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Abstract

Background

Retention in HIV treatment must be improved to advance the HIV response, but research to

characterize gaps in retention has focused on estimates from single time points and popula-

tion-level averages. These approaches do not assess the engagement patterns of individual

patients over time and fail to account for both their dynamic nature and the heterogeneity

between patients. We apply group-based trajectory analysis—a special application of latent

class analysis to longitudinal data—among new antiretroviral therapy (ART) starters in Zam-

bia to identify groups defined by engagement patterns over time and to assess their associa-

tion with mortality.

Methods and findings

We analyzed a cohort of HIV-infected adults who newly started ART between August 1,

2013, and February 1, 2015, across 64 clinics in Zambia. We performed group-based multi-

trajectory analysis to identify subgroups with distinct trajectories in medication possession

ratio (MPR, a validated adherence metric based on pharmacy refill data) over the past 3

months and loss to follow-up (LTFU, >90 days late for last visit) among patients with at least

180 days of observation time. We used multinomial logistic regression to identify baseline

factors associated with belonging to particular trajectory groups. We obtained Kaplan–Meier

estimates with bootstrapped confidence intervals of the cumulative incidence of mortality

stratified by trajectory group and performed adjusted Poisson regression to estimate

adjusted incidence rate ratios (aIRRs) for mortality by trajectory group. Inverse probability

weights were applied to all analyses to account for updated outcomes ascertained from
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tracing a random subset of patients lost to follow-up as of July 31, 2015. Overall, 38,879

patients (63.3% female, median age 35 years [IQR 29–41], median enrollment CD4 count

280 cells/μl [IQR 146–431]) were included in our cohort. Analyses revealed 6 trajectory

groups among the new ART starters: (1) 28.5% of patients demonstrated consistently high

adherence and retention; (2) 22.2% showed early nonadherence but consistent retention;

(3) 21.6% showed gradually decreasing adherence and retention; (4) 8.6% showed early

LTFU with later reengagement; (5) 8.7% had early LTFU without reengagement; and (6)

10.4% had late LTFU without reengagement. Identified groups exhibited large differences in

survival: after adjustment, the “early LTFU with reengagement” group (aIRR 3.4 [95% CI

1.2–9.7], p = 0.019), the “early LTFU” group (aIRR 6.4 [95% CI 2.5–16.3], p < 0.001), and

the “late LTFU” group (aIRR 4.7 [95% CI 2.0–11.3], p = 0.001) had higher rates of mortality

as compared to the group with consistently high adherence/retention. Limitations of this

study include using data observed after baseline to identify trajectory groups and to classify

patients into these groups, excluding patients who died or transferred within the first 180

days, and the uncertain generalizability of the data to current care standards.

Conclusions

Among new ART starters in Zambia, we observed 6 patient subgroups that demonstrated

distinctive engagement trajectories over time and that were associated with marked differ-

ences in the subsequent risk of mortality. Further efforts to develop tailored intervention

strategies for different types of engagement behaviors, monitor early engagement to identify

higher-risk patients, and better understand the determinants of these heterogeneous behav-

iors can help improve care delivery and survival in this population.

Author summary

Why was this study done?

• Retention in care is dynamic, with patients frequently moving in and out of care, but

existing analyses often reduce highly dimensional patient histories into categories of

“retained” and “unretained” at a particular time point, thus obscuring diverse patient

experiences up until that time.

• Uncovering groups defined by distinctive longitudinal engagement behaviors can both

improve identification of patients at elevated risk of bad outcomes and reveal when in

follow-up time those vulnerabilities emerge.

• Group-based trajectory modeling is a special case of latent class analysis that groups

observations from individuals over time into distinct developmental courses and is a

promising, but underutilized, method for characterizing engagement in HIV care.

• We use group-based multi-trajectory modeling to characterize how adherence and

retention in care changes over time among HIV-infected patients newly initiating anti-

retroviral therapy (ART) in Zambia and estimate the association between distinctive

patterns of engagement and subsequent mortality.

Longitudinal engagement trajectories and mortality in Zambia
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What did the researchers do and find?

• We used group-based multi-trajectory modeling to identify patient subgroups with dis-

tinctive longitudinal patterns with respect to 2 measures of engagement after newly ini-

tiating ART: (1) medication possession ratio—a validated adherence metric based on

pharmacy refill data—over the past 3 months and (2) and loss to follow-up (LTFU) (i.e.,

being greater than 90 days late for last visit).

• Among 38,879 patients newly initiated on ART in Zambia, we identified 6 distinct tra-

jectory groups: (1) consistently high adherence and retention (28.5%), (2) early nonad-

herence but consistent retention (22.2%), (3) gradually decreasing adherence and

retention (21.6%), (4) early LTFU with later reengagement (8.6%), (5) early LTFU with-

out reengagement (8.7%), and (6) late LTFU without reengagement (10.4%).

• The longitudinal patterns of engagement behavior that were identified remained very

consistent across subpopulations stratified by baseline patient characteristics.

• Sociodemographic, clinical, and facility-level characteristics at the time of ART initia-

tion were not strongly associated with membership in any trajectory group, based on

multinomial logistic regression.

• In adjusted multivariable Poisson regression, trajectory group membership was one of

the strongest predictors of mortality, with the “early LTFU with reengagement” group,

the “early LTFU” group, and the “late LTFU” group having higher rates of mortality

than the group with consistently high adherence/retention.

What do these findings mean?

• Patients frequently follow a limited number of distinctive temporal patterns in engage-

ment behaviors that exist across various subpopulations and settings. These patterns

may represent generalizable behavioral phenotypes driven by unified sets of underlying

behavioral determinants.

• Heterogeneity in longitudinal engagement behaviors is associated with marked differ-

ences in the subsequent risk of mortality that are similar in magnitude to, but not cap-

tured by, a 500-cells/μl difference in CD4 count at ART initiation.

• As baseline characteristics at the time of ART initiation were poorly associated with tra-

jectory group membership, we believe that longitudinally monitoring early retention

behaviors may be the best way to identify high-risk patients and opportunities for tar-

geted intervention.

• Future research should focus on understanding the underlying determinants of these

engagement patterns, determining how and when to provide tailored interventions for

specific types of engagement behaviors, and developing adaptive treatment strategies

that are based on patients’ observed engagement behaviors.

Longitudinal engagement trajectories and mortality in Zambia
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Introduction

Retention in HIV care is widely suboptimal across sub-Saharan Africa and represents a chal-

lenging but modifiable determinant of viral suppression and mortality [1]. Previous studies

have highlighted that retention can be dynamic, with patients frequently moving in and out of

care [2–7], often for diverse reasons [8,9]. Nevertheless, current analyses often reduce these

highly dimensional patient histories into estimates from a single time point and also obscure

heterogeneity between patients by estimating only population-level averages [10,11]. These

approaches provide little understanding about how individual patient engagement changes

over time, how engagement behaviors vary across the population, and, ultimately, how longi-

tudinal differences in retention patterns affect patient outcomes. Deeper exploration of reten-

tion by identifying groups of patients with different engagement patterns over time (i.e.,

distinct trajectories) could reveal uncharacterized but vulnerable populations who require

intensified support, as well as the particular periods of time when those vulnerabilities emerge.

Distinct longitudinal patterns of engagement in HIV care can potentially be uncovered using

novel analytical approaches such a group-based trajectory analysis and hold great promise for

advancing research on novel public health strategies for retention. Such approaches interrogate

longitudinal data to identify patient histories defined by patterns over time and thereby uncover

“behavioral phenotypes” that may not be captured by existing demographic or clinical charac-

teristics. Characterizing these temporal patterns and phenotypes may help identify high-risk

patients and time periods and also may reveal unique opportunities for targeted interventions

[8,12–14]. For example, evidence suggests that a large subgroup of antiretroviral therapy (ART)

initiators will consistently remain engaged in care and that these patients are likely at low risk

for poor outcomes [15]. Thus, their frequency of contact with the formal health system can be

safely de-escalated, which is currently the rationale behind many differentiated service delivery

models [16–18]. In contrast, some patients may have challenges with visit attendance and

adherence but remain in care, while others may oscillate between being retained and not

retained. Each pattern presents unique opportunities for when to intervene (i.e., after missed

visits or at the time of reengagement in care), and interventions may need to be tailored to the

different types of structural, health systems, or psychosocial challenges that underlie the distinc-

tive engagement patterns. Improving our understanding of longitudinal engagement patterns

can thus help identify distinct patient phenotypes and inform how to target and prioritize inter-

ventions in order to best address the diverse needs of patients [19].

In this analysis, we use group-based multi-trajectory modeling [20–22] to characterize how

adherence and retention in care change over time and to identify subgroups that exhibit dis-

tinctive patterns of engagement among HIV-infected patients newly initiating ART in Zambia.

We further examine baseline patient and facility-level characteristics associated with specific

engagement patterns, as well as the association of these engagement patterns with subsequent

mortality using population-representative estimates of mortality updated during a large multi-

stage survey sampling study [23].

Methods

Ethics statement

The study was approved by the University of Zambia Biomedical Research Ethics Committee

and institutional review boards at the University of California, San Francisco, and the University

of Alabama at Birmingham School of Medicine. The research in this paper was not prespecified

in the original study protocol and consists of secondary analysis of preexisting de-identified

data. This paper was prepared according to STROBE guidelines (S1 STROBE checklist).

Longitudinal engagement trajectories and mortality in Zambia
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Patient population and setting

We analyzed a cohort of HIV-infected adults (greater than or equal to 18 years old) who newly

initiated ART between August 1, 2013, and February 1, 2015, at 1 of 64 clinics in Zambia.

These clinics were operated by the Zambian Ministry of Health and received technical support

from the Centre for Infectious Disease Research in Zambia, a Zambian non-governmental

organization that supports implementation of HIV care delivery and research across 4 of the

10 provinces in Zambia. Patients were observed until July 31, 2015. At the time of this study,

patients were initially eligible for ART only if they had a CD4 count less than 350 cells/μl,

WHO clinical stage 3 or 4, or active tuberculosis, but Zambia then updated its HIV treatment

guidelines on April 1, 2014, to expand ART eligibility to those with a CD4 count between 350

and 500 cells/μl as well as to all pregnant and breastfeeding women under Option B+ [24,25].

After initiating treatment, patients were followed up monthly for at least the first 6 months,

after which they were eligible to have their visits spaced out to 3-month intervals if considered

stable.

Measurements

Measurements were obtained from the national electronic medical record (EMR) system used

in routine HIV care in Zambia, SmartCare. To populate the EMR system, providers first man-

ually complete paper clinical forms during routine patient encounters, and then data clerks

enter this information into the electronic database. We used patient sociodemographic charac-

teristics (e.g., age, sex, facility site), clinical characteristics (date of ART initiation, enrollment

CD4 count, WHO stage, TB diagnosis), and clinic visit and pharmacy refill history (dates,

medications dispensed, next scheduled appointment) for our analyses. Using methods previ-

ously described [23,26,27], we measured mortality by updating the existing EMR data with

current vital status ascertained after tracing a random sample of patients considered lost to fol-

low-up (defined as being greater than 90 days late to a scheduled appointment or 180 days

from any recorded clinic encounter) as of July 31, 2015, and applying inverse probability sam-

pling weights in our analyses.

Analyses

Group-based trajectory model. We used group-based trajectory analysis to identify sub-

groups that followed distinct longitudinal patterns with respect to engagement over time

among patients newly initiating ART. This method assumes that the overall population is

made up of distinct, but unobserved (i.e., latent), subpopulations with different behavioral

phenotypes and then uses the observed data to estimate both the trajectories of these groups

and how they are distributed in the population [20,21]. We used this approach to identify

groups of new ART starters who had distinct engagement trajectories with regard to 2 mea-

sures of patient engagement. As a metric of treatment adherence, we used the medication pos-

session ratio (MPR) over the past 3 months, which is a validated adherence metric that utilizes

pharmacy refill data to calculate the ratio of the number of days a patient has ART in their pos-

session to the total number of days in an interval, and is associated with viral suppression [28–

30]. As a metric of retention in care, we used whether patients were in care (i.e., not lost to fol-

low-up) or not. For each individual, time 0 of the analysis was the date of ART initiation, and

patients were censored at the time of death, transfer to a new facility, or the end of the observa-

tion period (i.e., July 31, 2015). Measures of engagement were repeated at 30-day intervals

from the time of ART start until individuals were censored. Of note, patients were not cen-

sored at times of loss to follow-up (LTFU) and remained under observation until they met 1 of

the 3 censoring criteria (i.e., death, transfer, or database closure). We excluded patients who

Longitudinal engagement trajectories and mortality in Zambia
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died or were known to have transferred clinics during the first 180 days on ART since their

limited time under observation would have precluded them from developing any meaningful

engagement trajectory. Thus, all patients in our analysis had a minimum of 180 days to

develop a trajectory prior to being censored.

Statistically, group-based trajectory models use maximum likelihood estimation to estimate

both the trajectory of each group (modeled as a function of time using flexible polynomials)

and the expected population-level distribution of each group that creates the best fit for the

observed data [20,21,31]. In order to identify patient groups that follow joint trajectories with

regard to both MPR and retention, we performed a multi-trajectory analysis that simulta-

neously estimated trajectories for MPR over the past 3 months and in care status [22]. Since

the number of groups and the order of the trajectory polynomials (i.e., linear, quadratic, cubic)

are not actually known a priori (but must be prespecified when estimating a model), we sys-

tematically tested a series of model specifications—first varying the number of groups and

then the order of the trajectory polynomials—in order to select the model most optimized for

fit and parsimony using the Bayesian information criterion [20–22]. In our analyses, MPR was

modeled assuming a censored normal distribution and identity link, and in care status was

modeled assuming a binomial distribution and logit link. Using previously validated methods

[23,26,27], we incorporated sampling weights based on the inverse of the probability of being

selected for tracing in all models in order to account for the updated mortality statuses from

tracing a random sample of patients lost to follow-up. Based on this final model—which iden-

tifies the group trajectories and their population-level distribution, but not trajectory group

membership by individual—we then estimated the probabilities of individuals belonging to a

specific trajectory group given their observed engagement patterns (i.e., their posterior proba-

bilities) [20–22,31]. Since not all patients had equal observation times, posterior probabilities

were based on comparisons between trajectories and patients’ observed data up until the time

of being censored. Individuals were then assigned to the trajectory group to which they most

likely belonged based on their estimated posterior probabilities (i.e., maximum probability

assignment rule) [32].

Lastly, we assessed the adequacy, fit, and consistency of the trajectories identified in our

final model. We assessed adequacy and fit of the final model and group assignment using sev-

eral established metrics: (1) comparing the proportion assigned to each trajectory group based

on posterior probabilities to the estimated distribution of group membership from the initial

model, (2) estimating the average posterior probability for individuals assigned to each group

using the maximum probability assignment rule, (3) calculating the odds ratio of being

assigned to the correct trajectory group when using posterior probabilities as compared to the

estimated population-level group distribution, and (4) calculating the entropy statistic, an indi-

cator of separation between trajectory groups [20,21]. Additionally, we performed stratified

analyses across strata of sex, age, enrollment CD4 count, facility type (i.e., urban, rural, hospi-

tal), and province to assess whether the identified trajectories represented generalizable behav-

ioral patterns that remained consistent across multiple subpopulations.

Baseline factors associated with trajectory group membership. First, we characterized

the patients in each trajectory group by tabulating baseline patient sociodemographic, clinical,

and facility-level characteristics by the group to which individuals were assigned based on

their posterior probabilities. Tabulations incorporated the probability weights from sampling

that were used in the initial trajectory model. Second, we used multinomial logistic regression

to assess for baseline factors that were associated with group membership. We selected covari-

ates using directed acyclic graphs based on a priori hypotheses of causal relationships between

baseline characteristics and engagement trajectories. Our model included an interaction

between age category and sex and also included a restricted cubic spline of the amount of

Longitudinal engagement trajectories and mortality in Zambia
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observation time each patient contributed. Facility-level characteristics included the percent-

age of all visits at a facility that were scheduled at 90-day (3-month) intervals or greater (as

opposed to shorter intervals such as 30 or 60 days) and the mean number of patients seen at

the clinic per day. We incorporated probability weights from sampling [23,26,27] and used

multiple imputation (n = 20) to address missingness in predictor variables (i.e., enrollment

CD4 count, enrollment WHO stage, marital status, education status, and HIV disclosure sta-

tus) [33]. We estimated predictive margins to report the results as the expected distribution of

trajectory across baseline characteristics.

Mortality by trajectory group membership. Lastly, we sought to assess differences in

mortality based on trajectory group membership. We first used the Kaplan–Meier approach to

obtain stratified estimates of the cumulative incidence of mortality by trajectory group. Time 0

was date of ART initiation, and patients were administratively censored at the time of transfer

or end of observation. We used bootstrapping to obtain 95% confidence intervals. Next, we

used Poisson regression with a time offset and robust variances to estimate unadjusted and

adjusted incidence rate ratios of mortality by trajectory group. Adjusted models included

sociodemographic, clinical, and facility-level characteristics; included a restricted cubic spline

of the amount of observation time each patient contributed; and employed multiple imputa-

tion (n = 20) to address missingness in predictor variables. Both Kaplan–Meier and Poisson

regression analyses incorporated probability weights to accommodate updated vital status

from tracing patients lost to follow-up. All analyses were conducted with Stata version 15.1

(StataCorp, College Station, TX).

Sensitivity analyses. As an individual’s group membership is not actually observed and

only predicted based on individuals’ own observed data, we conducted sensitivity analyses

(presented in S1 Appendix) using the BCH method to examine the effect of misclassification

bias that could arise from the uncertainty in assigning trajectory group membership using the

maximum probability assignment rule [32,34]. We report the results using the maximum

probability assignment rule as the primary analysis because of the similarity of the results and

the increased transparency of this method.

Results

Patient characteristics

Between August 1, 2013, and February 1, 2015, 40,091 patients newly initiated ART at 1 of 64

ART clinics in 4 provinces in Zambia; after accounting for transfers and deaths, 38,879

patients had at least 180 days of observation time and were included in this analysis (Fig 1).

Overall, 24,593 patients were female (63.3%), the median age was 35 years (IQR 29–41), the

median CD4 count at enrollment into HIV care was 280 cells/μl (IQR 146–431), and the

median time from enrollment to ART initiation was 35 days (IQR 14–225) (Table 1). The

median duration of observation time per patient was 429 days (IQR 314–571).

Description of trajectory groups

The model with 6 trajectory groups based on longitudinal patterns in adherence and reten-

tion was most optimized for fit using the Bayesian information criterion (Fig 2). In this

model, the first trajectory group was patients with consistently high adherence and reten-

tion (“consistently high adherence/retention” group) and was predicted to account for

28.5% (95% CI 26.7%–30.3%) of the population. The second trajectory group was patients

who had suboptimal adherence early who then improved about 1 year after ART initiation,

but remained consistently retained in care throughout (“early nonadherence/consistent

retention” group, 22.2% [95% CI 19.3%–25.1%] of the population). The third group had

Longitudinal engagement trajectories and mortality in Zambia
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gradually decreasing adherence and retention (“gradually decreasing adherence/retention”

group, 21.6% [95% CI 19.2%–24.1%] of the population). The fourth group had both poor

adherence and poor retention early on, but began to reengage about 1 year after ART initia-

tion (“early LTFU with reengagement” group, 8.6% [95% CI 7.6 to 9.6%] of the population).

The fifth group had early nonadherence and LTFU without ever reengaging (“early LTFU”

group, 8.7% [95% CI 7.1%–11.9%] of the population). Lastly, the sixth group developed

LTFU and poor adherence after initially remaining retained for the first 6 months of treat-

ment (“late LTFU” group, 10.4% [95% CI 8.9%–11.9%] of the population). Table 2 shows

diagnostic metrics for our final model and demonstrates that it had very good fit and excel-

lent separation of groups based on well-established metrics. Fig 3 shows that the identified

trajectory shapes remained very consistent across subpopulations based on strata of socio-

demographic, clinical, and facility characteristics.

Baseline characteristics associated with trajectory group membership

Overall, we identified few baseline characteristics that were strongly associated with trajectory

group membership (Tables 3 and 4). In multinomial logistic regression, patients who were

older, attended a clinic where visits were scheduled at less frequent intervals (i.e., every 90 days

as opposed to every 30 days), and were not from Lusaka province were more likely to belong

in to the “consistently high adherence/retention” group (Table 4). In addition, patients who

were single, had a college/university education, had a CD4 count less than 200 cells/μl, and

were from Lusaka province were more likely to be in the “early LTFU” and “late LTFU”

groups. Younger females and older males were also somewhat more likely to belong to the

“early LTFU” or “late LTFU” group. Patients who were younger and male had a tendency to be

Fig 1. Patient flowchart. Overall, 732 patients were excluded because they transferred care within 180 days of

initiating ART, and 480 were excluded because they died within 180 days of initiating ART. After accounting for

sampling weights from updated vital statuses after tracing a random sample of patients who were considered lost to

follow-up as of July 31, 2015, these excluded patients represented 1.8% and 3.2% of the population, respectively.

https://doi.org/10.1371/journal.pmed.1002959.g001
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in trajectory groups with intermittent engagement (i.e., “gradually decreasing adherence/

retention” or “early LTFU with reengagement” group) rather than groups with consistent

engagement (i.e., “consistently high adherence/retention” or “early nonadherence/consistent

retention” group), but had similar proportions in the trajectory groups with the worst engage-

ment (i.e., “early LTFU” and “late LTFU” groups) (Table 4 and Fig 4). Despite these patterns,

however, overall differences across baseline characteristics in the distribution of trajectory

groups were small.

Table 1. Baseline patient characteristics, n = 38,879.

Characteristic Value

Female sex, n (%) 24,593 (63.3%)

Median age, years (IQR) 35 (29–41)

Median CD4 count�, cells/μl (IQR) 280 (146–431)

WHO stage, n (%)

1 18,777 (48.3%)

2 6,645 (17.1%)

3 6,941 (17.9%)

4 607 (1.6%)

Unknown 5,909 (15.2%)

TB in past 6 months, n (%) 978 (2.5%)

Median time from enrollment to ART initiation, days (IQR) 35 (14–225)

Marital status, n (%)

Single 3,892 (10.0%)

Married 20,942 (53.9%)

Divorced 4,124 (10.6%)

Widowed 2,730 (7.0%)

Unknown 7,191 (18.5%)

Education, n (%)

None 2,580 (6.6%)

Lower–mid basic 11,538 (29.7%)

Upper basic/secondary 15,804 (40.6%)

College/university 1,479 (3.8%)

Unknown 7,478 (19.2%)

Disclosed HIV status, n (%)

Yes 34,260 (88.1%)

No 1,010 (2.6%)

Unknown 3,609 (9.3%)

Province, n (%)

Lusaka 20,238 (52.1%)

Eastern 7,673 (19.7%)

Southern 5,146 (13.2%)

Western 5,822 (15.0%)

Attends clinic with >50% of visits scheduled at >3 months, n (%) 8,453 (21.7%)

Attends clinic with average daily volume?�?50 visits/day, n (%) 13,327 (34.3%)

Median time observed, days (IQR) 429 (314–571)

�Missing for 7,108 patients.

ART, antiretroviral therapy; IQR, interquartile range; TB, tuberculosis.

https://doi.org/10.1371/journal.pmed.1002959.t001
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Fig 2. Longitudinal engagement trajectories of new ART starters in Zambia (n = 38,879). Group-based trajectory models used sampling weights to account for

updated vital statuses after tracing a random sample of patients who were considered lost to follow-up as of July 31, 2015. Grey circles represent deaths and are sized

according to sampling weights. All patients included in the model had at least 180 days of observation time, which is represented by the grey dashed line. ART,

antiretroviral therapy; LTFU, loss to follow-up; MPR, medication possession ratio.

https://doi.org/10.1371/journal.pmed.1002959.g002
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Mortality by trajectory group membership

There were markedly different risks of mortality based on trajectory group membership (Fig

5). The “early LTFU” group (17.4% [95% CI 9.1%–28.4%]) and “late LTFU” group (22.4%

[95% CI 13.4%–34.6%]) had the highest cumulative incidence of mortality at 720 days. The

“consistently high adherence/retention” group (2.2% [95% CI 0.8%–4.0%]) and “early nonad-

herence/consistent retention” group (1.5% [95% CI 0.4%–2.7%]) had the lowest mortality at

720 days, while the “gradually decreasing adherence/retention” group (5.7% [95% CI 2.2%–

10.5%]) and the “early LTFU with reengagement” group (6.0% [95% CI 1.8%–11.6%]) had

intermediate mortality (Fig 5). In both unadjusted and adjusted Poisson regression, trajectory

group membership remained significantly associated with mortality. Even after adjusting for

baseline sociodemographic, clinical, and facility-level characteristics, the “early LTFU with

reengagement” group (adjusted incidence rate ratio [aIRR] 3.4 [95% CI 1.2–9.7], p = 0.019),

the “early LTFU” group (aIRR 6.4 [95% CI 2.5–16.3], p< 0.001), and the “late LTFU” group

(aIRR 4.7 [95% CI 2.0–11.3], p = 0.001) had significantly increased rates of mortality as com-

pared to the “consistently high adherence/retention” group (Table 5). Results remained consis-

tent in sensitivity analyses using the BCH method to account for any bias due to

misclassification of trajectory group membership (S1 Appendix).

Discussion

Using group-based trajectory modeling, we characterized 6 trajectory groups among new ART

starters in Zambia that followed distinct longitudinal patterns with regard to MPR over the

past 3 months and in care status. Based on our model, 28.5% (95% CI 26.7%–30.3%) of

patients had consistently high adherence and retention over time (“consistently high adher-

ence/retention” group), 22.2% (95% CI 19.3%–25.1%) had suboptimal adherence early with

later recovery but consistent retention (“early nonadherence/consistent retention” group),

21.6% (95% CI 19.2%–24.1%) had gradually decreasing adherence and retention (“gradually

decreasing adherence/retention” group), 8.6% (95% CI 7.6%–9.6%) had early nonadherence

and LTFU but then had later reengagement (“early LTFU with reengagement” group), 8.7%

(95% CI 7.1%–11.9%) had early nonadherence and LTFU without ever reengaging (“early

Table 2. Metrics of adequacy and fit of trajectory model.

Trajectory group Group average

posterior probability

Odds ratio for correct

classification

Estimated group distribution based on

using maximum probability assignment

rule

Estimated group distribution

based on initial model

Entropy

Consistently high

adherence/retention

0.942 39 0.289 0.285 0.957

Early nonadherence/

consistent retention

0.893 29 0.220 0.222

Gradually decreasing

adherence/retention

0.860 22 0.219 0.216

Early LTFU with

reengagement

0.923 128 0.085 0.086

Early LTFU 0.975 412 0.085 0.087

Late LTFU 0.918 99 0.101 0.104

Good model fit indicated by (1) average posterior probability greater than 0.7 for each group, (2) odds ratio of correct classification greater than 5 for each group, (3)

close correspondence between the estimated group distribution based on using posterior probabilities and the maximum probability assignment rule and the estimated

group distribution from the initial model; and (4) an entropy value greater than 0.8.

LTFU, loss to follow-up.

https://doi.org/10.1371/journal.pmed.1002959.t002

Longitudinal engagement trajectories and mortality in Zambia

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002959 October 29, 2019 11 / 25

https://doi.org/10.1371/journal.pmed.1002959.t002
https://doi.org/10.1371/journal.pmed.1002959


Fig 3. Longitudinal engagement trajectories from analyses stratified across baseline patient characteristics. Stratified analyses were across the strata sex, age,

enrollment CD4 count, facility type (i.e., rural, urban, hospital), and province. Group-based trajectory models used sampling weights to account for updated vital

statuses after tracing a random sample of patients who were considered lost to follow-up as of July 31, 2015. All patients included in the model had at least 180 days of

observation time, which is represented by the grey dashed line. ART, antiretroviral therapy; LTFU, loss to follow-up; MPR, medication possession ratio.

https://doi.org/10.1371/journal.pmed.1002959.g003
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Table 3. Baseline patient characteristics by trajectory group, n = 38,879.

Characteristic Consistently high

adherence/retention

(28.5%)

Early nonadherence/

consistent retention

(22.2%)

Gradually decreasing

adherence/retention

(21.6%)

Early LTFU with

reengagement (8.6%)

Early

LTFU

(8.7%)

Late LTFU

(10.4%)

Female sex, percent 63.8% 64.1% 62.7% 65.2% 64.1% 58.4%

Median age, years (IQR) 36

(30–43)

35

(29–41)

34

(29–41)

34

(28–39)

34

(29–41)

33

(28–41)

Median CD4 count, cells/μl

(IQR)

291

(151–438)

284

(152–431)

286

(158–432)

313

(170–492)

244

(96–445)

254

(122–445)

WHO stage, percent

1 48.5% 50.1% 49.2% 53.8% 41.6% 48.8%

2 19.7% 16.3% 17.3% 13.3% 15.6% 18.2%

3 15.7% 15.4% 16.7% 16.1% 20.9% 19.2%

4 1.2% 1.5% 1.3% 1.0% 1.4% 1.8%

Unknown 15.0% 16.0% 15.5% 15.8% 20.5% 12.0%

TB in past 6 months, percent 2.1% 2.1% 2.2% 3.1% 2.4% 3.1%

Median time from enrollment

to ART initiation, days (IQR)

32

(14–227)

42

(14–285)

41

(15–228)

56

(15–455)

42

(14–190)

44

(14–191)

Marital status, percent

Single 8.9% 9.2% 10.9% 10.5% 11.3% 21.4%

Married 54.9% 56.3% 55.2% 53.6% 62.2% 51.3%

Divorced 10.6% 10.0% 9.8% 9.3% 9.6% 11.2%

Widowed 8.1% 7.3% 6.3% 5.0% 7.2% 4.9%

Unknown 17.4% 17.2% 17.8% 21.5% 9.7% 11.1%

Education, percent

None 6.6% 7.3% 5.4% 9.0% 3.7% 6.6%

Lower–mid basic 32.9% 28.0% 30.2% 28.5% 39.0% 22.7%

Upper basic/secondary 39.7% 40.2% 41.2% 37.4% 40.6% 47.3%

College/university 3.6% 4.3% 4.1% 3.6% 6.6% 10.1%

Unknown 17.2% 19.3% 19.1% 21.5% 10.0% 13.4%

Disclosed HIV status, percent 96.0%

Yes 89.4% 88.6% 89.0% 86.7% 86.5% 87.3%

No 2.1% 2.7% 2.1% 1.6% 1.8% 3.7%

Unknown 8.5% 8.7% 8.9% 11.7% 11.8% 9.0%

Province, percent

Lusaka 39.4% 50.5% 52.4% 68.2% 65.9% 57.1%

Eastern 26.0% 21.4% 17.5% 15.2% 10.2% 12.6%

Southern 20.7% 11.5% 11.1% 5.8% 11.1% 10.7%

Western 13.9% 16.5% 19.0% 10.8% 12.8% 19.6%

Attends clinic with >50% of

visits scheduled every 3 months,

percent

32.8% 17.8% 19.0% 11.9% 15.4% 22.9%

Attends clinic with average

daily volume� 50 visits/day,

percent

33.3% 31.7% 36.0% 31.1% 26.0% 32.1%

Median time observed, days

(IQR)

415

(303–555)

411

(309–557)

441

(316–577)

438

(322–594)

390

(276–581)

400

(311–514)

All values calculated accounting for sampling weights included in the initial group-based trajectory model.

ART, antiretroviral therapy; IQR, interquartile range; LTFU, loss to follow-up; TB, tuberculosis.

https://doi.org/10.1371/journal.pmed.1002959.t003
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Table 4. Predictive margins of trajectory group distribution across baseline patient characteristics from multinomial logistic regression, n = 38,879.

Characteristic Consistently high

adherence/retention

Early nonadherence/

consistent retention

Gradually decreasing

adherence/retention

Early LTFU with

reengagement

Early LTFU Late LTFU

Overall (from final trajectory

model)

28.5%

(26.7%–30.3%)

22.2%

(19.3%–25.1%)

21.6%

(19.2%–24.1%)

8.6%

(7.6%–9.6%)

8.7%

(7.1%–11.9%)

10.4%

(8.9%–11.9%)

Sex and age at enrollment

Female<25 years old 24.9%

(22.7%–27.0%)

22.1%

(19.8%–24.4%)

21.7%

(18.9%–24.6%)

10.1%

(7.4%–12.8%)

9.7%

(5.4%–14.1%)

11.5%

(7.3%–15.6%)

Female 25–34 years old 28.1%

(26.6%–29.6%)

21.8%

(20.5%–23.0%)

22.5%

(20.8%–24.2%)

8.5%

(7.1%–9.8%)

9.1%

(6.7%–11.5%)

10.0%

(7.7%–12.3%)

Female 35–50 years old 31.3%

(29.6%–33.0%)

22.8%

(21.4%–24.3%)

21.4%

(19.6%–23.2%)

7.9%

(6.1%–9.8%)

8.2%

(5.5%–11.0%)

8.3%

(6.0%–10.6%)

Female>50 years 33.3%

(29.5%–37.2%)

22.3%

(19.4%–25.2%)

20.3%

(17.5%–23.1%)

7.7%

(5.4%–10.0%)

7.7%

(0.9%–14.4%)

8.7%

(3.6%–13.7%)

Male <25 years old 22.8%

(16.8%–28.8%)

18.9%

(14.0%–23.7%)

31.2%

(20.1%–42.3%)

12.1%

(3.6%–20.6%)

2.6%

(0.0%–6.4%)

12.4%

(3.6%–21.3%)

Male 25–34 years old 27.7%

(25.2%–30.2%)

21.8%

(19.7%–23.8%)

24.3%

(21.4%–27.2%)

7.7%

(5.9%–9.5%)

8.8%

(5.1%–12.4%)

9.8%

(6.8%–12.9%)

Male 35–50 years old 29.6%

(27.8%–31.3%)

21.5%

(19.8%–23.2%)

20.7%

(18.9%–22.5%)

9.2%

(7.3%–11.2%)

7.8%

(5.0%–10.6%)

11.2%

(8.2%–14.2%)

Male >50 years 28.7%

(25.3%–32.1%)

24.2%

(20.7%–27.6%)

17.9%

(15.1%–20.7%)

7.4%

(5.3%–9.6%)

9.9%

(4.4%–15.5%)

11.8%

(4.7%–18.9%)

Enrollment CD4 count

<200 cells/μl 27.6%

(26.2%–29.1%)

21.3%

(20.0%–22.7%)

21.2%

(19.6%–22.8%)

7.5%

(6.2%–8.8%)

10.5%

(7.9%–13.1%)

11.8%

(9.4%–14.2%)

200–350 cells/μl 29.3%

(27.6%–30.9%)

23.1%

(21.7%–24.5%)

22.6%

(21.0%–24.2%)

9.2%

(7.4%–11.0%)

5.8%

(3.6%–8%)

10.1%

(7.7%–12.6%)

351–500 cells/μl 30.8%

(29.0%–32.7%)

21.7%

(20.1%–23.2%)

24.0%

(21.6%–26.4%)

7.7%

(6.0%–9.5%)

8.8%

(5.9%–11.8%)

6.9%

(4.6%–9.1%)

>500 cells/μl 28.6%

(26.6%–30.7%)

22.3%

(20.4%–24.1%)

19.9%

(17.9%–21.8%)

10.4%

(7.9%–13.0%)

8.2%

(4.5%–11.8%)

10.7%

(7.2%–14.1%)

WHO stage

1 28.3%

(27.2%–29.3%)

23.0%

(22.0%–23.9%)

22.0%

(20.8%–23.2%)

9.3%

(8.1%–10.4%)

7.8%

(6.1%–9.5%)

9.7%

(8.2%–11.3%)

2 30.9%

(29.1%–32.8%)

20.4%

(18.8%–22.1%)

21.8%

(19.8%–23.9%)

7.2%

(5.4%–8.9%)

8.9%

(5.8%–11.9%)

10.8%

(7.8%–13.7%)

3 28.8%

(26.8%–30.7%)

20.7%

(19.0%–22.5%)

21.9%

(20.0%–23.8%)

7.9%

(6.4%–9.4%)

10.3%

(7.1%–13.5%)

10.4%

(7.6%–13.2%)

4 26.0%

(20.7%–31.3%)

24.1%

(18.4%–29.8%)

22.6%

(15.2%–30.1%)

6.5%

(3.9%–9.1%)

8.9%

(0.0%–18.4%)

11.9%

(3.8%–20.0%)

TB in past 6 months

No 28.9%

(28.1%–29.6%)

22.1%

(21.4%–22.8%)

22.0%

(21.1%–22.8%)

8.5%

(7.7%–9.2%)

8.6%

(7.3%–9.8%)

10.1%

(8.9%–11.3%)

Yes 29.2%

(24.5%–33.9%)

20.1%

(16.1%–24.1%)

20.4%

(16.4%–24.3%)

11.7%

(6.3%–17.1%)

6.9%

(1.6%–12.2%)

11.7%

(3.4%–20.0%)

Time from enrollment to

ART initiation

<14 days 28.6%

(27.3%–30.0%)

21.8%

(20.4%–23.2%)

21.1%

(19.7%–22.6%)

8.5%

(7.2%–9.8%)

9.7%

(7.4%–12.1%)

10.2%

(7.9%–12.5%)

14–90 days 30.7%

(29.3%–32.0%)

21.6%

(20.5%–22.7%)

22.9%

(21.4%–24.5%)

7.1%

(6.0%–8.3%)

7.8%

(5.8%–9.8%)

9.9%

(8.0%–11.8%)

>90 days 27.2%

(25.8%–28.5%)

22.6%

(21.4%–23.9%)

21.4%

(19.9%–22.9%)

10.0%

(8.3%–11.6%)

8.5%

(6.2%–10.8%)

10.4%

(8.1%–12.6%)

Marital status

(Continued)
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LTFU” group), and 10.4% (95% CI 8.9%–11.9%) had later nonadherence and LTFU without

reengaging (“late LTFU” group). The identified trajectory patterns remained consistent across

Table 4. (Continued)

Characteristic Consistently high

adherence/retention

Early nonadherence/

consistent retention

Gradually decreasing

adherence/retention

Early LTFU with

reengagement

Early LTFU Late LTFU

Single 26.5%

(24.1%–28.9%)

19.5%

(17.5%–21.5%)

20.5%

(17.6%–23.4%)

9.4%

(6.1%–12.7%)

7.9%

(4.5%–11.4%)

16.2%

(11.6%–

20.7%)

Married 28.9%

(27.9%–29.9%)

22.5%

(21.6%–23.3%)

22.4%

(21.2%–23.5%)

8.6%

(7.6%–9.6%)

8.9%

(7.3%–10.5%)

8.8%

(7.4%–10.3%)

Divorced 28.9%

(26.8%–31.0%)

22.0%

(20.1%–23.8%)

21.8%

(19.4%–24.1%)

8.7%

(6.5%–10.8%)

7.4%

(4.3%–10.5%)

11.3%

(7.7%–14.9%)

Widowed 32.5%

(29.8%–35.1%)

23.0%

(20.6%–25.5%)

21.6%

(18.7%–24.5%)

6.6%

(4.8%–8.4%)

8.6%

(4.0%–13.1%)

7.7%

(4.2%–11.2%)

Education

None 26.7%

(24.4%–29.1%)

23.3%

(20.9%–25.7%)

23.3%

(20.9%–25.7%)

13.1%

(9.5%–16.8%)

5.7%

(2.8%–8.6%)

10.9%

(7.3%–14.4%)

Lower–mid basic 30.1%

(28.6%–31.5%)

21.3%

(20.1%–22.4%)

21.3%

(20.1%–22.4%)

8.7%

(7.3%–10.2%)

10.1%

(7.7%–12.5%)

7.7%

(5.9%–9.5%)

Upper basic/secondary 29.1%

(28.0%–30.2%)

22.6%

(21.5%–23.6%)

22.6%

(21.5%–23.6%)

7.9%

(6.8%–8.9%)

7.7%

(6.0%–9.3%)

10.6%

(8.9%–12.4%)

College/university 23.0%

(19.9%–26.1%)

20.8%

(17.0%–24.6%)

20.8%

(17.0%–24.6%)

7.6%

(3.7%–11.6%)

9.6%

(4.5%–14.7%)

18.7%

(11.7%–

25.7%)

Disclosed HIV status

No 26.1%

(21.6%–30.6%)

25.5%

(20.0%–31.1%)

19.8%

(16.1%–23.6%)

6.3%

(2.9%–9.7%)

6.4%

(0.5%–13.4%)

15.7%

(7.8%–23.6%)

Yes 29.0%

(28.2%–29.7%)

21.9%

(21.2%–22.6%)

22.0%

(21.1%–22.9%)

8.6%

(7.8%–9.4%)

8.6%

(7.3%–9.8%)

10.0%

(8.7%–11.2%)

Province

Lusaka 23.2%

(21.9%–24.4%)

21.4%

(20.3%–22.4%)

22.3%

(21.0%–23.6%)

11.1%

(9.6%–12.5%)

10.5%

(8.5%–12.5%)

11.6%

(9.5%–13.7%)

Eastern 38.7%

(37.3%–40.2%)

23.1%

(22.0%–24.3%)

20.3%

(19.0%–21.7%)

6.2%

(5.4%–6.9%)

4.3%

(3.0%–5.6%)

7.3%

(5.8%–8.7%)

Southern 36.5%

(34.2%–38.9%)

22.3%

(20.5%–24.1%)

19.3%

(17.4%–21.1%)

5%

(3.8%–6.3%)

9.5%

(6.2%–12.9%)

7.3%

(4.9%–9.7%)

Western 27.5%

(25.3%–29.6%)

23.1%

(21.2%–25.0%)

25.2%

(22.4%–28.1%)

5.8%

(4.8%–6.8%)

6.9%

(3.8%–10.0%)

11.5%

(7.9%–15.2%)

Percent of visits at clinic

scheduled at 3 month

intervals

�50% 25.5%

(24.7%–26.3%)

23.4%

(22.6%–24.2%)

22.8%

(21.8%–23.8%)

9.3%

(8.5%–10.1%)

9.3%

(7.8%–10.7%)

9.7%

(8.4%–11.0%)

>50% 39.9%

(37.2%–42.6%)

17.6%

(16.1%–19.0%)

19.1%

(17.3%–21.0%)

5.4%

(3.3%–7.4%)

6.0%

(3.5%–8.6%)

12.0%

(8.0%–16.0%)

Average daily volume at

clinic

�50 visits/day 26.5%

(25.5%–27.5%)

22.1%

(21.1%–23.1%)

24.9%

(23.6%–26.2%)

9.1%

(8.1%–10.1%)

7.1%

(5.7%–8.5%)

10.3%

(8.8%–11.7%)

>50 visits/day 30.1%

(29.0%–31.2%)

21.9%

(21.0%–22.8%)

20.5%

(19.3%–21.7%)

8.3%

(7.3%–9.3%)

9.2%

(7.5%–10.9%)

10.0%

(8.3%–11.7%)

Adjusted for restricted cubic splines for the amount of time a patient was under observation.

ART, antiretroviral therapy; LTFU, loss to follow-up; TB, tuberculosis.

https://doi.org/10.1371/journal.pmed.1002959.t004
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subpopulations stratified by patient characteristics. In multinomial logistic regression, we

identified few baseline characteristics strongly associated with trajectory group membership,

though patients who were older, attended clinics where visits were scheduled less frequently,

and were not from Lusaka Province were slightly more likely to be in the “consistently high

adherence/retention” group, and patients who were young females or older males, were single,

were college-educated, had low CD4 counts, and were from Lusaka were slightly more likely to

be in the “early LTFU” and “late LTFU” groups. Lastly, even after adjusting for well-known

predictors of mortality including sex, age, CD4 count, and WHO stage, trajectory group mem-

bership (based on longitudinal patterns in adherence and retention) remained one of the

strongest predictors of mortality. Compared to those in the “consistently high adherence/

retention” group, patients in the “early LTFU with reengagement” group (aIRR 3.4 [95% CI

1.2–9.7], p = 0.019), “early LTFU” group (aIRR 6.4 [95% CI 2.5–16.3], p< 0.001), and “late

LTFU” group (aIRR 4.7 [95% CI 2.0–11.3], p = 0.001) all had significantly increased rates of

mortality. Overall, these findings provide a comprehensive depiction of engagement over time

among new ART starters in Zambia and highlight the importance of this heterogeneity in

engagement behavior over time as a critical determinant of patient outcomes.

Fig 4. Predictive margins of trajectory group distribution by age and sex (N = 38,879). LTFU, loss to follow-up.

https://doi.org/10.1371/journal.pmed.1002959.g004
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Characterizing longitudinal patterns of engagement provides a richer and more nuanced

understanding of patient adherence and retention as compared to more traditional metrics

and can help to identify distinctive behavioral phenotypes. Though previous studies have doc-

umented that patients frequently transition in and out of HIV care [2–7], current analyses

often reduce the highly dimensional temporal dynamics of retention into cross-sectional sum-

maries such as the proportion lost to follow-up and also obscure heterogeneity between

patients behind population-level averages [10,11]. However, as this and other analyses demon-

strate, the HIV patient population is frequently composed of heterogeneous groups with differ-

ent patterns of adherence and retention over time [5,6,19]. For example, some patients remain

consistently and optimally engaged in care (i.e., “consistently high adherence/retention”

group), some patients are consistently retained but suboptimally engaged (i.e., “early nonad-

herence/consistent retention” and “gradually decreasing adherence/retention” groups), some

patients transition in and out with brief periods of disengagement (“early LTFU with reen-

gagement” group), and some patients are only temporarily engaged in care followed by sus-

tained periods of disengagement (“early LTFU” and “late LTFU” groups). In our analyses,

these trajectories remained remarkably consistent across subpopulations that were stratified

by varied patient characteristics and care settings. Furthermore, they also comport with previ-

ous qualitative work focused on describing different patient journeys and personas [35]. These

findings suggest that the trajectories we identified represent more generalizable behavioral

phenotypes that could be expected to be observed across a wide range of settings even with

more contemporary advances in HIV care. These advances, such as universal testing and treat-

ment, routine viral load monitoring, and differentiated services delivery, may alter the distri-

bution between trajectory groups, but it is unlikely that they would dramatically change the

general behavioral patterns underlying each trajectory. Thus, our findings provide a deeper

understanding of prototypical engagement behaviors in HIV care over time that remain

relevant.

This heterogeneity in the longitudinal engagement behaviors of patients is highly relevant

for improving outcomes in public health treatment programs, given that it is highly associated

with patient mortality. As compared to the trajectory groups with better engagement (“consis-

tently high adherence/retention” and “early nonadherence/consistent retention” groups), the

remaining groups had increased risk of mortality that resembled a dose–response pattern

according to how “bad” their engagement trajectory was (i.e., the “early LTFU” and “late

LTFU” groups tended to have worse outcomes than the “gradually decreasing adherence/

retention” and “early LTFU with reengagement” groups). As even small differences in levels of

viremia have been shown to effect subsequent treatment failure and mortality [36–39], this

finding is not entirely unexpected, but the degree to which mortality risk is associated with var-

iations in patient behavioral patterns is marked and noteworthy. Indeed, even after adjust-

ment, the difference between the “best” and “worst” engagement patterns (i.e., the behavioral

risk) independently translates into the equivalent biological risk associated with an approxi-

mately 500-cells/μl decrease in CD4 count. Current strategies to target high-risk patients

largely focus on sociodemographic risk factors such as sex, age, and geography at the time of

ART initiation, but these do not convey the same degree of mortality risk as the engagement

patterns that emerge over time. Furthermore, the mortality gradient across trajectory groups

highlights that even smaller lapses in engagement are quite relevant, even though they have

garnered less attention than LTFU. Our findings thus highlight the importance of understand-

ing the temporal dynamics of adherence and retention, and of shifting attention towards utiliz-

ing this behavioral information to develop intervention strategies tailored to patients’ observed

behaviors.
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We found few baseline characteristics that were strongly associated with trajectory group

membership, and, ultimately, monitoring patients’ actual engagement behaviors over time

Fig 5. Kaplan–Meier estimates of the cumulative incidence of mortality by trajectory group with bootstrapped 95% confidence intervals (n = 38,879). Kaplan–

Meier estimates used sampling weights to account for updated vital statuses after tracing a random sample of patients who were considered lost to follow-up as of

July 31, 2015. Only patients with at least 180 days of observation time (represented by the grey dashed line) were included in the original group-based trajectory

model. ART, antiretroviral therapy; LTFU, loss to follow-up; MPR, medication possession ratio.

https://doi.org/10.1371/journal.pmed.1002959.g005
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may be one of the most critical predictors of subsequent risk. Few standard patient characteris-

tics at baseline have proven to be strongly predictive of retention behavior to date, so it is not

surprising that we were also unable to find any that meaningfully distinguished between trajec-

tory groups, though, in general, the patterns that we did find do comport with current knowl-

edge of risk factors for poor engagement [40]. Patient-reported barriers to care or unexpected

changes in individuals’ lives (referred to as idiosyncratic shocks in the economics literature)

have previously been associated with retention, adherence, and even mortality, so more com-

prehensive and longitudinal patient assessments that include these potential behavioral

Table 5. Poisson regression of the association between trajectory membership and mortality, n = 38,879.

Characteristic Unadjusted IRR (95% CI) p-Value Adjusted IRR (95% CI) p-Value

Trajectory group

Consistently high adherence/retention 1.00 (REF) — 1.00 (REF) —

Early nonadherence/consistent retention 0.71 (0.23–2.19) 0.55 0.80 (0.27–2.37) 0.69

Gradually decreasing adherence/retention 1.48 (0.55–3.98) 0.44 1.68 (0.67–4.22) 0.27

Early LTFU with reengagement 2.45 (0.84–7.12) 0.099 3.45 (1.23–9.69) 0.019

Early LTFU 6.42 (2.68–15.42) <0.001 6.44 (2.54–16.29) <0.001

Late LTFU 5.57 (2.27–13.64) <0.001 4.71 (1.97–11.28) 0.001

Male sex — — 1.15 (0.70–1.88) 0.58

Age, per 10-year increase — — 1.36 (1.18–1.58) <0.001

Enrollment CD4 count, per 100-cells/μl increase — — 0.65 (0.52–0.82) <0.001

WHO stage — —

1 1.00 (REF) 0.44

2 1.71 (0.91–3.20)

3 1.32 (0.65–2.69)

4 1.50 (0.43–5.23)

TB in past 6 months — — 0.55 (0.13–2.29) 0.41

Time from enrollment to ART initiation, per 90-day increase — — 1.02 (0.97–1.06) 0.47

Marital status — —

Single 0.67 (0.27–1.77) 0.32

Married 1.00 (REF)

Divorced 1.50 (0.80–2.83)

Widowed 0.82 (0.41–1.66)

Education

None 1.00 (REF) 0.88

Lower–mid basic 0.85 (0.37–1.92)

Upper basic/secondary 0.72 (0.31–1.68)

College/university 0.74 (0.20–2.70)

Disclosed HIV status — — 0.57 (0.17–1.86) 0.35

Province — — 0.81 (0.46–1.43) 0.47

Lusaka 1.00 (REF) 0.55

Eastern 0.89 (0.49–1.61)

Southern 0.95 (0.42–2.13)

Western 1.50 (0.74–3.00)

Attends clinic with >50% of visits scheduled every 3 months — — 1.67 (0.80–3.49) 0.17

Attends clinic with average daily volume� 50 visits/day — — 0.84 (0.52–1.35) 0.66

Adjusted model also included restricted cubic splines for the amount of time a patient was under observation.

ART, antiretroviral therapy; IRR, incidence rate ratio; LTFU, loss to follow-up; TB, tuberculosis.

https://doi.org/10.1371/journal.pmed.1002959.t005
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determinants of engagement would likely further help discriminate trajectory group member-

ship [8,12,41–51]. Ultimately, however, monitoring patients’ actual behavior—which is already

readily accessible—and the patterns that emerge over time is likely to provide some of the

most useful data for assessing risk for subsequent outcomes and for adapting patients’ treat-

ment plans accordingly. Indeed, in a study from the US that utilized machine learning algo-

rithms to develop a prediction model of retention that incorporated 1,466 variables, patients’

prior history was the most important variable [52]. It is important to note that, in our analysis,

patients began differentiating into distinct trajectory groups within the first 180 days even

though we included the full amount of observation time to classify patients. Similar to current

processes for offering differentiated services delivery, treatment plans could easily be adapted

based on these early engagement behaviors as these data are readily available. Future research

that could help to refine this strategy includes using machine learning algorithms to incorpo-

rate high-dimensional retention data into predictive models and employing sequential multi-

ple assignment randomized study designs (i.e., SMART trials) that leverage patients’ observed

behavior or outcomes to assess adaptive treatment strategies.

The fact that engagement patterns remained consistent across patient subpopulations

implies that we identified generalizable engagement phenotypes, and this has several impor-

tant implications for future practice-oriented research agendas. First, the existence of these

archetypal engagement patterns suggests that there are potentially unified sets of determinants

underlying these different behaviors. Future qualitative research should be undertaken to iden-

tify and better characterize these behavioral determinants and to further understand how

needs may differ across these groups. Second, the trajectories themselves underscore several

time points with important but different opportunities for intervention. For example, the

patients at highest risk for mortality do not return after their initial period of engagement.

This reveals the need for more intensive and tailored community-based interventions to reach

and reengage those who have disengaged (and who are at highest risk), including active trac-

ing, peer navigation, home-based care, and leveraging social networks, particularly since few

interventions have been especially successful at preventing LTFU altogether [53]. Further-

more, we found that a group of patients does reengage in care on their own, and the time of

reengagement represents another unique opportunity to strengthen engagement—with ser-

vices such as the Médecins Sans Frontières Welcome Service—among those who have already

demonstrated they are at risk for poor engagement [54]. Lastly, to target patients with a history

of good retention, differentiated models of care (including multi-month scripting) have

recently gained traction as a strategy to reduce the burden of accessing care, with current evi-

dence suggesting improved outcomes [53]. Other strategies that seek to increase the flexibility

and convenience of HIV care, such as mHealth interventions, may also be ideal for these

patients as well as patients with gradual declines in engagement (who potentially represent a

group of patients that want to stay in care but find it difficult to). Future studies that focus on

these different behavioral phenotypes could attempt to assess patients’ care preferences and

intervention strategies across these specific groups to better understand when, how, and what

types of interventions should be targeted toward each type of engagement behavior. Beyond

strategies for individual behavioral patterns, our findings also imply that HIV treatment pro-

grams will likely need a robust package of diverse types of retention interventions to ade-

quately address the different behavioral phenotypes. Thus, this more nuanced understanding

of engagement behaviors paves the way for HIV treatment programs to shift away from what

are still frequently one-size-fits-all approaches and to strategically develop more targeted and

comprehensive programs to optimize their public health impact.

There are several limitations of our study. First, it is important to note that the trajectory

groups that we identified and how patients are then classified into these groups are not
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necessarily intrinsic properties and only represent systematic attempts to characterize and clas-

sify patients based on the available data. This, along with inherent limitations in our data

source (such as unequal observation times and measurement error with regard to MPR and

retention status), has the potential to lead to classification error or classifications that may not

seem intuitive. Nevertheless, model diagnostics indicated a very good fit for the data with clear

differentiation between trajectory groups, and results were consistent in sensitivity analyses

accounting for any potential misclassification error. Additionally, trajectory patterns remained

very consistent across analyses stratified by baseline patient characteristics. This would suggest

that, overall, we were successful in both identifying trajectory groups that represent generaliz-

able latent engagement phenotypes and classifying patients into these groups. Second, with

latent class methodologies such as group-based trajectory modeling, the observed data are

used to define the exposure. That, however, may also introduce bias from survivor effects

when using longitudinal data and may limit causal inference, though we did attempt to control

for this by adjusting for cubic splines of the amount time each patient was observed. Third, we

excluded patients who died or transferred within the first 180 days of treatment in order to

ensure that patients had sufficient time under observation to develop a meaningful engage-

ment trajectory. This also precluded us from making any conclusions regarding engagement

and mortality in this particularly high-risk early period (i.e., within 180 days of ART initia-

tion), although it is also likely that baseline clinical characteristics such as CD4 count, WHO

stage, and presence of opportunistic infections are the primary drivers of mortality in this

early period. Fourth, the duration of follow-up was also limited to 2 years, which may have pre-

cluded us from assessing more long-term effects of different engagement trajectories such as

development of drug resistance. Fifth, we were unable to assess virologic outcomes as viral

loads were not routinely collected in Zambia during our study period, though MPR and LTFU

are imperfect proxies for virologic outcomes. Lastly, as our data are from 2013 to 2015, their

generalizability to current care standards that include universal test and treat, routine viral

load monitoring, and differentiated services delivery is uncertain, though our sensitivity analy-

ses do suggest that we were able to identify engagement trajectories that represent more gener-

alizable behavioral patterns that might still be observed even with current care standards.

Conclusion

In conclusion, we used novel group-based multi-trajectory analysis to identify 6 patient sub-

groups among patients newly initiating ART in Zambia that followed distinct trajectories with

regard to ART adherence and retention in care over time. We found that 19.1% of patients

become lost to follow-up within the first year while another 30.2% intermittently have poor

adherence and retention. Nevertheless, 50.7% of patients maintain fairly consistent adherence

and retention over time. Furthermore, we found that these distinct engagement trajectories

were significantly associated with risk of mortality, but we identified few baseline characteris-

tics that strongly predicted subsequent engagement trajectory. These results highlight the

importance of capturing these highly dimensional and heterogeneous engagement patterns

and using this information to guide research agendas and HIV treatment programs in devel-

oping more robust strategies for improving retention. This improved understanding of the

heterogeneity in patient behaviors ultimately can be used to effectively and efficiently tailor

interventions for a diverse patient population and will be an essential component for imple-

menting more patient-centered HIV care.
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