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ABSTRACT

Template-switching reverse transcription is widely
used in RNA sequencing for low-input and low-
quality samples, including RNA from single cells
or formalin-fixed paraffin-embedded (FFPE) tissues.
Previously, we identified the native eukaryotic mRNA
5′ cap as a key structural element for enhancing tem-
plate switching efficiency. Here, we introduce CapTS-
seq, a new strategy for sequencing small RNAs that
combines chemical capping and template switch-
ing. We probed a variety of non-native synthetic cap
structures and found that an unmethylated guano-
sine triphosphate cap led to the lowest bias and high-
est efficiency for template switching. Through cross-
examination of different nucleotides at the cap po-
sition, our data provided unequivocal evidence that
the 5′ cap acts as a template for the first nucleotide in
reverse transcriptase-mediated post-templated addi-
tion to the emerging cDNA––a key feature to propel
template switching. We deployed CapTS-seq for se-
quencing synthetic miRNAs, human total brain and
liver FFPE RNA, and demonstrated that it consis-
tently improves library quality for miRNAs in compar-
ison with a gold standard template switching-based
small RNA-seq kit.

INTRODUCTION

Small RNAs (<200 nucleotides) are for the most part non-
coding regulatory elements and play a key role in gene
expression. This diverse class of RNAs includes small in-
terfering RNAs (siRNAs), microRNAs (miRNAs), Piwi-
interacting RNAs (piRNAs), small nucleolar RNAs (snoR-
NAs), small nuclear RNAs (snRNAs), small Cajal body-
specific RNAs (scaRNAs), and transfer RNAs (tRNAs) (1–
3). An increasing number of small RNA species continue to
be discovered as technologies become more sophisticated.

Small RNAs regulate gene expression in plants, animals,
and many fungi––including several roles in development,
proliferation, differentiation, immune reaction, apoptosis,
tumorigenesis and adaptation to stress (4,5). Given their
importance in regulation, it is no surprise that miRNAs
are candidates as biomarkers for several human diseases
(6,7). miRNAs directly interact with target sites in the 3′
untranslated region of mRNA to repress expression. It has
been estimated that >60% of mRNAs contain target sites
for miRNAs, and many can target up to several hundred
mRNAs, making miRNAs critical to a myriad of biological
processes. In point of fact, a growing body of research has
cast light on the association of aberrant miRNA expression
with several human diseases (8). Therefore, developing ac-
curate and reproducible ways to study these and other small
RNAs is necessary to further decipher their biological con-
sequences.

Microarray-based methods are often used for the analy-
sis of miRNAs, but this technique suffers from low sensitiv-
ity, especially when targeting low abundant sequences (9).
Newer methodologies based on next generation sequenc-
ing (NGS) have become available for small RNAs; how-
ever, there is still a lack of consistency and specificity com-
pared with more mature mRNA sequencing workflows (10–
16). Owing to the unique molecular characteristics of small
RNAs, namely length, structure and chemical modifica-
tions, most sequencing strategies are riddled with bias. The
main sources of bias in a typical library preparation work-
flow are the enzymatic ligations that introduce 5′ and 3′ se-
quencing adaptors to single-stranded templates (17). Poly-
A or poly-C tailing the RNA 3′ end is a common approach
to bypass the use of ligases. Nevertheless, biases can still
emerge from end tailing depending on the RNA primary
and secondary structures (18,19) and on the presence of
modifications near the 3′ end (18). Adapting the RNA 5′
end is even more challenging because ligation at that po-
sition is often inefficient and highly dependent on the se-
quence and structure of both target and adapter (20–25). In
addition, the formation of side products from intramolecu-
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lar adapter ligation further complicates the analysis of the
similarly sized adapted small RNAs (21). A great deal of
effort has been made to overcome ligation issues. A very re-
cent example is the use of randomized splint ligation, which
was shown to allow detection of small RNAs with much
lower bias and higher sensitivity (26).

Alternatives to traditional ligation-based workflows have
gained popularity. One of them is the use of template
switching, which permits ligation-free incorporation of the
5′ adapter during reverse transcription (27–29). Template
switching-based methods depend upon the natural ten-
dency of Moloney murine leukemia virus (MMLV)-type
reverse transcriptases to add nontemplated nucleotides at
the 3′ end of the emerging cDNA strand. These nontem-
plated additions serve as an anchoring unit for annealing
complementary nucleotides in a provided template switch-
ing oligonucleotide (TSO); upon reaching the cDNA-TSO
cross-junction, the reverse transcriptase effectively switches
templates, continuing cDNA synthesis out of the TSO se-
quence. By incorporating the 5′ adapter sequence into the
TSO, and using polyadenylation to prime reverse transcrip-
tion, ligation steps can be avoided altogether. For applica-
tions where the total RNA input is limited, such as single-
cell RNA sequencing, template switching offers a critical
advantage as it reduces the number of steps and sample
loss during library preparation. Several kits that utilize tem-
plate switching are commercially available, including from
Takara (SMARTer cDNA Synthesis kits), Diagenode (D-
Plex RNA-seq kits) and NEB (NEBNext Single Cell/Low
Input kits). These kits have been successfully deployed in
mRNA workflows, providing an appreciable decrease of bi-
ases in terms of sequence and presence of 2′-OMe modifica-
tions. For small RNAs, however, detection sensitivity con-
tinues to be an issue. Even though improvements in the lev-
els of bias are apparent with small RNA template switching-
based kits, the high background caused by rRNA and the
strong formation of side products significantly decrease the
mapping rate relative to ligation-based methods (30–32).

Until very recently, it was widely accepted that MMLV-
based reverse transcriptases added several nontemplated
deoxycytidines to the 3′ end of the nascent cDNA (33–36).
This has served as a guide for the design of TSOs featur-
ing three terminal guanosines (rGrGrG-3′) in many com-
mercially available kits. In our recent study (37), however,
we found that (i) rather than multiple nontemplated de-
oxycytidines, only one deoxycytidine was required for ef-
ficient template switching, and (ii) important to the suc-
cess of this process was the presence of a templating
N7-methylguanosine (m7G) cap. Furthermore, we demon-
strated that uncapped RNAs (e.g. RNAs whose 5′ end com-
prises an OH or monophosphate) suffer from high biases
and lower template switching efficiencies. In fact, we had
raised the concern that this may be one of the main rea-
sons behind the reported underperformance of template
switching-based small RNA kits.

Although capping strategies have been applied to en-
rich full-length mRNA transcripts for transcription start
site (TSS) identification (11,34,38), they were never con-
sidered in the context of small or segmented RNAs.
In this report, we introduce a novel sequencing library
preparation workflow (CapTS-seq) that combines chem-

ical capping––to enable the installation of a synthetic
cap onto 5′-monophosphate RNAs––and template switch-
ing reverse transcription. The workflow targeted for small
or fragmented RNAs was conceived based on the anal-
ysis of nontemplated additions and template switching
efficiencies seen with RNAs featuring a variety of syn-
thetic cap structures. Compared to a gold standard tem-
plate switching-based workflow for small RNA sequencing,
CapTS-seq consistently produced higher sequencing read
quality and increased detection of miRNAs in a diverse
range of RNA samples, including purified small RNA, total
brain RNA and RNA extracts from formalin-fixed paraffin-
embedded (FFPE) tissue. Finally, we showed that miRNAs
and fragmented mRNAs can be detected simultaneously in
FFPE RNA, highlighting the power of CapTS-seq not only
to profile small RNA expression, but also to shed light on
the network of interactions of miRNAs with their target
gene transcripts.

MATERIALS AND METHODS

Materials

All reagents were from New England Biolabs (NEB), Ip-
swich, MA, USA, unless otherwise stated. Unless other-
wise specified, all oligonucleotides were obtained from In-
tegrated DNA Technologies (IDT), Coralville, IA, USA.
RNA templates, primers, and TSO sequences used in this
study are shown in Supplementary Table S1. Synthesis and
characterization of the nucleoside phosphorimidazolides
(NMP-, NDP-, and NTP-imidazolides) used for chemical
capping are described in Supplementary Methods and Sup-
plementary Tables S2 and S3. Synthesis of the nucleoside
phosphorimidazolides was performed as described previ-
ously (39–41).

Several different pools of RNA were obtained for se-
quencing. The 16 RNA pool was created by individu-
ally mixing 16 discrete 5′-phosphate oligonucleotide se-
quences (25mers) that vary only in the first two 5′ nu-
cleotides. Mix4v7 was created by individually mixing 13
unique 5′-phosphate sequences (23mers) that do not map
to any known miRNAs (Supplementary Table S4). The
RNA oligonucleotide pool with randomized N1–N4 posi-
tions (25mers) was synthesized using the ‘hand-mix’ option
with an equimolar ratio of all four bases (IDT). The miRX-
plore Universal Reference library obtained from Miltenyi
Biotec (Auburn, CA, USA) contained an equimolar mix-
ture of 962 unique 5′-phosphate miRNA sequences. Human
brain total RNA (#R1234035) and human liver FFPE to-
tal RNA (#R2234149) were obtained from Biochain Insti-
tute (Newark, CA, USA). Prior to use in library prepara-
tion, human brain total RNA was subjected to size selection
using a Zymo RNA Clean & Concentrator kit (Zymo Re-
search, Irvine, CA, USA; #R1013) following the protocol
for separation of small from large RNAs.

Chemical capping

Chemical capping of synthetic 5′-monophosphate RNA
oligonucleotides (5 nmol) was performed at a 250 �l re-
action scale. On ice, a 5′-monophosphate oligonucleotide
(100 �M, 50 �l) was combined with Bis–Tris buffer pH 6
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(1 M, 50 �l), MnCl2 (1 M, 5 �l), and DMF (50 �l). For
the generation of NppN-25mers, an NMP-imidazolide (100
mM, 95 �l) was added to this solution, and the reaction
incubated at 50◦C for 5 h. For the generation of NpppN-
25mers, an NDP-imidazolide (100 mM, 95 �l) was added,
and the reaction incubated at 37◦C for 5 h. For the genera-
tion of NppppN-25mers, an NTP-imidazolide (100 mM, 95
�l) was added, and the reaction incubated at room temper-
ature for 4 h. After this time, any unreacted imidazolide was
removed from the reaction along with salts and organic sol-
vent using a Sep-Pak C18 cartridge (Waters, #WAT051910).
Briefly, the capping reaction was diluted to 5 ml in 0.1 M
triethylammonium bicarbonate (TEAB). This diluted re-
action was applied to the conditioned cartridge (0.1 M
TEAB) and then washed with 15 ml of 0.1 M TEAB. The
capped oligonucleotide was eluted from the column using
1:1 TEAB:Acetonitrile (2 ml). The presence of the oligonu-
cleotide on eluates was confirmed by NanoDrop. The crude
material was concentrated on the SpeedVac and purified by
polyacrylamide gel electrophoresis (PAGE). The identity of
the capped oligonucleotides was confirmed by intact mass
spectrometry (MS) analysis on a Thermo Q-Exactive Plus
operating under negative electrospray ionization mode (–
ESI) (Appendix 1 and Supplementary Table S3). ESI-MS
raw data was deconvoluted using ProMass HR (Novatia,
LCC).

Template-switching reverse transcription assays

To estimate the template switching efficiency, a template-
switching reverse transcription reaction (10 �l total vol-
ume) was carried out in the presence of 0.1 �M RNA tem-
plate (1 pmol), 1× Template Switching RT Buffer (NEB
#B0466), 1 mM dNTP solution mixture (NEB #N0447),
30 nM 5′-FAM V5 primer, 1 �M TSO and 100 units of
Template Switching RT (NEB #M0466). The reaction was
performed at 42◦C for 90 min, followed by a 10-min heat-
denaturation step at 72◦C. The reverse transcription reac-
tion was directly analyzed by capillary electrophoresis (CE)
without purification. The template switching efficiency was
calculated by quantifying all template switching products,
including concatemers that formed from multiple template
switching events that occured on the same cDNA. The tem-
plate switching products were summed and compared with
the corresponding primer elongation products.

To access the nature and extent of the nontemplated ad-
dition, the reverse transcription reaction (30 �l total vol-
ume) was carried out without a TSO and in the presence
of 1 �M RNA template (30 pmol), 1× Template Switching
RT Buffer, 2 mM dNTP solution mixture, 0.5 �M 5′-FAM
V5 primer, and 400 units of Template Switching RT. The
reaction was performed at 42◦C for 90 min, followed by a
10-min heat-denaturation step at 72◦C. The template RNA
was hydrolyzed by adding sodium hydroxide (1 M, 10 �l)
and EDTA pH 8.0 (0.5 M, 10 �l) to the reaction and heating
to 65◦C for 15 min. The cDNA was purified using a Oligo
Clean & Concentrator (Zymo Research #D4061) and an-
alyzed by mass spectrometry (MS) as previously described
(37).

To investigate the effect of chemical capping in miRNA
sequence coverage, the miRXplore reference was first

poly(A)-tailed and then either G-capped or left uncapped.
The RNA (capped or uncapped) was quantified using a
Qubit microRNA assay. A 0.5 pg RNA input was subjected
to template switching and PCR amplification as described
below.

Library construction using CapTS-seq

Phosphorylation of FFPE total RNA. FFPE Total RNA
(250 ng) was dissolved in nuclease-free water (up to fi-
nal volume of 50 �l), followed by 10× T4 PNK Reaction
Buffer (NEB #B0201), ATP (final concentration 1 mM;
NEB #P0756), and T4 PNK (1 �l; NEB #M0201). The re-
action was incubated for 30 min at 37˚C after which time the
material was subjected to purification using a Zymo RNA
Clean & Concentrator Kit following the standard protocol.

Chemical capping and XRN-1 treatment. 5′-
Phosphorylated RNA (125 ng of human total brain
or liver FFPE RNA spiked with 0.2 ng of Mix4v7; or 20 ng
of miRXplore reference, or 16 RNA pool, or randomized
pool) was dissolved in 5× Bis–Tris buffer, pH 6 (final
concentration 200 mM), MnCl2 (final concentration 20
mM), DMF (20% final volume), and nuclease-free water
(up to final volume of 60 �l). To this reaction was added
GDP-imidazolide (for Gppp cap) or NPn-imidazolide (for
caps of varying nucleotide or phosphate length) dissolved
in nuclease-free water (final concentration 30 mM). The
capping reaction was incubated at 37˚C for 4 h. The
reaction was then diluted with nuclease-free water (180
�l), and then XRN-1 was added (5.5 �l; NEB #M0388).
The reaction was incubated for additional 1 h at 37˚C.
The crude reaction was purified using the Oligo Clean-up
and Concentration Kit (Norgen Biotek, Ontario, Canada;
#34100).

Poly(A) tailing. RNA (0.2–200 ng) was dissolved in
nuclease-free water (up to final volume of 20 �l), fol-
lowed by 10× Escherichia coli Poly(A) Polymerase Re-
action Buffer (2 �l; NEB #B0278), 10 mM ATP (2 �l;
NEB #P0756) and E. coli Poly(A) Polymerase (1 �l; NEB
#M0276). The reaction was incubated for 5 min at 16˚C af-
ter which time the material was subjected to purification us-
ing a Zymo RNA Clean & Concentrator Kit.

Template-switching reverse transcription. The purified
poly(A)-tailed RNA was dissolved in the Template
Switching RT Buffer (5 �l; NEB #B0466), followed by
Deoxynucleotide Solution Mix (2.5 �l; NEB #N0447),
10 �M template switching oligonucleotide containing the
universal PCR primer sequence for Illumina (2.5 �l; IDT),
10 �M Poly(dT) VN SR RT primer for Illumina (1.25 �l,
IDT), and nuclease-free water (up to 21 �l). The mixture
was heated to 50˚C for 10 min and slowly cooled to 25˚C.
To this mixture was added Template Switching RT Enzyme
Mix (4 �l; NEB M0466). The reverse transcription reaction
was incubated for 10 min at 25˚C, 90 min at 42˚C, 10 min
at 70˚C, and cooled to 4˚C. The reaction was diluted with
nuclease-free water (35 �l), vortexed with isopropanol
(46.2 �l) and NEBNext Sample Purification Beads (47.7
�l; NEB #E7767). The cDNA product was allowed to
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bind to the beads for 10 min after which time the tube
was placed on a magnetic rack to separate the beads, and
the supernatant was removed. The beads were washed
twice with 80% ethanol and allowed to dry for 10 min. To
elute the cDNA, the beads were resuspended in 13 �l of
nuclease-free water.

PCR amplification and barcoding of cDNA. The cDNA (10
�l) was dissolved in LongAmp Taq 2X Master Mix (25
�l; NEB #E7309), followed by Universal Primer for Illu-
mina (2.5 �l; NEB #E6861), one primer from NEBNext
Multiplex Oligos for Illumina (2.5 �l; NEB #E7335), and
nuclease-free water (10 �l). The cDNA was denatured at
94˚C for 30 s, and then cycled 6–9 times through 94˚C (15
s), 62˚C (30 s), 70˚C (15 s), before a final extension at 70˚C
for 5 min. The reaction was purified using NEBNext Sam-
ple Purification Beads. Briefly, the PCR reaction (50 �l) was
resuspended with beads (65 �l) to remove larger fragments.
PCR products were allowed to bind for 5 min after which
time, the beads were separated on a magnetic rack, and the
supernatant removed to a fresh tube. More beads (185 �l)
were added to this supernatant to remove smaller fragments
and allowed to bind for 5 min, after which time the su-
pernatant was removed via magnetic rack. The beads were
washed twice with 80% ethanol, dried for 10 min, and resus-
pended in 15 �l of nuclease-free water. The purified PCR
library was analyzed on a High Sensitivity DNA Chip (1
�l; Agilent Technologies #5067-4626) using a 2100 Bioan-
alyzer Instrument (Agilent Technologies, Santa Clara, CA,
USA).

Library construction using SMARTer, TruSeq and NEBNext
Ultra II

Libraries for small RNA sequencing were prepared using
a SMARTer smRNA-Seq Kit (Takara Bio USA, Moun-
tain View, CA, USA; #635029) or a TruSeq Small RNA
Library Preparation Kit (Illumina, San Diego, CA, USA;
#RS-200-0012) according to the manufacturer’s instruc-
tions. Libraries for transcriptome analysis were prepared
using a NEBNext Ultra II Directional RNA Library Prep
Kit for Illumina (NEB; #E7760S), including purification
by NEBNext Sample Purification Beads to isolate PCR
products from 250 to 350 nt, according to the manu-
facturer’s instructions. A NEBNext rRNA Depletion Kit
(Human/Mouse/Rat) (NEB; #E6310) was used to deplete
human rRNA for directional RNA library preparation us-
ing NEBNext Ultra II.

Library sequencing

cDNA libraries were sequenced on an Illumina MiSeq or
NextSeq instrument (1 × 50 for synthetic and total brain
RNA or 1 × 75 for FFPE liver RNA). Libraries were se-
quenced with the addition of 50% PhiX Control spike-in
(Illumina #FC-110-3001) to improve diversity around the
TSO 3′ end.

Data analysis

Processing of Illumina sequencing reads and control tran-
scripts analysis. Cutadapt (42) was used to remove (i) the

preceding nucleotides of template switching libraries (four
nucleotides for capped libraries and three nucleotides for
uncapped libraries) from their 5′ end, (ii) the adapter se-
quences, (iii) the low-quality bases (q < 20) and (iv) the
poly(A) tails from the 3′ end of all the raw Illumina sequenc-
ing reads. This step also removed reads that became too
short (<15 nt) after trimming. The trimmed reads were first
mapped to the reference sequences of the Mix4v7 control
using the Bowtie2 program (43). To assess biases among dif-
ferent libraries, the mapped reads were quantified based on
the theoretical counts of spike-in control transcripts. The re-
maining non-control reads were then mapped to human ri-
bosomal RNA and their associated spacer sequences using
Bowtie2; only unmapped reads were kept for downstream
analysis.

miRXplore analysis. Reads were trimmed using cutadapt
as described above and mapped to the miRXplore reference
sequences using bbmap (https://jgi.doe.gov/data-and-tools/
bbtools/). Mapped reads were randomly downsampled us-
ing BBTools (https://sourceforge.net/projects/bbmap/) so
that every sample included 1 million mapped reads. Tran-
script counts were obtained using idxstats from samtools
(44). Considering the 962 miRNAs in miRXplore were
present in equimolar amounts, an expected read count
was generated by dividing the total number of mapped
reads for each library by 962. Reads were then normal-
ized by dividing the raw read counts by the expected read
counts. A miRNA represented with the exact expected read
count would have a normalized value of 1; over- and un-
derrepresented sequences would have values greater and
lower than 1, respectively. Statistical analyses were per-
formed on the log transformed, normalized values using a
mixed effects model with fixed effects for library prepara-
tion method and random effects for miRNA identity us-
ing the Lme4 package in R (R Core Team, version 3.6.3;
https://www.r-project.org/) (45). Post hoc comparisons were
performed where appropriate using least square means
(R package, version 1.5.2-1; https://CRAN.R-project.org/
package=emmeans). P-values were corrected for multiple
comparisons using the Tukey correction. Difference logos
were generated for enriched nucleotide motifs while control-
ling for the known distribution of miRNA sequences using
DiffLogo (46).

microRNA analysis. miRDeep2 (47) was used to identify
and quantify novel and known miRNAs from the pro-
cessed good quality non-control-non-rRNA reads based on
the human reference genome (hg38) and the known hu-
man mature miRNAs and their precursor sequences down-
loaded from the miRBase database (miRBase release 22).
Two filtering criteria were applied to call high-confident ma-
ture miRNAs from the mirDeep2 results: (i) randfold P-
value <0.05 and (ii) miRDeep2 score ≥0. For each identi-
fied miRNA species, the mean count of the reads that map
to multiple genomic locations were calculated and used as
the expression level for that miRNA. Comparative analy-
sis of miRNAs between different methods (e.g. overlapping
analysis and expression correlation analysis) were carried
out in R.

https://jgi.doe.gov/data-and-tools/bbtools/
https://sourceforge.net/projects/bbmap/
https://www.r-project.org/
https://CRAN.R-project.org/package=emmeans
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Transcriptome analysis. For transcriptome profiling,
processed good quality non-control-non-rRNA reads
were mapped to the human reference genome sequence
(GRCh38) and the gene annotation on the primary assem-
bly downloaded from GENCODE (release 36) (48) plus the
human tRNA annotation downloaded from tRNAscan-SE
Genomic tRNA Database (49) using the STAR aligner
(50). Gene count matrices were then generated from the
STAR alignment results by the htseq-count function of
the HTseq tool (51). Raw gene counts were converted to
transcripts per kilobase million (TPM) by the effective
transcript length and the sequencing depth (total read
counts) to make them amenable for comparison among
different libraries. Statistical analysis and correlation
plotting were conducted in R.

microRNA target prediction and analysis. Predicted bio-
logical targets of miRNAs in the human genome were
downloaded from the TargetScan database Release 7.2 (52).
Predicted targets with a context++ score less than −0.5
(lower value indicates more significant) were then matched
and assigned to high-confident mature miRNAs that are
identified by the sequencing methods studied in this work.
Network analysis of microRNA and mRNA interactions
were conducted using the ggraph and tidygraph packages in
R. Functional annotation and enrichment analysis of target
genes were carried out using the DAVID functional anno-
tation tools (53), of which the Functional Annotation Clus-
tering program was used with the selection of GO Ontology,
INTERPRO and SMART annotations.

RESULTS

A strategy for chemically capping small RNAs

Our previous study showed that the m7G cap increases
the efficiency by which a given RNA undergoes template
switching during reverse transcription (37). The 5′ m7G cap
is an evolutionarily conserved modification of eukaryotic
mRNA that is installed co-transcriptionally in the nucleus
(54). 5′-Triphosphate RNAs can be capped in vivo or in
vitro using eukaryotic or viral RNA capping enzymes. While
cytoplasmic capping of 5′-phosphate RNAs has been re-
ported (54), this has yet to be translated into practice. To
overcome the challenge of introducing a cap structure to
small RNAs presenting a 5′-monophosphate, we took in-
spiration from literature and built upon an earlier report of
nonenzymatic capping of 5′-monophosphorylated oligonu-
cleotides in aqueous solution (55). To achieve efficient con-
version of 5′-p RNAs into the desired capped forms, we
performed extensive investigation of reaction buffers and
pH, concentration and identity of divalent metal catalysts,
concentration of imidazolides, presence of additives (such
as co-solvents or polyethylene glycol), and finally reaction
time and temperature (Supplementary Figure S1). Hav-
ing a set of optimal chemical capping conditions (20 mM
MnCl2, 20% DMF, 200 mM Bis–Tris buffer pH 6, 4–5 h, 24–
50◦C), we synthesized a collection of 41 distinct RNA tem-
plates (each 25 nucleotides long) that varied the nucleoside
cap, polyphosphate linker length, and identity of 5′ start-
ing nucleotide (Figure 1). Different reaction temperatures

were required for the synthesis of tetraphosphate, triphos-
phate, and diphosphate caps to balance reaction yield with
rate of hydrolytic decomposition of the imidazolides. The
more reactive triphosphate imidazolides performed well at
room temperature, while the less reactive diphosphate and
monophosphate imidazolides required reactions at 37◦C
and 50◦C, respectively. Capping yields were generally high,
yielding >80% conversion for diphosphate and triphos-
phate caps. To ensure complete removal of any unreacted
5′-monophosphate RNAs, crude chemically capped prod-
ucts were purified either through PAGE (for terminal trans-
ferase and template switching profiling assays) or enzymatic
digestion with the 5′-monophosphate-dependent exonucle-
ase XRN-1 (for sequencing assays).

Unmethylated guanosine cap leads to the highest template
switching efficiency

Chemical capping enables equipping RNAs with cap struc-
tures that are inaccessible by standard enzymatic capping.
Taking advantage of this unique feature of our approach,
we set out to explore how non-native caps affect the effi-
ciency and bias in template switching reactions. For com-
parative purposes, we obtained the m7G-capped analogues,
m7GpppN- and m7GpppNm-25mer, through enzymatic
capping and 2′-O-methylation of 5′-triphosphate RNAs
as described previously (37). We carried out template-
switching reverse transcription, as shown in Figure 2A, us-
ing a 5′-FAM labeled DNA primer, an rGrGrG-3′ TSO, and
RNA templates whose 5′ end was either capped (m7Gppp-
or Gppp-) or uncapped (HO- or p-). Capillary electrophore-
sis (CE) was used to quantify primer elongation and
template switching products, including concatemers that
formed when multiple template-switching events occurred
on the same cDNA. In line with what we have observed for
m7G-capped RNAs (m7GpppN1) (37), the presence of an
unmethylated guanosine cap (GpppN1) enhanced the tem-
plate switching efficiency about two- to fourfold for most
templates (Figure 2B). Remarkably, G-capping provided a
greater than 20-fold increase in efficiency for an RNA tem-
plate starting with uridine (as a note, in this particular tem-
plate both N1 and N2 = U). m7G-Capping, in contrast, was
not as effective as G-capping at enhancing 5′-U RNA detec-
tion. This is especially relevant because the majority of the
known human miRNA sequences have a 5′-U (26).

The more uniform yield distribution elicited by unmethy-
lated G-caps led us to anticipate that G-capping could po-
tentially lower sequencing biases in the template switch-
ing step of small RNA sequencing workflows. We thus ex-
panded the analysis to a set of 16 RNAs varying the first
two nucleotides at the 5′ end. These RNAs were either un-
capped 5′-monophosphates (emulating naturally processed
small RNAs) or subjected to chemical capping in the form
of GpppNN. Not surprisingly, uncapped 5′-p RNAs led to a
significantly lower template switching efficiency than did G-
capped templates (Supplementary Figure S2A versus S2B).
Only 5′-p RNAs starting with a guanosine nucleotide (5′-
pGN) produced any substantial template switching, mirror-
ing our previous findings (37). Similar results were obtained
using a different TSO (rGrUrG-3′ TSO) (Supplementary
Figure S2C versus S2D).
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Figure 1. Overview of chemical capping. (A) Representative example of a 5′-monophosphate RNA capped through reaction with a guanosine 5′-
phosphoroimidazolide forming a 5′-5′ phosphodiester linkage. (B) Structure of 41 distinct capped 25mer RNAs varying the nucleotide cap (guanosine,
adenosine, cytidine, thymidine or inosine) and the length of the polyphosphate bridge (di-, tri- or tetraphosphate).

Next, we determined how the identity of the 5′ cap nu-
cleoside and the length of the 5′–5′ phosphate linker af-
fected the template switching efficiency. To our knowledge,
only the native m7G cap has been tested in template switch-
ing reactions. For our initial screen, we selected a set of
capped RNAs with the starting nucleotide N1 = G and var-
ied the nature of the cap (guanosine, adenosine, cytidine,
thymidine or inosine) and the polyphosphate bridge (di-,
tri- or tetraphosphate for a guanosine cap). Three TSOs,
rGrGrG-3′, rGrUrG-3′ and rUrUrG-3′, were used in these
experiments. We found that template switching was signif-
icantly boosted by G- and I-capping RNAs (Figure 2C).
We then extended this study to other nucleotides at posi-
tion N1, covering the whole set of chemically capped RNAs
of Figure 1B (Supplementary Figure S3A through S3E; the
rUrUrG-3′ TSO was omitted from these experiments). G-
and I-capped RNAs performed well across most templates,
whereas A- and U-capped RNAs proved to be very poor
substrates for template switching. C-capped RNAs showed
a somewhat intermediate effect. Caps featuring triphos-

phate bridges consistently outperformed di- and tetraphos-
phate ones, suggesting that a balance between cap rigidity
and distance from the first nucleotide at the 5′ end is re-
quired for optimal reaction.

5’ Cap acts as a template for the first post-templated nu-
cleotide addition

The template-independent terminal transferase activity of
reverse transcriptases is inherently associated with template
switching. We therefore sought to determine the nature and
extent of nontemplated additions in the context of chemi-
cally capped RNA templates. To study the terminal trans-
ferase activity alone (disconnecting it from the template
switching process), reverse transcription reactions were per-
formed in the absence of a TSO. The resulting cDNA was
analyzed by intact mass spectrometry as previously de-
scribed (37). As with m7G-capped RNAs (this work and ref.
37), the first nontemplated nucleotide incorporated across
all G-capped RNAs was almost always dC, confirming an
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Figure 2. The effect of the cap structure on template switching and terminal transferase activities. (A) Schematic of cDNA synthesis through chemical
capping of a monophosphate RNA template followed by template-switching reverse transcription. An unmethylated guanosine cap is shown. Red shades
in the template switching oligonucleotide (TSO) represent variable 3′ end nucleotides. Green shades in the DNA RT primer represent either a fluorescent
label (CE assays) or a P7 sequence index (sequencing assays). (B) Heat map showing how the template switching efficiency is affected by the first nucleotide
of the RNA template and 5′ end capping. Color gradient indicates percentage of template switching products as determined by CE analysis. (C) Heat map
of the template switching efficiency for various non-native RNA caps in the presence of three different TSOs. (D) Nontemplated deoxynucleotide addition
profile in absence of a TSO as determined by mass spectrometry analysis. Only the most abundant nontemplated additions (represented in successive order
of incorporation to the 3′ end of the cDNA) are shown. Data represent mean ± SD of n = 2 independent experiments. All assays were performed with
discrete synthetic 25mer RNAs.

earlier notion that the cap nucleoside contributes to ‘tem-
plating’ the protraction of cDNA (Figure 2D).

Chemical capping provided us with a singular opportu-
nity to assert this hypothesis by contrasting results from di-
verse cap structures. With that in mind, we examined RNA
templates containing A-, C-, G-, I- and U-caps with varying
5′ end nucleotides and 5′-5′ phosphate linker lengths (Fig-
ure 2D and Supplementary Figure S4). As predicted, the 5′
cap dictated the first deoxynucleotide addition, acting in-
deed as a template. A-capped RNAs led to cDNA prod-
ucts with primarily thymidine as the first post-template (be-
yond the RNA template sequence) deoxynucleotide addi-
tion (which included + T, +TC, +TA and + TAA) (Fig-
ure 2D), regardless of the nucleotide at position N1 or
the 5′-5′ phosphate linker length (Supplementary Figure
S4A). C-capped RNAs led to cDNA products with primar-
ily deoxyguanosine as the first post-template addition (+G,
+GC and + GA) (Figure 2D and Supplementary Figure
S4B), G- and I-capped RNAs led to deoxycytidine addition
(+C, +CC and + CAA) (Figure 2D and Supplementary Fig-
ure S4C). U-capped RNAs led to deoxyadenosine addition
(+A, +AA and + AAA) (Figure 2D and Supplementary
Figure S4D). Once the cap-templated deoxynucleotide was
incorporated to the cDNA strand, a subsequent addition

of one or more dAs was often observed. The latter is com-
monly seen with many DNA polymerases displaying ter-
minal transferase activity. The cap-templated addition was
largely independent of the RNA nucleotides at positions N1
or N2, and completely absent in uncapped RNAs (Supple-
mentary Figure S5).

In an attempt to enhance cap-specific template switch-
ing, we designed TSOs that matched the corresponding cap-
templated addition profiles. TSOs were constructed with
the final three 3′ end nucleotides comprising a 2′-fluoro
modification to increase their templating power. To isolate
the effect of cap-specific templating, only the outermost
TSO nucleotide was varied (FrGFrGFrA-3′, FrGFrGFrC-
3′, FrGFrGFrG-3′ and FrGFrGFrU-3′ TSOs). The expecta-
tion was that each capped RNA template would be more
effectively paired with the 3′-TSO matching the addition
pattern shown in Figure 2D (i.e. A-capped RNAs with the
FrGFrGFrA-3′ TSO, C-capped RNAs with FrGFrGFrC-3′,
and so on). Interestingly, however, only the FrGFrGFrG-
3′ TSO promoted any substantial template switching for
each of the five caps tested (Supplementary Figure S6A).
With the clear exception of the FrGFrGFrG-3′/G- or I-
cap pairs, only modest yields of template-switched cDNA
products were obtained for the other matching TSO/cap
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pairs. This observation was even more pronounced when
the TSOs were combined with unbalanced ratios of dNTPs
intended to favor cap-templated addition (i.e. A-capped
RNAs with 10× dTTP, C-capped RNAs with 10x dGTP,
and so on) (Supplementary Figure S6B). Only the unbal-
anced 10x dCTP formulation showed any improvement to
the template switching efficiency for the matching cap struc-
ture. We have shown previously that template switching and
nontemplated addition are concurrent processes (37). The
data on TSO/cap pairs add a new layer of complexity to that
theory, suggesting the reverse transcriptase has a preference
for guanine at the 3′ end of the incoming TSO, regardless of
the cap structure and nucleotide addition profile.

Unmethylated guanosine cap reduces biases for template
switching in synthetic miRNA pools

We next analyzed the effect of the various cap structures on
sequence representation biases. First, template-switching
reverse transcription was performed on a set of synthetic
RNA oligonucleotides with the first four nucleotides ran-
domized and either a 5′ OH, 5′ p, 5′ m7G cap, or 5′ G cap
modification. Illumina libraries were constructed to deter-
mine the extent of biases. The sequencing data from tem-
plate switching experiments were normalized to the rela-
tive composition of the first four ribonucleotides in the syn-
thetic templates as previously described (37). The prevail-
ing bias observed, regardless of the 5′ modification, was
an overrepresentation of sequences with the first nucleotide
N1 = G (Figure 3A). Uncapped templates (5′ OH or 5′
p) exhibited a marked underrepresentation of sequences
with N1 = A or U. In general, the least sequence repre-
sentation bias was found for RNA templates containing
an unmethylated guanosine cap (5′ G cap) (Figure 3A).
Although the overall bias decreased along positions N2–
N4 for both capped and uncapped templates, it was al-
most negligible for unmethylated G-capped RNAs. Inter-
estingly, a non-negligible underrepresentation of sequences
with guanosine at positions N2-N4 and overrepresentation
of cytidine at position N2 were observed for m7G-capped
templates.

In the ensuing experiments, we examined a pool of 16 dis-
crete RNA templates varying the first two nucleotides (N1
and N2). Differently from the randomized set above, each
RNA in this pool was individually synthesized and puri-
fied. This pool was either left uncapped (in the form of 5′-
monophosphate) or capped with one of guanosine, adeno-
sine, cytidine, thymidine or inosine. A triphosphate bridge
was chosen for all capped templates, except for guanosine
caps, where di- and tetraphosphate bridges were also investi-
gated. Template-switching reverse transcription, amplifica-
tion and sequencing were performed as above. A template-
specific DNA primer containing the Illumina P7 sequenc-
ing adapter was utilized in these experiments along with the
TSOs rGrGrG-3′ (Figure 3B and C) or rGrUrG-3′ (Supple-
mentary Figure S7). Reads were organized by the identity
of the first two RNA 5′ end nucleotides. Normalized read
counts above or below the interval of 2-fold of the expected
value were considered over- or underrepresented, respec-
tively. The results were in line with the trends seen above.
The lowest sequencing bias was found for Gppp-capped

templates, whereas the highest for Uppp-capped templates
(Figure 3B). Guanosine caps performed better than other
nucleotide caps, irrespective of the polyphosphate linker
length. Critically, the presence of a Gppp cap enabled low-
ering the systematic underrepresentation of uncapped reads
starting with uridine and adenosine, such as 5′-UU, 5′-UG,
5′-AA and 5′-AC templates (Figure 3C). In contrast to some
promising results from template switching efficiency with
individual RNA templates (Figure 2C, middle column), the
rGrUrG-3′ TSO led to consistently higher sequencing bi-
ases (Supplementary Figure S7) and was not pursued fur-
ther.

To further investigate whether a Gppp cap would also
reduce the sequence representation bias in a more diverse
miRNA pool, we performed template-switching reverse
transcription on a synthetic reference, miRXplore, contain-
ing 962 unique human, mouse, rat, and viral miRNA se-
quences in equimolar ratio (24,26,31). To do so, the miRNA
pool was first polyadenylated, then either G-capped or left
uncapped, and subsequently subjected to library prepara-
tion and sequencing as described above. In line with our ob-
servations, the chemically capped libraries indeed provided
a more uniform miRNA coverage (Figure 3D and E). From
this dataset, about 37% of the detected miRNAs were within
2-fold of their expected value in uncapped libraries relative
to 45% in capped libraries, confirming that the Gppp cap
plays a critical role in reducing biases in template switching
reactions.

A universal workflow for sequencing of RNAs with uncapped
ends

Having demonstrated that the installation of a Gppp cap
reduced bias and enhanced efficiency in template switching,
we set out to broaden our strategy, hereinafter referred to as
CapTS-seq, to small RNAs with uncapped 5′ ends. To allow
template-independent reverse transcription priming, RNAs
were 3′ polyadenylated. A poly(dT) primer permits a reli-
able and largely sequence-independent incorporation of a 3′
end sequencing adapter to the cDNA strand in a ligation-
free fashion. A synthetic 25mer RNA was utilized as a
model for establishing conditions for controlled polyadeny-
lation. Under these conditions, a short stretch of ∼13 A’s
was appended to the control RNA 3′ end, as determined
by mass spectrometry (Supplementary Figure S8), although
the extent of polyadenylation may vary for different cellu-
lar RNA inputs. The whole workflow comprising chemi-
cal capping, poly(A) tailing, and template-switching reverse
transcription is shown in Figure 4A. The Takara SMARTer
smRNA-Seq kit (here referred to as SMARTer)––which is
the gold standard kit for small non-coding RNA sequencing
whose adaptation strategy combines 5′ template switching
and 3′ poly(A) tailing––was chosen for side-by-side method
comparison. SMARTer was used according to the manu-
facturer instructions. It is important to note that individ-
ual steps in CapTS-seq and SMARTer may differ in terms
of buffer composition, enzymes, and TSO(s). Furthermore,
SMARTer does not employ a capping step, and thus tem-
plate switching is carried out with uncapped RNAs. Hence,
only the overall performance between these two methods
was accessed.



PAGE 9 OF 17 Nucleic Acids Research, 2022, Vol. 50, No. 1 e2

Figure 3. Chemical capping reduces template switching biases. (A) Heat map of the contribution of the first four nucleotides (N1–N4) and the RNA 5′ end
capping to template switching bias. Color gradient indicates normalized representation of nucleotide N in the sequencing reads: yellow (overrepresented),
dark blue (underrepresented) and teal (neutral). The presence of an unmethylated guanosine cap minimizes overall nucleotide representation bias in the
library. Heat map data represent means of n = 3–4 independent experiments, ±SD < 1. (B) Normalized read distribution of libraries prepared from a
pool of 16 discrete RNA templates varying the first two nucleotides N1 and N2. The RNA pool was subjected to chemical capping as indicated. Template
switching was performed with the rGrGrG-3′ TSO. Reads were normalized to 1 (solid line) and the interval of 2-fold above and below this boundary was
denoted by dashed lines. (C) 5′-Gppp capped or uncapped RNA libraries shown in (B) arranged by the identity of the first two 5′ end nucleotides. Data
shown in (B) and (C) represent mean ± SD of n = 4 experiments. Assays were performed with 25mer RNAs, either comprising synthetic oligonucleotides
with randomized positions (A) or a pool of discrete sequences (B and C). (D) Normalized read counts for 0.5 pg input uncapped and capped libraries
prepared from an equimolar pool of 962 synthetic miRNAs (miRXplore reference). Each miRNA is expected to have a normalized read value of 1 (central
dashed line). The upper and lower dashed lines correspond to the interval of 2-fold above and below the expected value. (E) Percentage of miRNAs from
(D) falling within 2-fold of their expected values shown as the average of three technical replicates per method. Error bars represent the standard deviation.
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Figure 4. CapTS-seq improves small RNA sequence coverage representation. (A) Schematic of CapTS-seq library preparation workflow using a poly(dT)
primer for reverse transcription. (B) Normalized sequencing reads of CapTS-seq and SMARTer libraries generated from a pool of 16 discrete RNA
templates (25mers) varying the first two nucleotides N1 and N2. (C) Box plot depicting read average of two technical replicates for each sequence represented
in (B). Reads were normalized to 1 (solid line) and the interval of 2-fold above and below this boundary was denoted by dashed lines. (D) Normalized read
counts of TruSeq, SMARTer and CapTS-seq libraries prepared from an equimolar mix of 962 synthetic miRNAs (miRXplore reference). Each miRNA is
expected to have a normalized read value of 1 (central dashed line). The upper and lower dashed lines correspond to the interval of 2-fold above and below
the expected value. (E) Percentage of miRNAs falling within 2-fold of their expected values shown as the average of two technical replicates per method.
Error bars represent the standard deviation. Letter codes indicate groups that are significantly different from each other with Tukey corrected P < 0.01.
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CapTS-seq was first deployed for sequencing the pool of
16 RNAs with variable N1 and N2 positions. CapTS-seq
greatly reduced sequencing representation biases relative
to SMARTer. The vast majority of CapTS-seq reads were
within the 2-fold interval of expected values. Compared
with data obtained using a sequence-specific primer (Fig-
ure 3C, red squares), there was a slight increase in under-
representation of sequences starting with 5′-AG, 5′-UG and
5′-UU, and overrepresentation of 5′-GA (Figure 4B, red
squares). The added bias introduced by 3′ polyadenyla-
tion, while not ideal, was sufficiently low that it did not re-
quire further optimization beyond the scope of this study.
Many more sequences were underrepresented (5′-AA, 5′-
AG, 5′-CG, 5′-GC, 5′-GG, 5′-UC and 5′-UU) and overrep-
resented (5′-CA, 5′-CC and 5′-CU) when libraries were pre-
pared with SMARTer (Figure 4B, black circles). The overall
departure from the expected read representation for both
methods is summarized in Figure 4C. Altogether, these re-
sults echoed what we had found when the capping step was
omitted from the library preparation protocol (Figure 3C),
providing further evidence that chemically equipping RNA
templates with a guanosine cap does improve coverage ac-
curacy during template switching.

Next, we tested the feasibility of CapTS-seq to detect
miRNAs in the miRXplore reference. As a further point of
comparison, miRXplore libraries were prepared either us-
ing SMARTer or an Illumina TruSeq Small RNA Library
Prep Kit (here referred to as TruSeq). TruSeq is a bench-
mark method for small RNA sequencing that relies on stan-
dard enzymatic ligation for 5′ adaptation (instead of tem-
plate switching). After trimming, sorting, and normalizing
reads to the theoretical counts in the miRXplore pool, we
found that CapTS-seq provided the most accurate miRNA
coverage, i.e. more miRNA sequences were detected closer
to their expected abundance (Figure 4D and E). From this
dataset, about 15% of the detected miRNAs were within
2-fold of their expected value in TruSeq, compared with
40% in SMARTer and 45% in CapTS-seq libraries (Fig-
ure 4E). Significant statistical differences among the three
methods were observed in regard to their mean transcript
levels (Figure 4D, ANOVA c2 = 1021.4, P < 2 × 10−16). This
was further confirmed by post hoc analysis of all pairwise
comparisons. CapTS-seq and SMARTer libraries, however,
were statistically similar to each other, but different from
TruSeq in regard to the percentage of miRNA reads within
the expected range (Figure 4E). All three methods had ex-
cellent technical reproducibility with Pearson’s correlations
between replicates greater than 0.9. Differences in bias lev-
els between CapTS-seq and SMARTer became apparent by
inspection of sequence logos generated for sets of the top-
most overrepresented miRNAs in each library (Supplemen-
tary Figure S9). SMARTer libraries showed a strong over-
representation of reads starting with 5′-C along with deple-
tion of reads starting with 5′-A and 5′-U, which is similar
to what we have seen for the control 16 RNA library (Fig-
ure 4B, black circles). CapTS-seq did exhibit some variable
degree of bias at the first six positions, however, the aver-
age nucleotide divergence was not as pronounced (Supple-
mentary Figure S9, lower panels). Interestingly, although
much fewer TruSeq reads fell within 2-fold of their expected
values (Figure 4D), no bias correlation with a particular

nucleotide was observed among the most under- or over-
represented sequences (Supplementary Figure S9). Overall,
CapTS-seq appears to improve read coverage representa-
tion relative not only to traditional ligation-based meth-
ods, such as TruSeq, but also to existing template switching-
based methods, such as SMARTer.

Applying CapTS-seq to total RNA

CapTS-seq produces better quality libraries. Finally, we
tested CapTS-seq in two distinct human total RNA sam-
ples: frozen brain tissue and liver FFPE tissue. Total RNA
from adult normal brain tissue was first subjected to size se-
lection to capture small RNAs and remove most of rRNA
content. Brain tissue libraries were prepared as described
above using either CapTS-seq, a variation of CapTS-seq
in the absence of the chemical capping (here referred to as
‘TS-seq (uncapped)’), or SMARTer. For FFPE total liver
RNA, a slight modification in the library preparation pro-
tocol was required. Because the RNA extracted from FFPE
samples may be highly degraded, the phosphorylation state
at its 3′ and 5′ ends is variable (56). To repair the 3′ end
before polyadenylation and make a uniform ‘cappable’ 5′-
monophosphate end, FFPE total RNA was treated with T4
polynucleotide kinase (T4 PNK). T4 PNK is a multifunc-
tional enzyme that displays both 5′-kinase and 2′,3′-cyclic
phosphodiesterase activities, and has been widely used for
DNA and RNA end healing (57). Due to the fragmented
nature of FFPE RNA, the small RNA enrichment step
was omitted from library preparation. Only CapTS-seq and
SMARTer were used for preparing libraries from FFPE to-
tal liver RNA. We found that CapTS-seq improved the qual-
ity of the libraries made from both total RNA samples (Sup-
plementary Tables S5 and S6). As a general trend, CapTS-
seq consistently reduced the rRNA content and yielded
more useful sequencing reads than TS-seq (uncapped) or
SMARTer did (Supplementary Figure S10A and S10B).
This is particularly meaningful because rRNA makes up
the largest fraction of the reads in a typical RNA library
(16). Moreover, comparing the read length distribution be-
fore and after 3′ and 5′ end trimming, we found that CapTS-
seq significantly boosts the detection of reads at ∼20 nt
(miRNA reads) relative to TS-seq (uncapped) or SMARTer
(Supplementary Figure S10C and S10D).

CapTS-seq enables detection of more unique miRNA species.
Brain tissue and liver FFPE libraries were analyzed for
miRNA content by mapping reads to a human reference
genome (hg38). By plotting incremental subsets of ran-
domly selected reads from each of total brain RNA (Fig-
ure 5A) and FFPE liver RNA libraries (Figure 6A), we
found that CapTS-seq consistently detected more miRNAs
than either TS-seq (uncapped) (in total brain RNA) or
SMARTer (in both total brain and liver FFPE RNA), in-
dependently of the sequencing depth. The total number of
mapped reads (4 million for total brain and 19 million for
FFPE libraries) was normalized and sorted according to
the miRNA starting nucleotide (Figures 5B and 6B). All
three human brain libraries revealed that the vast major-
ity of miRNA sequences start with a 5′-U, which is con-
sistent with results presented in other studies (26). This
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Figure 5. CapTS-seq improves miRNA detection in total brain RNA. (A) Number of miRNAs detected with a mirDeep2 score >0 at various subsampled
read depths. Datasets were randomly sampled with the number of reads increasing by 5000 in each sample. Values represent the mean number detected
in two technical replicates individually sampled at each read depth. (B) Normalized miRNA read counts (number of miRNA reads per 1 million human
alignments) for each method. Colored bars represent the miRNA 5′-nucleotide. (C) Total miRNA species counts sorted by the identity of the 5′ end
nucleotide. Both miRNA strands (miRNA-5p and miRNA-3p) are counted for this analysis. (D) Overlap of unique miRNAs identified in two combined
replicates between CapTS-seq, TS-seq (uncapped) and SMARTer libraries. CapTS-seq detected more unique miRNAs. RPM, reads per million mapped
reads.

is further confirmed when considering the number of se-
quenced miRNAs in each library (Figure 5C and Supple-
mentary Figure S11C). In line with data obtained from
synthetic RNA libraries (Figures 3C and 4B), CapTS-seq
detected more 5′-U and 5′-A miRNAs than either TS-seq
(uncapped) or SMARTer did in total brain RNA. Con-
versely, TS-seq (uncapped) and SMARTer libraries were
comparatively enriched in 5′-G and 5′-C miRNAs (a slight
overrepresentation of 5′-G and 5′-C sequences was also
seen for these methods in libraries made from synthetic
RNAs as shown in Figures 3C and 4B). Collectively, the
overall correlation of the common miRNAs among the
three methods was highest for miRNAs starting with 5′-
U and lowest for miRNAs starting with 5′-G, likely re-
flecting their disproportionate abundance (Supplementary
Figure S11D).

In terms of unique miRNAs detected, CapTS-seq li-
braries rendered 273 unique mature miRNA species from
total brain RNA––21% more than SMARTer libraries did
(225) from the same 4 million sequencing reads––of which
203 were shared between the two methods and 70 were
unique to CapTS-seq (threefold more unique miRNAs rel-

ative to SMARTer) (Figure 5D and Supplementary Figure
S11A). The difference in uniquely detected miRNAs is more
subtle in comparison with TS-seq (uncapped) (265) from
the same 4 million sequencing reads. It is noteworthy that
CapTS-seq had a higher overall miRNA read count in to-
tal brain RNA than either TS-seq (uncapped) or SMARTer
did (Figure 5B). Although fewer miRNAs were detected
in FFPE, similar trends were observed. CapTS-seq FFPE
RNA libraries rendered 53 unique mature miRNA species
from 19 million sequencing reads, which is 65% more than
SMARTer did (20). More unique miRNAs were found with
CapTS-seq (37) than with SMARTer (4) (Figure 6C and
Supplementary Figure S12A). Again, a similar pattern of
miRNA sequence representation was observed in the FFPE
liver libraries, with CapTS-seq showing a marked improve-
ment in the detection of miRNAs starting with 5′-A and 5′-
U (Supplementary Figure S12C and S12D). It is important
to note that replicates within each of CapTS-seq, TS-seq
(uncapped), and SMARTer libraries consistently showed a
high read count correlation (Supplementary Figures S11B
and S12B), indicating that all methods were reproducible
and robust.
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Figure 6. CapTS-seq improves miRNAs detection in FFPE RNA and enables simultaneous transcriptome analysis. (A) Number of miRNAs detected with
a mirdeep2 score >0 at various subsampled read depths. Datasets were randomly sampled with the number of reads increasing by 5000 in each sample.
Values represent the mean number detected in two technical replicates individually sampled at each read depth. (B) Normalized miRNA read counts
(number of miRNA reads per 1 million human alignments) for each method. Colored bars represent the miRNA 5′-nucleotide. (C) Overlap of unique
miRNAs identified between CapTS-seq and SMARTer libraries. CapTS-seq detected more unique miRNAs. (D) Correlation of normalized read counts
between CapTS-seq and a control RNA-seq library (NEBNext Ultra II). Left panel, all transcripts; right panel, protein-coding transcripts only. TPM,
transcripts per kilobase million. TPM values were averaged between two technical replicates. Spearman’s rank correlation coefficients for protein-coding
reads (0.92) and for all transcripts (0.76). Reads within the red circle highlight small RNAs that are uniquely detected in CapTS-seq but not in a standard
transcriptome RNA-seq library. (E) Interaction network of miRNAs (cyan dots) and their target genes (red dots) as detected in CapTS-seq libraries. The
size of the dots represents the number of miRNAs that target this particular gene. The width of the connecting lines reflects the expression level of individual
miRNAs.

CapTS-seq provides a door to decoding dynamic miRNA reg-
ulation of target genes

As a final measure of the power of CapTS-seq, we per-
formed integrated transcriptome analysis of human liver
FFPE libraries in the interest of detecting both miRNA and
mRNA in a single experiment. The reads were trimmed and
aligned to a human reference using STAR aligner and com-
pared with those of a standard RNA-seq library (NEBNext
Ultra II kit) (Supplementary Table S7). Aside from a small
subset of transcripts that were enriched in CapTS-seq li-
braries, read counts at the transcript level correlated well
between the two methods (Figure 6D and Supplementary
Figure S13A, left panels). Consistent with our expectations,
most of the unique transcripts detected by CapTS-seq cor-
responded to non-coding small RNA transcripts (Supple-
mentary Figure 14). In fact, by considering protein-coding
transcripts only, CapTS-seq normalized read counts (TPM)
highly correlated with those of the control RNA-seq library
with a Spearman’s rank correlation coefficient of 0.92 (Fig-
ure 6D and Supplementary Figure S13A, right panels). In-
terestingly, we found a significant number of reads of 30–
40 nucleotides long, of which nearly half map to mature

tRNAs (Supplementary Figures S13C and S15). The for-
mation of small tRNA fragments has been associated with
specific cleavage patterns suggesting the occurrence of inde-
pendent pathways for tRNA processing rather than random
degradation (58).

The ability to detect small RNAs and mRNAs simulta-
neously has been recently demonstrated using thermostable
group II intron reverse transcriptase sequencing (59). That
prompted us to ask whether CapTS-seq could be used to
investigate interactions between miRNAs and their target
gene transcripts. We found, indeed, that nearly one third of
the predicted target genes were associated with more than
one miRNA (with similar or different seed sequences) in the
human liver FFPE sample (Figure 6E and Appendix 2). In
striking comparison, only a small portion of the predicted
target genes (15%) was found to be associated with mul-
tiple miRNAs by SMARTer (Supplementary Figure 13B).
Moreover, CapTS-seq detected many more genes targeted
by multiple miRNAs of different seed sequences and possi-
bly at different loci (90) than SMARTer did (32) (Appendix
2). It has been shown that the interaction of miRNAs with
their target genes is complex and that the expression of some



e2 Nucleic Acids Research, 2022, Vol. 50, No. 1 PAGE 14 OF 17

genes is determined by a combination of multiple miRNA
activities (60,61). CapTS-seq provides a potentially useful
platform to decode these interactions. The functional anno-
tation of genes that are predicted to be targets of miRNAs in
CapTS-seq libraries revealed, for instance, that the KRAB-
containing proteins––many of which function as transcrip-
tional repressors––and chemotactic cytokines––which are
often induced during immune response––were overrep-
resented in the human liver FFPE sample (Supplemen-
tary Table S8). While we see these correlational results
as promising, significant work still remains to fully vali-
date the application of CapTS-seq for interaction network
analysis.

DISCUSSION

CapTS-seq is a new tool for small RNA sequencing that uti-
lizes chemical capping as a key step in library preparation.
Drawing upon our previous study into template switching
and nontemplated additions by MMLV-based reverse tran-
scriptases (37), here we leverage a chemical capping strategy
by which to equip RNAs with a non-native nucleotide cap
and shed light on important aspects of the template switch-
ing mechanism. To explain the incorporation of ‘nontem-
plated’ deoxycytidines at the cDNA 3′ end, several stud-
ies have suggested that the native m7G-cap acts as a tem-
plate for the reverse transcriptase (34,37). Our study pro-
vides definitive evidence for a cap-mediated post-template
deoxynucleotide addition. By varying the nucleotide cap,
we were able to anticipate and then unambiguously con-
firm the identity of this first post-template deoxynucleotide.
Furthermore, we show that the cap-templated addition
is largely independent of the RNA sequence and com-
pletely absent in uncapped RNAs. To our surprise, how-
ever, attempts to tune the efficiency of post-templated ad-
ditions were essentially fruitless for non-guanosine caps.
The widely-used rGrGrG-3′ TSO was still the most effec-
tive with all of the chemical caps tested here, despite a lack
of post-template + dC with most non-G caps. We specu-
late that the reverse transcriptase, while still bound to the
RNA template and nascent cDNA, can better accommo-
date a guanine at the 3′ end of the incoming TSO, and this
drives the template switching reaction forward. The inter-
play between TSO, RNA template and reverse transcriptase
is fairly complex and will certainly continue demanding in-
novative experimental design to clarify the subtleties of its
mechanism.

Additionally, we demonstrate that the presence of an un-
methylated G cap reduces bias in template switching even
further than a native m7G cap does (37) relative to uncapped
RNA templates. This result is central to the development
of CapTS-seq. Deploying chemical capping to sequencing
small RNAs that have a ‘cappable’ 5′-phosphate end proved
to be an effective strategy. Even though an exhaustive op-
timization of CapTS-seq is yet a task ahead, our universal
workflow––which combines RNA 5′ chemical capping, 3′
polyadenylation, and template switching––consistently out-
performed the gold standard Takara’s SMARTer smRNA-
seq in terms of library quality and correlation to miRNA
targets. Both methods had clear advantage over Illumina

TruSeq, which is a traditional ligation-based method and
whose biases have been well documented (30). Although re-
cent improvements in ligation-based workflows have been
reported (26), ligation-free workflows based on template
switching are still the tool of choice for challenging sam-
ple types, such as single-cell and fragmented input RNAs.
Given the low mapping rates associated with template
switching-based methods (31), several aspects of library
preparation need to be improved to allow detection of more
miRNAs with a fewer number of reads. rRNA contam-
ination is a well-known problem, particularly for FFPE
samples (62), with one study finding that only 0.6–2.3%
of sequencing reads represent miRNAs (63). Additionally,
template switching-based methods are not ideal for iden-
tifying isomiRs due to the imprecise ends that arise from
polyadenylation and template switching processes. RNA
modifications such as a 2′-O-methylation are known to in-
hibit poly(A) polymerases (64), hence RNA species such
as plant miRNAs or piRNAs may not be captured as effi-
ciently by CapTS-seq in its current format. Fortunately, the
chemical capping strategy can, in principle, be applied in
conjunction with any 3′ adaptation strategy. As such, future
iterations of CapTS-seq could aim to address some of these
limitations. In an age where personalized medicine is gain-
ing popularity, a wealth of information awaits to be cap-
tured from FFPE clinical samples. The ability to sequence
these samples with ease offers invaluable possibilities for
understanding the causes and implications of RNA aber-
rant expression in diseased states. By improving sequencing
read quality and usability, CapTS-seq revealed more mature
miRNA in both human brain and human liver FFPE sam-
ples, thus providing a more complete picture of the miRNAs
expression profile in these tissues.

Many distinct approaches have been used to identify dif-
ferentially expressed miRNA and mRNA species. Integra-
tive analyses of miRNA and mRNA profiles have been re-
ported by essentially three strategies: (i) two independent
small RNA-seq and standard RNA-seq sequencing runs
(65,66), (ii) two separate library preparations that are se-
quenced together (67,68), or (iii) one single run using group
II intron reverse transcriptase sequencing (59). Further-
more, it is often possible to capture some level of miRNA
reads in mRNA libraries, or vice versa, depending on the
RNA-seq workflow and size-selection scheme utilized. The
ability to detect miRNAs and their gene targets in a sin-
gle experiment potentially allows for a better understand-
ing of their relationship and functional annotation. We
show in this study that both MMLV-based template switch-
ing methods––CapTS-seq and SMARTer––can detect frag-
mented mRNAs in FFPE with a high correlation to that of a
widely used ligation-based RNA-seq workflow. By enabling
the capture of a larger number of unique miRNA species,
CapTS-seq provided a more comprehensive overview of
miRNA-mRNA associations than SMARTer did. It is im-
portant to note that CapTS-seq is not a replacement for
standard RNA-seq in the detection of mRNA alone. In
practical terms, CapTS-seq primarily detects small RNAs,
which will result in only a fraction of the reads contain-
ing fragmented mRNAs, thereby requiring a higher read
depth for reliable quantification of low expression mR-
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NAs. miRNAs have long been considered as potential can-
cer biomarkers. However, further research is still needed
to uncover downstream effects of differentially expressed
miRNAs in diseased versus normal tissues. We believe
CapTS-seq could play a key role in helping elucidate the
complex network of interactions of miRNAs, including
those of circulating miRNAs, and thus advance their ap-
plications in cancer diagnosis or prognosis. Efforts toward
this end are underway in our laboratory.
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