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Abstract

Globally, economies and marine ecosystems are increasingly dependent on sustainable

fisheries management (SFM) to balance social, economic, and conservation needs. The

overarching objectives of SFM are to maximize both conservation and socio-economic

benefits, while minimizing short-term socio-economic costs. A number of tools have been

developed to achieve SFM objectives, ranging from fishery specific to ecosystem-based

strategies. Closures are a common SFM tool used to balance the trade-off between socio-

economic and conservation considerations; they vary in scope from small-scale temporary

closures to large-scale permanent networks. Unfortunately, closures are frequently imple-

mented without a plan for monitoring or assessing whether SFM objectives are met. In situa-

tions in which a monitoring plan is not in place we propose that commonly available fishery

data can often be used to evaluate whether management tools are effective in meeting SFM

objectives. Here, we present a case study of closures on Georges Bank that shows how

fishery data can be analyzed to perform such an assessment. Since 2006, on the Canadian

side of Georges Bank, seasonal scallop fishery closures have been implemented with the

aim of reducing by-catch of Atlantic cod (Gadus morhua) and yellowtail flounder (Pleuro-

nectes ferruginea) during spawning. In lieu of data from a dedicated monitoring program, we

analyzed data from Vessel Monitoring Systems (VMS), fishery logbooks, and a scallop sur-

vey to assess the impact of these closures on the scallop fishery, and use observer data

(i.e. by-catch) to assess the effectiveness of these closures in meeting their conservation

objective. While compliance for these time-area closures was high, the closures did not sig-

nificantly displace fishing activity and overall there was limited evidence of an impact on the

scallop fishery. Further, the discard rates for both cod and yellowtail were above average

when their respective closures were active. These results suggest that improvements to

the closures design and/or other measures may be required to achieve the desired SFM

objectives.
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Introduction

While humans have relied on fisheries for centuries, population increases and technological

advances have resulted in increased pressures on both fisheries and marine ecosystems [1].

Sustainability strategies have been developed with the aim of balancing trade-offs between

these growing socio-economic pressures and ecosystem conservation [2, 3]. In the marine

realm, sustainability strategies primarily focus on fisheries, vulnerable species and ecosystems,

and the protection of marine habitats (e.g. Aichi Biodiversity targets 6, 10, and 11). Typically,

sustainable fisheries management (SFM) strategies seek to optimize long-term socio-economic

benefits (e.g. economic yield or employment) in part by ensuring that populations are main-

tained above biological reference levels [4].

A suite of SFM tools have been developed in an effort to manage fisheries and marine eco-

systems. These tools include fishery specific controls that limit the number of vessels, days at

sea, by-catch, and the total allowable catch, as well as tools that focus more directly on the eco-

system [5, 6]. Ecosystem based SFM tools often involve limiting some forms of human use to

protect vulnerable species, unique habitats, or ecosystems. Closures, which are a commonly

employed management tool, are used to limit access to an area and can range in scope from

small temporary area closures directed at limiting one specific activity to networks of large per-

manent marine reserves that prohibit a wide range of activities [7–10].

The scope and type of SFM tool implemented is often influenced by both socio-economic

and conservation objectives [11–13]. Closure tools include; a) Marine Protected Areas

(MPAs), which are permanent closures and can exclude a range of activities, including fishing

that may obstruct the MPA objectives [7], b) protection of sensitive benthic species and habi-

tats by the exclusion of certain fishing activities [14], c) time-area closures, which temporarily

restrict fishing activity to protect a species during a vulnerable life-history stage [15, 16], and

d) dynamic closures, which can vary spatio-temporally at differing scales using near real-time

data [17–19]. The overarching objective of any of these closure tools is to maximize the conser-

vation benefit while minimizing the socio-economic impact [2]. MPAs (a) are rarely imple-

mented without extensive consultation with stakeholders and socio-economic considerations

are explicitly accounted for in their development [2, 11]. The more targeted closure tools (b-d)

are typically implemented in cases where broad fisheries restrictions are deemed unacceptable

for socio-economic reasons and specific, selective management action(s) is preferred to

achieve conservation objectives.

The conservation and socio-economic impacts of closures have been debated for decades

[20–24] and a major challenge for many closures is to quantify these impacts [25, 26]. This is

especially problematic if a proper monitoring strategy is not implemented [27]. The closure

design process should identify a) the SFM objectives of the closure, b) the indicators required

to quantify if these objectives are being achieved, and c) a monitoring strategy to measure and

monitor the chosen indicators [28, 29]. Without a monitoring plan, it is difficult to evaluate

whether the closure is effective and achieving the SFM objectives [10, 28]. Further, if not

designed carefully, the closure may be ineffective or may have net-negative impacts from a

socio-economic and/or conservation perspective [10, 18, 30].

These concerns are amplified for closures in which only a portion of an area is closed for

part of the year. A time-area closuremust be designed at the appropriate spatial and temporal

scale to increase the probability of meeting both socio-economic and conservation objectives

[31–33]. Time-area closures can result in the displacement of fishing effort to lower quality

habitat outside the closure area. In these cases, if the spatial domain of the closure does not

encompass all of the components of the stock targeted for protection, the exploitation experi-

enced by the stock that the closure was designed to protect may increase [34–36] and neither

PLOS ONE Evaluating socio-economic and conservation impacts of management: A case study from Georges Bank

PLOS ONE | https://doi.org/10.1371/journal.pone.0240322 October 13, 2020 2 / 25

used in this analysis. This act sets out rules for

how institutions of the Government of Canada

must deal with personal information of individuals.

These data are considered private third party

information and are subject to privacy restrictions;

this includes logbook data, VMS data, and observer

data. Commercial data are house and archived by

Fisheries and Oceans Canada (DFO) and any

request for these commercial data would be

through the DFO Maritimes Region Commercial

Data Division and would be subject to review by

the Access to Information and Privacy Secretariat

within DFO. In some cases it is possible that data

could be released if these data could be rendered

anonymous through aggregation. The scallop

biomass information is collected through an

industry funded survey through a legal agreement

with DFO; these data are stored and maintained by

DFO and access may be requested through DFO.

Links to DFO data contacts are in attached cover

letter and below. Fishery Data: (email) Email:

XMARComData@dfo-mpo.gc.ca Scallop survey

biomass (email): DFO.MAR-PED-Data-Request-

Demande-de-donnes-DEP-MAR.MPO@dfo-mpo.

gc.ca.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0240322
mailto:XMARComData@dfo-mpo.gc.ca
mailto:DFO.MAR-PED-Data-Request-Demande-de-donnes-DEP-MAR.MPO@dfo-mpo.gc.ca
mailto:DFO.MAR-PED-Data-Request-Demande-de-donnes-DEP-MAR.MPO@dfo-mpo.gc.ca
mailto:DFO.MAR-PED-Data-Request-Demande-de-donnes-DEP-MAR.MPO@dfo-mpo.gc.ca


the socio-economic nor conservation objectives may be achieved. Similarly, a closure with a

duration that is shorter than the time-frame of the behaviour targeted for protection (e.g.

spawning) can also lead to changes in fishery behaviour, which results in elevated exploitation

after the closure reopens [37] and increased fishing effort during non-optimal periods. If the

implementation of the closure also does not account for potential inter-annual variability (e.g.

oceanographic conditions) or long-term shifts in life histories (e.g. spawning timing changes

due to ocean warming), the closure may not actually protect the stock during the life history

stage as intended. Furthermore, the size of the closed area must be large enough to encompass

the component of the stock identified for protection throughout the duration of the closure

[34, 35, 37–39] and this requires a detailed knowledge of the biology of the species and an

understanding of the current status of the stock [40]. In situations where a directed monitoring

strategy for a time-area closure has not been established, it is difficult to determine the appro-

priate scale (in both space and time) of closure that would meet the SFM objectives [37, 41]. If

the scale is too large, the closure could have detrimental socio-economic impacts, while if the

scale is too small, the conservation objectives would not be achieved.

In cases where there is no directed monitoring strategy there may still be a wealth of infor-

mation collected on a regular basis which can be used to help monitor a closure. This informa-

tion can include logbook records of fishery location, landings and effort, Vessel Monitoring

System (VMS) or Automatic Identification System (AIS) data, observer records, fishery inde-

pendent data (e.g. species-specific and ecosystem surveys), traditional and local ecological

knowledge, and data from citizen science initiatives. These data streams can be used to look

for evidence that a closure has impacted the fishery and to determine if the interactions

between the fishery and the species of interest have changed [37]. A lack of a measurable

impact on the fishery would suggest that the closure has not had a significant socio-economic

impact. Conversely, if the interactions between the fishery and the species of interest are not

impacted by the closure this would suggest that the conservation objectives of this strategy

were not achieved. A successful SFM strategy must have an acceptable socio-economic impact

and a significant conservation impact [2].

Several formerly commercially valuable groundfish species on Georges Bank are currently

well below mean historical population levels [42, 43]. Two of these stocks, Atlantic cod (Gadus
morhua) and yellowtail flounder (Pleuronectes ferruginea), have supported relatively large

fisheries in the past. On the Canadian portion of Georges Bank there currently is no directed

fishery for Atlantic cod or yellowtail flounder, however, there are annual by-catch reserves

allocated to the Canadian groundfish fishery and the Canadian offshore scallop fishery (hereaf-

ter referred to as the scallop fishery). In addition, Fisheries and Oceans Canada (DFO) has

implemented time-area closures on Georges Bank; the conservation objectives of these clo-

sures are to protect aggregations of Atlantic cod (cod closure) and yellowtail flounder (yellow-

tail closure) during peak spawning periods from the mobile bottom gear deployed by the

scallop fishery.

Here we demonstrate an approach that uses readily available fishery data to assess the

socio-economic (fishery) impact of the closures and to evaluate the effectiveness of the closures

in achieving their conservation objectives. To evaluate the socio-economic impact of the clo-

sure on the scallop fishery three questions were addressed; 1) how do patterns of scallop pro-

ductivity influence the scallop fishery and did the implementation of the closures influence

this relationship?, 2) do the closures displace the scallop fishery from areas that would be

fished?, and 3) have the closures impacted the ability of the fishery to reach their total allowable

catch (TAC) of scallop? To evaluate whether the conservation objectives of the closures are

being achieved, the seasonal patterns of discards from the fishery during the closure era (2006-

2018) were analyzed. Unfortunately, there were insufficient observer data from the pre-closure
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era (2000-2005) to perform a direct comparison of discards between the pre-closure and clo-

sure eras. We discuss the implications of these results for this case study and for SFM more

broadly.

Methods

Study area

Georges Bank, located in the Northwest Atlantic straddling the United States (U.S.)-Canada

maritime border, is a 3-150 m deep plateau that covers approximately 40,000 km2, is character-

ized by high primary productivity, and historically high fish abundance [44]. It is an eroding

bank with no sediment recharge, and covered with coarse gravel and sand that provides

important habitat for many species [45]. Since 1984, Georges Bank has been divided between

the U.S. and Canada and, while some collaborative fishery management exists, the U.S. and

Canadian portions are largely managed separately (Fig 1).

The closures

The scallop fishery time-area closures are designed to protect cod and yellowtail at peak

spawning times on Georges Bank [46, 47]. The timing of the closures differ by species and are

selected based on the respective species’ life histories [48]. The location of the closures can vary

from year to year, and the final location for a given year is determined by an analysis of fishery

and/or survey data [46, 47] followed by consultation with the scallop fishery.

To determine potential closure areas, Georges Bank is subdivided into a predetermined

grid of candidate cells of� 43 km2 and this grid is used for both closures. For the cod closures,

DFO research vessel groundfish survey data is used and a 10-year moving window of cod

abundance is calculated to identify cells expected to have the highest cod abundance. Areas

classified as ‘high abundance’ are those with an average of> 3.5 standardized individuals. The

top cells are then combined with the previous years’ first quarter scallop fishery catch, to

describe overlap between the two features [47]. The yellowtail closures use groundfish (otter

trawl) fishery discard rates and scallop catch in the second quarter of the previous year to iden-

tify candidate cells to close and this process was conducted from 2007 to 2014; however, the

location of the yellowtail closures has remained static since 2014 [46].

DFO Resource Management uses the most recent science advice to determine the cells that

should be temporarily closed each year. Both closures have consisted of a series of 3 to 7 cells

in each year (Table 1). Closed cells have comprised a total closed area of 128 to 300 km2 per

year, or 6280 km2 across all years. Atlantic cod closures ranged from 37 to 58 days in February

to the end of March, and yellowtail flounder closures have always been for the duration of

June.

The fishery

The scallop fishery currently fishes up to seven banks in Canadian waters (Fig 1). These banks

occur within scallop fishing areas that have a discrete total allowable catch (TAC) that is set by

DFO. The fishery predominately lands only the scallop adductor muscle (the ‘meat’) and it is

the total weight of the meat landed that contributes to the TAC. The scallop fleet deploys ben-

thic dredges to fish year round from January to December using two types of vessels that vary

in catch rates and processing methods. Atlantic sea scallop (Placopecten magellanicus) on

Georges Bank were previously fished to low levels in the 1980s but the fishery is now consid-

ered a sustainable and economically valuable fishery [49]. The primary scallop fishing area on

Georges Bank covers approximately 4250 km2 (Fig 1). The Canadian portion of Georges Bank

PLOS ONE Evaluating socio-economic and conservation impacts of management: A case study from Georges Bank

PLOS ONE | https://doi.org/10.1371/journal.pone.0240322 October 13, 2020 4 / 25

https://doi.org/10.1371/journal.pone.0240322


contains two NAFO sub-regions (5ZEm and 5ZEj). These sub-regions happen to delineate a

northern region of higher scallop productivity from a less productive southern region (Fig 1

inset).

Logbooks are required by DFO and the records from the scallop fishery from 2000 until

2018 were used in this study; these data include, the date, location, effort, and catch. The rec-

ords were daily until 2008; beginning in 2009 the logbooks have been completed every 6 hours.

The catch data is entered in terms of the estimated meat weight caught for the time period

covered by each logbook record. Upon completion of a trip the landings are inspected and

weighed by dockside monitors. Since logbook records contain estimates of catch, the catch

estimate for each logbook entry is prorated as a function of the proportion of estimated catch

to total trip landings; the prorated estimated catch for each logbook record was subsequently

used.

Fig 1. Map of the study area. The light grey polygons indicate the primary scallop banks which are regularly fished by the offshore scallop fishery. In the inset the grey

polygon is the main study area on Georges Bank and the darker grey polygons indicate a cell that has been closed at least once since 2006. The green line represents the

north-south division of the fishing area on Georges Bank. The numbers inside the cells indicate the total number of times a cell has been closed. While relatively

infrequent, a given cell can be closed twice in a single year, once during the cod closure and once during the yellowtail closure. Closures for cod occurred in February-

March, 2006-2018; yellowtail flounder closures occurred in June, 2007-2018. Red lines indicate the Canadian exclusive economic zone boundary.

https://doi.org/10.1371/journal.pone.0240322.g001
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Since 1996, the scallop fishery has only been permitted to land Atlantic sea scallop and

monkfish (Lophius americanus), while incidental catches of other species are required to be

discarded. Discards from the scallop fishery on Georges Bank are estimated from at-sea

observer coverage of the fishery. Observer coverage for the scallop fishery on Georges Bank

consists of two observed trips per month, as required by DFO.

License conditions for the scallop fishery require the use of Vessel Monitoring Systems

(VMS) at a polling rate of 1 hour. VMS data were available from 2000 onward, and were

obtained from the DFO database in August of 2019. VMS data included all vessels in the scal-

lop fleet, identified and verified by vessel name and vessel identification numbers. The records

before 2005 were not complete and some VMS data were supplemented with locally main-

tained records; pre 2005 up to 40% of the VMS records had to be supplemented with these

locally maintained records. Since 2005, over 99% of the VMS records were available. Raw

VMS data were filtered for duplicates and to remove pings that occurred less than 48 minutes

since the previous ping. Great circle distances were calculated based on differences between

subsequent locations and were used, along with the time difference, to estimate vessel speed

(knots). All VMS records within the Georges Bank defined area were included along with the

VMS records on all other offshore banks fished by the scallop fishery, defined by the extent of

Table 1. Summary of the past closures. Area is in km2, perimeter is km. The aggregation index is the ratio of the perimeter to area, lower values indicate increased aggre-

gation. Each cell has an area of� 43km2.

Closure Year Days Area Perimeter Aggregation index

Cod 2006 46 213 [km2] 89 [km] 0.42 [1/km]

2007 37 256 [km2] 120 [km] 0.45 [1/km]

2008 51 299 [km2] 120 [km] 0.39 [1/km]

2009 51 299 [km2] 120 [km] 0.39 [1/km]

2010 51 299 [km2] 130 [km] 0.43 [1/km]

2011 52 299 [km2] 130 [km] 0.43 [1/km]

2012 54 299 [km2] 130 [km] 0.43 [1/km]

2013 55 256 [km2] 77 [km] 0.30 [1/km]

2014 53 257 [km2] 100 [km] 0.41 [1/km]

2015 58 257 [km2] 100 [km] 0.41 [1/km]

2016 53 257 [km2] 130 [km] 0.51 [1/km]

2017 46 256 [km2] 110 [km] 0.41 [1/km]

2018 55 256 [km2] 130 [km] 0.52 [1/km]

Total 662 3500 [km2] 1500 [km] 0.42 [1/km]

Yellowtail 2007 29 214 [km2] 100 [km] 0.49 [1/km]

2008 29 214 [km2] 100 [km] 0.49 [1/km]

2009 29 128 [km2] 65 [km] 0.51 [1/km]

2010 29 171 [km2] 91 [km] 0.53 [1/km]

2011 28 128 [km2] 65 [km] 0.51 [1/km]

2012 29 128 [km2] 65 [km] 0.51 [1/km]

2013 29 300 [km2] 140 [km] 0.48 [1/km]

2014 29 300 [km2] 150 [km] 0.48 [1/km]

2015 29 300 [km2] 150 [km] 0.48 [1/km]

2016 29 300 [km2] 150 [km] 0.48 [1/km]

2017 29 300 [km2] 150 [km] 0.48 [1/km]

2018 29 300 [km2] 150 [km] 0.48 [1/km]

Total 347 2780 [km2] 1400 [km] 0.49 [1/km]

https://doi.org/10.1371/journal.pone.0240322.t001
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the DFO scallop survey strata (Fig 1). Discussions with the scallop industry suggested that fish-

ing occurs at speeds less than 5 knots, thus only VMS records with speeds < 5 knots have been

retained to identify fishing activity.

Statistical analyses

For all of the spatial analyses, Georges Bank was subdivided into a grid that aligned with the

closure cells and all analyses were performed using data aggregated at the scale of the closure

cell grids. All analyses were performed in R. The sf package was used for spatial analyses, the

mgcv package for the GAM models, and the figures were developed using ggplot2 [50–53].

Fishery effort. The pre-closure era (2000-2005) was treated separately from the closure

era (2006-2018). In the pre-closure era, the analyses of the cod and yellowtail closures incorpo-

rated all cells that were subsequently included in the cod or yellowtail closures. In the closure

era only those cod or yellowtail cells that were closed in a particular year were used; the effort

estimates for inside the closure cells are based on the portion of the year in which the closure

was not active.

VMS data were used to determine the location of fishing activity as it provides a frequent

(hourly) unbiased indicator of the location of each fishing vessel. A similar procedure was fol-

lowed to obtain the total effort estimates by era for each cell. The VMS data (< 5 knots) was

used to determine the total time spent fishing within a cell (Ec; in hours) based on the time dif-

ference between successive VMS polls (Pc) associated with each VMS record (v) in a given cell

in each year.

Ec;y ¼
Xn

v¼1

Pc;y ð1Þ

To get the VMS effort by era in each cell (Ec,era) the average effort in the cell was taken for

all the years associated with each era.

Ec;era ¼
�Ec;pre when 2000 � y � 2005

�Ec;closure when 2006 � y � 2018

8
<

:
ð2Þ

The VMS effort in each cell was classified into 4 categories based on the proportion of total

annual effort. Cells in which the proportion of total effort was in the lowest quartile (<25%)

were classified in the Low category, cells in the second quartile were classified as Below median,

cells in the third quartile were classified as Above median, and theHigh category was for the

cells in which the proportion of effort was in the top 25%.

Scallop productivity. Since 1981 DFO has conducted a summer (August) scallop survey

on the Canadian portion of Georges Bank to estimate and monitor scallop biomass. The survey

is a stratified random design and currently uses the historic survey index (1981-2009) to define

the strata. The survey currently samples at least 230 stations each year. All scallop caught on

the survey are counted and individual shell heights recorded, a subset of scallop are further

processed to measure their meat weight. The relationship between meat weight and shell

height is then used to estimate the total survey biomass for each station (in terms of meat

weight). For more details on these calculations and the scallop survey see [54].

Due to the low mobility of adult scallop, biomass can be used as a measure of productivity

within an area. Here, biomass from the scallop survey (for scallop with a shell height� 95

mm) was used to determine the scallop productivity of each cell (c) on the bank. Within each

cell, the average biomass per tow in a given year (y), BPTc,y, was calculated. This was then
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multiplied by the towable area Ac of the cell to obtain the total biomass in a cell for each year.

Bc;y ¼ BPTc;y � Ac ð3Þ

To get the biomass per cell by era (Bc,era) the average biomass in the cell was taken for all

the years with survey data in a cell during each era.

Bc;era ¼
�Bc;pre when 2000 � y � 2005

�Bc;closure when 2006 � y � 2018

8
<

:
ð4Þ

Scallop productivity was classified into 3 categories based on biomass. Cells that had a

below average proportion of the total annual scallop biomass were categorized as Low because

the fishery does not regularly target cells with below average biomass. Cells corresponding to

the most productive 25% of the bank during the study period were identified asHigh produc-

tivity cells. The remainder of the bank was classified asMedium scallop productivity.

Relationship between fishery effort and scallop productivity. The VMS fishing effort

data were compared to scallop biomass to describe the fishery in the two defined eras (pre-clo-

sure versus closure). The relationship between monthly VMS effort and scallop productivity

(in terms of biomass) was compared spatially and between eras to determine if there was evi-

dence that the closures influenced the fishing patterns of the scallop fleet on Georges Bank.

The fishery can also direct effort to other banks (Fig 1). To determine if the closures

resulted in effort displacement from Georges Bank to other banks the monthly VMS effort on

Georges Bank was compared to the total monthly VMS effort on the other banks in the pre-

closure and closure eras.

To determine the extent to which the closures led to small scale displacement of effort on

Georges Bank itself, an analysis was performed to compare the monthly VMS Effort (hours ×
km−2 × day−1) inside the closure cells in the month before, during, and the month after the clo-

sure (timing) with the effort on the rest of the bank (loc). The model was a Gamma GLM,

where the ϕ parameter controls the shape of the Gamma distribution, while μi is the expected

value of Efforti. In some years there was no effort inside the closure cells. Given that a Gamma
GLM requires strictly positive values, the years with no effort were set to a small positive value

(� 10% of the minimum observed effort in a cell).

Efforti � Gammaðmi; �Þ

EðEffortiÞ ¼ mi and varðEffortiÞ ¼
m2
i

�
ð5Þ

logðmiÞ ¼ loci � timingi

Fishery landings. For this analysis the logbook data were used to calculate the monthly

scallop landings on Georges Bank from 2000–2018. A beta GLM with a logit link was used to

model how the cumulative monthly proportion of the total annual scallop landings (PTL) var-

ied bymonth between each era. The total fishery landings were used instead of the TAC since

landings have been within 1.5% of the TAC during the study period and better represent the

total removals from the fishery each year. The monthly cumulative landings and the total

annual landings for each year were calculated from the logbook data. The beta distribution

cannot include zeros or ones so the data were transformed following [55]. The ψ parameter
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controls the shape of the beta distribution;

PTLi � betaðmi;cÞ

EðPTLiÞ ¼ mi and varðPTLiÞ ¼
mi � ð1 � miÞ

cþ 1
ð6Þ

logitðPTLiÞ ¼ monthi � erai

Discards. The observer program commenced in September 2004 and there was no

observer coverage in 2005 during several months (including February and June). As a result,

there was insufficient data from the observer program on Georges Bank during the pre-closure

era to quantitatively compare how discards from the scallop fishery have been impacted by the

implementation of the closures. Further, the coverage and resolution of the observer data pre-

clude their use in identifying fine-scale spatial discard patterns on Georges Bank (two trips per

month); however, they can provide insight into the seasonal discard patterns of the scallop

fishery. This analysis used the observer data from 2007-2018.

Estimates of discarded weights (kg) for Atlantic cod and yellowtail flounder from each

observed scallop trip (o) were retrieved from the observer database, verified for accuracy, and

prorated to account for unobserved portions of observed trips. Fishing effort for each observed

trip was calculated using the tow duration and gear width from the logbook data (Effo, with

units of hour ×metres (hm)). For each month (m) in year y the discard rate (DRm with units of

kg × hm−1) was calculated for each species as the sum of the observed trip discards (Do) in

monthm divided by the sum of the observed trip effort (Effo) in that month:

DRm;y ¼

Xn

o¼1

Do

Xn

o¼1

Effo

ð7Þ

From the Georges Bank scallop fishery logbook data, monthly fishing effort (Effm) was cal-

culated. Monthly discard rates (DRm) were then multiplied by the monthly effort from all fish-

ing trips to estimate the total discards from the fishery each month (Dm with units of metric

tonnes, mt):

Dm;y ¼ DRm;y � Effm;y � 0:001 ð8Þ

For months with no observed trips, the previous month’s discard rate was assumed. Total

annual discards (Dt, with units of mt) were calculated as the sum of the monthly discards (Dm)

in year y:

Dt;y ¼
X12

m¼1

Dm;y ð9Þ
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The monthly proportion of total annual discards (PDm) was calculated for each month in

year y as:

PDm;y ¼
Dm;y
Dt;y

ð10Þ

A monthly discard rate anomaly (DRAm) was calculated as the discard rate in each month

of year y divided by the median discard rate in that year (fDR):

DRAm;y ¼
DRm;y

~DRy
ð11Þ

The observer data analysis used a generalized additive model (GAM) with a thin plate

regression spline smoother to estimate the seasonal patterns of monthly discards (Dm),

monthly proportion of total discards (PDm), and the monthly discard rate anomaly (DRAm)

for both cod and yellowtail. The Dm and DRAm analyses used a Gamma GAM with a log link.

Dmi � Gammaðmi; �Þ and DRAmi � Gammaðmi; �Þ

EðDmiÞ ¼ mi and EðDRAmiÞ ¼ mi

varðDmiÞ ¼
m2
i

�
and varðDRAmiÞ ¼

m2
i

�
ð12Þ

logðmiÞ ¼ sðmonthiÞ

PDm was modelled using a beta GAM with a logit link. These data were transformed follow-

ing [55].

PDmi � betaðm;cÞ

EðPDmiÞ ¼ mi and varðPDmiÞ ¼
mi � ð1 � miÞ

cþ 1
ð13Þ

logitðmiÞ ¼ sðmonthiÞ

Results

Impact of the closures on the scallop fishery

The distribution of effort in the scallop fishery differed between eras (Fig 2a and 2b). In the

pre-closure era 47% (28 cells) of the southern area had above average effort. This declined to

7.8% (5 cells) of the area in the closure era. Meanwhile, the area fished in the north increased

by approximately 13%, while the percentage of the area experiencing above average effort

declined slightly from 61% (41 cells) to 57% (43 cells; note the total area of high scallop produc-

tivity increased by 2 cells) between the eras. In addition, the total effort in the south declined

from 17% of the total annual effort in the pre-closure era, to 8.5% in the closure era.

The changes in the spatial fishery patterns were largely driven by a shift in the distribution

of scallop productivity between the northern and southern portion of Georges Bank (Latitude

41.85˚; Fig 2c and 2d). In the pre-closure era 14% (8 cells) of the southern half of the bank was
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classified as high scallop productivity. This declined to just 3.1% (2 cells) of the southern area

in the closure era. Conversely, in the north the high scallop productivity region increased from

16% (11 cells) of the area in the pre-closure era to 33% (25 cells) in the closure era. The propor-

tion of the total scallop biomass on Georges Bank located in the north increased from 64% to

78% between the eras. The low scallop productivity area was consistent between eras account-

ing for 60% of the total bank area but only 27% of the total scallop biomass.

In both the pre-closure (2000-2005) and closure (2006-2018) eras the high scallop produc-

tivity regions of Georges Bank (Fig 2c and 2d) also experienced elevated fishing effort (Fig 2a

and 2b). Overall, the fishery has reduced effort in the lower scallop productivity areas and

shifted to the high scallop productivity areas which are now located primarily in the northern

portion of the bank (Figs 2 and 3).

Fig 2. Spatial distribution on Georges Bank of the average scallop productivity (a,b) and average scallop fishing effort (c,d) in pre-closure (2000-

2005) and closure (2006-2018) eras. The bank was divided into cells that are the same size and overlap with the yellowtail closure cells (indicated by

blue circles) and the cod closure cells (indicated by cells outlined by thicker black line). The green line represents the north-south division of the fishing

area on Georges Bank.

https://doi.org/10.1371/journal.pone.0240322.g002
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In the closure era, the cells that were temporarily closed to protect cod spawning aggrega-

tions (Figs 2 and 3), have covered an average of 5.4% of the total scallop fishing area. For the

cod closure, 30% of cells were high scallop productivity areas and the effort inside these cells

has generally been at or above the bank average with 8.3% of the total annual effort occurring

in the cells when they are open. The location of the cod closure cells are predominately in the

northern, more productive, region of the bank; on average 82% of the area covered by the cod

closures is in this region (Fig 4).

The cells that were temporarily closed to protect yellowtail spawning aggregations, (Figs 2

and 3) have covered an average of 3.4% of the total area fished on Georges Bank each year.

Only 17% of the yellowtail closure cells were high scallop productivity areas and the effort

inside the yellowtail closure cells has generally been below average for the bank with 2.6% of

the total annual VMS effort occurring inside the cells when they are open (Fig 2). The effort

for the yellowtail closures is highly influenced by the 2010 closures which was the only year in

which an isolated cell in the northwest portion of the bank was closed (Figs 1 and 2). Excluding

2010, effort within the yellowtail closures declined to just 1.7% of the total annual effort. The

Fig 3. The relationship between the proportion of total annual biomass and the proportion of total annual effort in the (a) pre-closure (2000-2005) and (b) closure

(2006-2018) eras. Each point represents one of the cells that the bank was divided into in each year. The cells are the same size and overlap with the yellowtail closure cells

(indicated by blue circles) and the cod closure cells (indicated by black squares). The colour of each point represents the productivity classification for that cell in a given

year. The vertical dashed line represents the mean proportion of total annual effort in the cells, while the horizontal dashed line is the mean proportion of total annual

biomass in the cells. Percentages represent the percentage of Biomass (B) and Effort (E) in each quadrant during the respective eras.

https://doi.org/10.1371/journal.pone.0240322.g003
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location of the yellowtail closure cells were more variable than observed for the cod closure

cells (Fig 4). On average 61% of the yellowtail closure cells have been in the north, but this has

varied over time, with all of the yellowtail closure cells in the north from 2009 to 2012; whereas

it has been <50% in all other years.

In the closure era, the average fishing effort across the bank in the month before (January)

the cod closure was active was not significantly different than the effort on the bank during the

closure (Fig 5). In the month following the re-opening of the closure (April) effort was elevated

relative to the previous periods both inside the closure cells and across the bank, although this

difference was statistically marginal given the variability in effort. In the month after the clo-

sure, effort was higher in the closure cells than across the bank, but due to the large inter-

annual variability of effort inside the closure cells this difference was not significant (Fig 5).

For the yellowtail cells in the closure era, the effort in the month before (May) the closure

was active was significantly higher across the bank than inside the closure cells (Fig 5). The

effort on the bank when the yellowtail closure was active (June) was not significantly different

from either the month before or the month after (July). Effort in July was typically higher on

the bank than inside the closure, but due to the large inter-annual variability of effort inside

the closure this difference was marginally significant (Fig 5).

For both closures compliance was high, but there were some occasions when vessels entered

an active closure cell (Fig 5). When the cod closure was active 99.7% of all VMS effort occurred

outside the cod closure cells, while when the yellowtail closure was active 99.8% of the VMS

effort occurred outside the yellowtail closure cells. A review of logbook data confirmed that

there has been, on occasion, extremely limited fishing within an active closure.

Fig 4. Annual proportion of the closed cells that were located in the northern half of Georges Bank for the cod and yellowtail closures. Grey numbers

represent the proportion in a given year, the blue point is modelled mean value and error bars represent the 95% confidence intervals. Note the points are

jittered slightly to avoid over-plotting and the y-axis does not extend to 0.

https://doi.org/10.1371/journal.pone.0240322.g004
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The majority of fishing activity occurred on Georges Bank, comprising an average of 72%

of the total fishery monthly effort across all banks (Fig 6). Within Georges Bank, there was a

strong seasonal cycle in effort in both eras; effort peaked during the summer months and was

lowest in winter months. During the closure era, the seasonal pattern on Georges Bank shifted,

a higher proportion of fishing occurred between April and August than in the pre-closure era.

There was a steady decline in effort on Georges Bank from September until December in this

era (Fig 6).

Overall annual effort for the offshore scallop fishery has declined in the closure era; how-

ever, the relative percentage of effort on Georges Bank increased slightly from 70% to 74% in

the closure era. On the other scallop banks in the pre-closure era effort peaked in the summer

months, whereas in the closure era the fishery effort was relatively uniform until October after

which it declined (Fig 6). The cumulative landings on Georges Bank indicated that 90% of the

total annual landings were reached almost a month earlier in the closure era (9.1 months) than

during the pre-closure era (10 months; Fig 7).

Impact of the closures on groundfish discards

There was an order of magnitude decline in the annual total discards for both species during

the closure era. The cod prorated discard estimate declined from 100 tonnes in 2007 to 7.9

tonnes in 2018 and yellowtail declined from 92 tonnes to 3.4 tonnes in this same period.

Monthly discard estimates of both Atlantic cod and yellowtail flounder on Georges Bank are

available for most months since the first year both closures were in place (2007). These esti-

mates indicate that discards of both species followed a seasonal pattern and discards tended to

be above average in the month immediately before, during, and the month immediately after

the closures were active (Fig 8).

The prorated monthly discard estimate of cod peaked between February and May, with a

maximum discard estimate of 4 (CI = 2.6-6.2) tonnes in April (Fig 8a). The proportion of the

Fig 5. The scallop fishery effort (hours × km−2 × day−1) in the month before the closure, during, and after the closure; a) cod

closures, b) yellowtail closures. Triangles represent the bank-wide effort while the circles represent the effort inside the closures, error

bars represent the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0240322.g005
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total cod discarded exhibited similar behavior, approximately 48% of the discards occurred

between February and May, peaking at 13 (CI = 11-16)% in April (Fig 8c). The discard rate,

which is the most direct measure of the frequency of interaction between the fishery and cod,

exhibited a slightly different pattern than the discard estimates. The discard rate of cod was

highest between January and March and was 2.6 times greater, on average, than the median

monthly discard rate. The discard rate was generally above the median from January to May

(Fig 8e).

The prorated total discard estimate of yellowtail peaked in April through June, with a maxi-

mum discard estimate of 13 (CI = 8-23) tonnes occurring in May (Fig 8b); this result was

Fig 6. Monthly scallop fishery VMS effort by bank (GB represents Georges Bank) across years before and after closures were

introduced. Absolute VMS effort (a,b) and proportion of total monthly VMS effort (c,d). The error-bars represent 1 standard deviation

from the mean and are intended to indicate the relative annual variability by month in each era. The shaded regions represent the cod

(grey) and yellowtail (blue) closure months.

https://doi.org/10.1371/journal.pone.0240322.g006
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highly influenced by the discards observed between 2007 and 2010. The proportion of the total

annual yellowtail discards also peaked in April through June with approximately 61% of the

total annual discards removed in these months; the peak occurred in May and an average of 25

(CI = 20-30)% of the removals occurred in this month (Fig 8d). Similarly, the discard rate was

elevated in these same months, the discard rate in May is 4 (CI = 3-5.4) times the median dis-

card rate (Fig 8f). The combination of elevated discard rates and fishery effort during these

months resulted in a very strong seasonal signal in the discards of yellowtail flounder, with

peak discards occurring when the yellowtail closure was active.

Fig 7. Cumulative proportion of total scallop landings caught by month in the pre-closure (2000-2005) and closure (2006-2018)

eras on Georges Bank. The pre-closure era is in orange, closure era in red and the shaded region represents the 95% confidence interval

for each era. The shaded regions represent the cod (grey) and yellowtail (blue) closure months. The red values along the top of the figure

indicate the average proportion of landings in a given month during the closure era, the orange values along the bottom are for the pre-

closure era.

https://doi.org/10.1371/journal.pone.0240322.g007
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Fig 8. Observed monthly a) cod prorated total discards, b) yellowtail prorated total discards c) cod proportional discards, d) yellowtail proportional discards, e) cod

discard rate anomalies, and f) yellowtail discard rate anomalies on Georges Bank. Data used were from 2007-2018. Proportions in c) and d) are of the total annual

discards from the scallop fishery on Georges Bank in a given year. Anomalies in e) and f) are calculated as a proportion of the annual median discard rate (e.g. a value of

2.5 represents a discard rate that is 2.5 times larger than the median monthly discard rate for that species in a specific year). The numbers represent the year of observation.

The model trend is represented with the black line and the 95% confidence interval is the shaded area around this line. The highlighted months represent the month in

which the respective closures were active.

https://doi.org/10.1371/journal.pone.0240322.g008
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Discussion

The primary goal of this paper was to evaluate the effectiveness of time-area closures in

achieving their conservation objectives while assessing the socio-economic impact of the clo-

sures on the Canadian Georges Bank scallop fishery. The conservation objective for the clo-

sures was to protect spawning aggregations of Atlantic cod and yellowtail flounder during

peak spawning periods from the mobile bottom gear deployed by the scallop fishery. We

found that time-area closures had minimal impact on the scallop fishery, however these

results suggest that the conservation objectives of the closures are not being fully realized.

Our methods demonstrate an evidence-based approach which could benefit the design,

implementation, and evaluation of SFM strategies and could be adapted for the development

of a broader evaluation framework.

Impact of the closures on the scallop fishery

The scallop fishery effort closely followed the spatial scallop productivity patterns as has been

observed in other scallop fisheries [56, 57]. The scallop fishery has increasingly focused effort

in areas of high scallop biomass since the pre-closure era. The cod closure cells are generally

located in a moderately productive region of the bank for scallop and the effort in these cells

is above the bank average throughout most of the year. However, the scallop fishery effort on

Georges Bank when the cod closures were active has historically been relatively low; the scal-

lop fleet fishing effort on Georges Bank typically increases in April concomitant with an

increase in scallop meat condition [58]. In the pre-closure era 14.7% of the TAC was har-

vested during February and March when the cod closure was active. This increased slightly

to 16.6% during the same months in the closure era. While the cod closure cells were often in

a relatively productive area of the bank for scallop, this closure was active before the peak of

the scallop fishery and thus had little impact on the behavior of the fishery over the course of

the fishing season. Conversely, the yellowtail closure cells were generally in a less productive

area of the bank for scallop, but were active when fishing effort was relatively high. In the

pre-closure era on average 13.7% of the TAC was removed in June. This increased slightly to

15.2% in June during the closure era. Despite the high scallop fishing effort when the yellow-

tail closures were in place, the location of the yellowtail closure cells in a region of relatively

low scallop productivity on Georges Bank resulted in a low impact on the scallop fishery.

Although the causes differ, this evidence suggests that both closures have not had a signifi-

cant impact on the scallop fishery.

A lack of direct monitoring data poses challenges to evaluating the effectiveness of time-

area closures since monitoring data is needed to evaluate both socio-economic and conserva-

tion objectives. A lack of evidence of socio-economic impact on its own does not necessarily

indicate that a closure is (in)effective; however, a lack of direct monitoring data poses chal-

lenges to evaluate whether a closure is responsible for any observed change [2]. In this case,

without the scallop survey data the redistribution of the scallop fishery to the northern portion

of the bank may have been attributed to the closures rather than the changes in scallop produc-

tivity patterns. More generally, without proper monitoring, coincidental changes in the state

of the environment can obfuscate the effect of a closure on a fishery [41]. As demonstrated

here, changes may also occur at relatively small spatio-temporal scales, compared to the synop-

tic scales at which stocks are typically assessed and managed. Monitoring strategies would

therefore benefit from accounting for spatio-temporal variability at the appropriate scales and

recent statistical advances in spatial modelling should help to facilitate these types of analyses

[59, 60].
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Impact of closures on groundfish discards

If the closures were effective in reducing discards an anomalous decline in the discard metrics

would be expected during the period in which the closures were active, however, this was not

observed. When the closures were active the discard rates remained above average and similar

to the months before and after they were active. Similarly, an above average proportion of the

total annual discards were landed in the months the closures were active. In recent years, the

proportion of total annual discards for both species has been elevated when the closures were

active; greater than 30% and greater than 40% of the total annual discards were observed when

the closures were active in 2016-2018 and in 2016 and 2018, for Atlantic cod and yellowtail

respectively. Although it is possible that discards while the closures were active may have been

higher during the closure era had the closures not been in place, we cannot draw this conclu-

sion due to the lack of baseline observer data from the pre-closure era.

The observed temporal patterns in discard metrics are in agreement with the historically

observed spawning patterns for both species. Atlantic cod spawning aggregations are believed

to last from November to May with a peak in February and March, while yellowtail flounder

spawning is thought to last from April to August with a peak in May and June [48]. However,

discard metrics were elevated both before, during, and after the closures were active and the

peak discard metrics were generally observed the month before or after the closures were

active. These results indicate that the duration of the closures was insufficient to provide pro-

tection for the duration of the peak spawning season. The weight of evidence from the discard

metrics suggests that the efficacy of the current closure design in reducing by-catch is limited

and that both the spatial and temporal scale of the closure could be improved. Appropriate

spatial scale is one of the most commonly discussed aspects of closure design and the develop-

ment of closures which are too small to meet SFM objectives is commonplace [27, 61]. For

mobile species making seasonal migrations [31, 33] and when a closure is likely to lead to fish-

ing effort near the closure boundaries [34, 35], a thorough analysis of spatial patterns and pro-

cesses should be a primary consideration during the design of protected areas [9, 33, 36]. An

appropriate closure duration is another commonly observed shortcoming of time-area clo-

sures [31] and is especially problematic when effort increases in the period after the closure is

re-opened [37].

Despite the apparent limited efficacy of the current design of the groundfish closures, dur-

ing the closure era the discards of both Atlantic cod and yellowtail flounder in the scallop fish-

ery have declined by an order of magnitude. In contrast to the above evidence, this would

suggest that these closures were effective. However, the effort in the scallop fishery has been in

decline over this time, with the annual effort in recent years (2014-2018) approximately 50%

lower than the effort in the pre-closure era. In addition, since the introduction of these closures

the biomass of Atlantic cod in the region has been low [42]. The lack of recovery of other cod

stocks in the Northwest Atlantic have been linked to elevated rates of natural mortality [62,

63]. Elevated mortality, despite a decline in fishing mortality, has been suggested as a factor

inhibiting recovery of Atlantic cod and additional SFM measures may be required to facilitate

its rebuilding [64]. Similarly, the biomass of yellowtail flounder on Georges Bank is currently

near historical low levels. Despite the yellowtail closures being implemented in 2007, signifi-

cant declines in yellowtail biomass have continued [43, 65, 66]. This decline followed a rapid

recovery in yellowtail biomass in the early 2000’s on both the Canadian and U.S. portions of

Georges Bank; the recovery was attributed to a decline in fishing mortality and favourable

environmental conditions [66]. While there have been a number of hypotheses postulated for

the latest decline of this stock, given the decrease in yellowtail discards from the scallop fisher-

ies observed in both Canada and the U.S. [67], it is unlikely that discards from the scallop
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fisheries contributed significantly to the decline and the ongoing lack of recovery during this

period.

Other management options

Properly designing a time-area closure requires knowledge of the spatial and temporal dynam-

ics of the resource being protected along with an understanding of the dynamics of the fishery

being targeted by the closure [9, 15]. Murray et al. [31] provide a series of conditions under

which time-area closures can be effective in reducing by-catch. For time-area closures, such as

those presented here, to achieve conservation objectives by-catch patterns must be predictable,

both in space and time, and the majority of by-catch should occur in a small, predictable subset

of the whole fishing area [31]. Displacement of the fishery to other areas or times of the year

with similar (or higher) by-catch rates limits the conservation effectiveness of a closure and

can result in unintended negative consequences both to the fishery and the ecosystem [31, 35,

37, 41, 68–70]. Finally, the negative conservation effects of a spatial mismatch between the clo-

sure and the resource it is attempting to protect is amplified when closures are isolated in

small patches [71]. The evidence here suggests that the cod and yellowtail closures on Georges

Bank suffer from many of the deficiencies that have resulted in ineffective time-area closures

in other jurisdictions.

To be effective, time-area closures should account for variability in discard risk in both

space and time across the fishery’s domain [15, 33, 36]. For the scallop fishery on Georges

Bank, the fishery and discard patterns suggest that these closures have not significantly

impacted this discard risk. Therefore, alternative SFM strategies may prove more effective in

reaching conservation objectives without imposing undue socio-economic restrictions on the

fishery. Recently, the concept of dynamic ocean management has become increasingly popular

as a means to attempt to minimize socio-economic costs while maximizing conservation bene-

fit. This SFM tool accounts for the dynamic nature of marine environments through the incor-

poration of monitoring and management in near real-time [17, 19]. The underlying premise

of dynamic management is that management conducted at the scale of the relevant biological,

environmental, and anthropogenic variability will improve conservation benefit while

enabling a fishery to operate with minimal additional cost [19, 72]. Increasingly, dynamic

ocean management techniques are being developed and implemented to improve SFM of

marine resources [40, 67, 73].

On the U.S. side of Georges Bank a dynamic management program was implemented in

2010; this was a formal by-catch monitoring program in which yellowtail flounder by-catch in

the U.S. scallop fishery was monitored in near real-time [67]. This program relied on a close

collaboration with industry and the development of a fleet communication system so that

industry could provide daily by-catch updates; these updates were summarized and maps were

provided to the fishery to indicate the risk of encountering yellowtail throughout the region.

This collaboration was effective in reducing by-catch of yellowtail flounder largely due to the

desire of industry to reduce economic losses associated with closures of highly productive scal-

lop habitat in the previous decade [18, 67]. The program was deemed a success as it reduced

both discards and the economic losses due to closures during the early years of its implementa-

tion [67].

In the later years of the yellowtail monitoring program in the U.S., the effectiveness

declined due to a lack of industry support; this was due to the industry perception that the risk

of economic loss had declined. The perceived reduction in risk was likely due to a decline in

the likelihood of encountering yellowtail concomitant with the decline in yellowtail flounder

biomass on Georges Bank; these declines are consistent with the declines in discards observed
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by the scallop fleet in Canada during this same period. Other by-catch mitigation programs

using fleet communication have proven successful as long as there is a strong incentive for the

fishery to remain engaged in the partnership [74, 75]. The experience in the U.S. scallop fishery

is an example of how a dynamic management program requires carefully developed long-term

incentives to be successful [76]. The long-term success of a dynamic management strategy

requires sufficient planning, consultation, and compliance from stakeholders due to the often

intensive nature of the strategy.

In Canada, a similar, yet informal, dynamic management program has also been imple-

mented but without direct management involvement. The scallop fishery has established an

informal voluntary move protocol in which vessels will move and inform their counterparts if

they encounter unusually high groundfish by-catch in a particular area. The primary advan-

tage of this strategy is that it requires no additional resources to implement, but unfortunately,

this also means that no data are collected to quantify its effectiveness. While not directly quan-

tifiable, the cumulative effect of, a) the voluntary move protocol, b) the significant overall

decline in scallop fishery effort, and c) this effort being more concentrated in high scallop pro-

ductivity zones, are likely to have contributed more to the observed reduction in discards of

cod and yellowtail in recent years than the time-area closures.

Conclusions

These results show how fishery dependent and fishery independent data can be used to assess

the impacts of time-area closures on socio-economic and conservation objectives even without

the establishment of a dedicated monitoring program. For our case study of the cod and yel-

lowtail closures on Georges Bank the evidence suggests that the spatial and temporal extent

of these closures were insufficient to significantly reduce discards for either species during

spawning and that neither closure has had a consequential impact on the scallop fishery.

While there has been a steady decline in the annual discards from the scallop fishery during

the closure era, the drivers of this decline are likely unrelated to the closures themselves.

Improvements to the closures design and/or alternative strategies are likely required to further

protect the spawning aggregations of these groundfish stocks. The methods demonstrated in

this study provide a framework that leverages existing data streams to evaluate the effectiveness

of closures relative to SFM objectives.
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