantula venom and a spe-
cific inhibitor of stretch-activated channels (SAC) (Dyachenko 
et al., 2009; Anderson et al., 2013; Gopal et al., 2015).

One of the most common arrhythmias is atrial fibrillation 
(AF) (Nattel, 2011; Wakili et al., 2011). By researching fibro-
blast regulation by Ca2+-permeable TRPC3, Harada et al.  
(2012) found that AF increased expression of TRPC3 by ac-
tivating NFAT-mediated downregulation of microRNA-26. Fur-
ther, they found that AF induced TRPC3-dependent increase 
of fibroblast proliferation and differentiation, likely by mediat-
ing the Ca2+ entry that stimulates extracellular signal-regulated 
kinase signaling. TRPC3 blockade prevented AF substrate de-
velopment in a dog model of electrically maintained AF in vivo 
(Harada et al., 2012). In conclusion, by promoting fibroblast 
pathophysiology, TRPC3 is likely to play an important role in 
AF.

Role of TRPCs in ischemia reperfusion injury
Tissue injury led by ischemia reperfusion is the main cause 

of cell apoptosis and necrosis leading to myocardial infarc-
tion, stroke, and other deadly diseases. After focal cerebral 
ischemia, brain injury results from a suite of pathological pro-
gresses, including inflammation, excitotoxicity, and apoptosis. 
Researchers have indicated that an increase in cytosolic Ca2+ 
is a critical step in initiating myocardial cell apoptosis and ne-
crosis responding to ischemia reperfusion (Carafoli, 2002; 
Brookes et al., 2004). Several Ca2+ entry pathways, including 
the CCE and the Na+/Ca2+ exchanger channel, have been im-
plicated in mediating myocardial cell Ca2+ overload (Carafoli, 
2002; Brookes et al., 2004; Piper et al., 2004). An increasing 
number of studies show that members of the TRPC proteins 
are involved in regulating CCE. Given this growing evidence 

linking TRPC proteins to CCE in myocardial cells subjected 
to ischemia reperfusion injury, Liu et al. (2016) tested the 
assumption that increased expression of TRPC3 in myocar-
dial cells results in increased sensitivity to the injury after 
ischemia reperfusion, and found that the treatment of CCE 
inhibitor SKF96365 markedly improved cardiomyocytes vi-
ability in response to overexpressed TRPC3. In contrast, the 
LTCC inhibitor verapamil had no effect (Shan et al., 2008; Liu 
et al., 2016). These data strongly indicate that CCE mediat-
ed through TRPCs may lead to Ca2+-induced cardiomyocyte 
apoptosis caused by ischemia reperfusion injury.

Intracellular Ca2+ overload is also the major reason of neu-
ronal death after cerebral ischemia. TRPC6 protein is hy-
drolyzed by the activation of calpain induced by intracellular 
Ca2+ overload in the neurons after ischemia, which precedes 
ischemic neuronal cell death. The inhibition of proteolytic de-
generation of TRPC6 protein by blocking calpain prevented 
ischemic neuronal death in an animal model of stroke (Du et 
al., 2010). Studies found that the upregulated TRPC6 could 
activate downstream effectors cAMP/Ca2+-response element-
binding (CREB) proteins, which are activated in neurons 
linked to a number of stimuli including growth factors, hor-
mones, and neuronal activity through the Ras/MEK/ERK and 
CaM/CaMKIV pathways (Shaywitz and Greenberg, 1999; Tai 
et al., 2008; Du et al., 2010). It was also demonstrated that 
enhanced CREB activation activated neurogenesis, avoided 
myocardial infarct expansion, and reduced the penumbra 
region of cerebral ischemia and infarct volumes (Zhu et al., 
2004). Thus, TRPC6 neuroprotection relied on CREB activa-
tion. Similarly, Lin et al. (2013) demonstrated that resveratrol 
prevented cerebral ischemia/reperfusion injury through the 
TRPC6-MEK-CREB and TRPC6-CaMKIV-CREB pathway. 

The aforementioned results provide further evidence that 
TRPC3 and TRPC6 play roles in the mediation of cardiomyo-
cyte function and suggest that TRPC3 and TRPC6 may con-
tribute to increased tolerance to ischemia reperfusion injury. 

DISCUSSION

Mechanisms including elevated activation or expression 
of TRPCs that partake in mediating Ca2+ influx activated by 
GPCRs offer the chance to interfere with Ca2+-dependent sig-
naling processes, thus playing a significant role in cardio/cere-
bro-vascular diseases. The primary regulatory paradigm for 
most of these activities takes charge of total cytosolic Ca2+ or 
the propagation of intracellular Ca2+ signaling events that reg-
ulate cellular activity. Strong evidence indicates that TRPCs 
conduce to mechanical and agonist-induced SMC or fibroblast 
proliferation, cardiomyocytes apoptosis, and endothelium dys-
function. TRPCs were also present in Ang II-induced endothe-
lium-dependent vasodilation and elevated contractility, regula-
tion of vascular angiogenesis to participate in hypertension, 
pulmonary arterial hypertension, cardiac hypertrophy, athero-
sclerosis, arrhythmia, and ischemia reperfusion injury. These 
new findings permit a more comprehensive assessment of the 
molecular and cellular importance of TRPCs in physiology and 
pathophysiology. 

Many questions remain to be elucidated. Therefore, re-
searchers should keep a watchful eye on how the novel ef-
fects of TRPCs can be committed to human cardio/cerebro-
vascular diseases and clarify the clinical relevance of TRPC 
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activities. An improved understanding of the underlying mech-
anisms of cardiovascular and cerebrovascular diseases may 
assist in the design of new therapies and the identification 
of more selective pharmacological agonists and antagonists 
(Table 3) for TRPCs or interdependent channels as well as 
promote exciting chances to develop new therapies that pre-
vent or treat cardio/cerebro-vascular diseases.
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