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A number of recent studies have implicated that autophagy was activated by reactive oxygen species (ROS). Our previous report
indicated that CLOCK increased the accumulation of ROS under hypoxic conditions. In this study, we investigated the mechanisms
by which CLOCK mediated endothelial damage, focusing on the involvement of oxidative damage and autophagy. Overexpression
of CLOCK in human umbilical vein endothelial cells (HUVECs) showed inhibition of cell proliferation and higher autophagosome
with an increased expression of Beclinl and LC3-I/II under hypoxic conditions. In contrast, CLOCK silencing reversed these effects.
Interestingly, pretreatment with 3-methyladenine (3-MA) resulted in the attenuation of CLOCK-induced cell autophagy and but
did not influence the production of intracellular reactive oxygen species (ROS). Furthermore, Tiron (4,5-dihydroxy-1,3-benzene
disulfonic acid-disodium salt), a ROS scavenger, significantly attenuated CLOCK-induced cell autophagy. In addition, we found
that overexpression of CLOCK had no significant effects on the production of ROS and expression of Beclinl and LC3-I/II under
normoxic conditions in HUVEC. In this present investigation, our results suggested a novel mechanism of action of CLOCK in

HUVECs, opening up the possibility of targeting CLOCK for the treatment of vascular diseases.

1. Introduction

Hypoxia has been associated with many cardiovascular
diseases, including asphyxia, traumatic brain injury, hyper-
tension, and varicose veins [1, 2]. Though intermittent
hypoxia plays an important role in energy metabolism,
angiogenesis, and vascular remodeling via the regulation of
the hypoxia inducible factor-la (HIFlx) [3, 4], continuous
hypoxic microenvironment led to excessive release of reactive
oxygen species (ROS), which accelerated protein oxidation,
mitochondrial damage, cellular apoptosis, and necrosis [5, 6].
In normal physiological conditions, ROS could be eliminated
by various enzymatic and nonenzymatic antioxidizing agents
[7], while ROS accumulation results in oxidative damage
and/or disruptive autophagy, which lead to aberrant mito-
chondrial function and cell injury by cellular stresses such as
hypoxia, nutrient deprivation, and growth factor withdrawal

[8-10]. A better understanding of the molecular mechanisms
underlying the induction of autophagy by ROS may facilitate
the development of new strategies for therapeutics.

The human Circadian Locomotor Output Cycle pro-
tein Kaput (CLOCK) belongs to the basic helix-loop-helix-
(bHLH-) PER-ARNT-SIM (PAS) superfamily of transcrip-
tion factors [11]. It was reported to play an essential role
in regulating the expression of target gene expression by
binding to E-box regulatory elements in target promoter
regions [12]. Increasing evidence indicates that CLOCK
functions as an oncogene at the cellular and molecular
levels due to its involvement in cell proliferation, apoptosis,
and DNA damage response [13, 14]. Our previous studies
have shown that CLOCK induces Rho GTPase mediated
endothelial dysfunction and NF-xB mediated inflammatory
responses via production of ROS [15]. Moreover, oxidative
stress can be induced and initiate autophagy, which may
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contribute to endothelial dysfunction and tissue damage
(16, 17]. Therefore, there is no doubt that investigating the
molecular mechanisms of autophagy in vascular endothelial
cells under hypoxia state may contribute to the development
of new approaches to patients with vascular diseases.
Therefore, in the current study, we further investigated
mechanisms of CLOCK in hypoxia-induced oxidative dam-
age and autophagy in HUVECs. The results indicated that
hypoxia induced HUVECs autophagy and apoptosis through
upregulation of CLOCK which increased production of ROS.

2. Materials and Methods

2.1. Cell Culture and Treatments. HUVECs were obtained
from ATCC (ATCC, Rockville, MD, USA) and cultured
in EGM-2 Bulletkit medium (Lonza, Basel, Switzerland)
as in our previous report [15]. The hypoxia model was
performed as our previously described one using Xvivo
Closed Incubation System (Xvivo system 300C, BioSpherix,
Lacona, New York, USA) [15]. Tiron (4,5-dihydroxy-1,3-
benzene disulfonic acid-disodium salt), a ROS scavenger, was
purchased from Sigma-Aldrich (St. Louis, MO, USA) and
dissolved in DMSO. Rapamycin and 3-methyladenine (3-
MA) were obtained from Sigma and dissolved in DMSO.

2.2. Cell Viability Assay. Cell viability was determined by
CCK-8 assay (Dojindo, Japan) following the procedures
suggested by the manufacturer. In brief, approximately 2 x
10° cells (in 100 uL of fresh medium) were plated onto 96-well
plates in triplicate, and the cells with different treatment were
incubated with 10 uL of the CCK-8 solution for an additional
2hat 37°C. The optical density (OD) was measured at 450 nm
using Infinite M200 microplate reader.

2.3. Apoptosis Assay. Cells were harvested and washed in
ice-cold PBS. Then cells were incubated with Annexin V
(PE Annexin V Apoptosis Detection Kit I, BD Biosciences,
San Jose, CA, USA) for 15min at 37°C in the dark and
then incubated with propidium iodide (PI) for 10 min. The
percentage of apoptotic cells was observed using the Elite
ESP flow cytometer and data were analyzed with FlowJo 9.8.2
software.

2.4. Cell Migration Assay. Approximately 4 x 10* cells (in
100 pL serum free medium) were seeded on the upper cham-
bers of a 24-well format cell culture insert with 8 ym pores
(Corning, Tewksbury, MA, USA). The lower chambers were
filled with 600 uL complete medium containing 20 ng/mL
EGF (Sino Biological). After incubation at 37°C for 36 h, the
migrating cells were fixed with 4% paraformaldehyde, stained
with 0.5% crystal violet, and then counted in five randomly
chosen microscope fields per filter under a light microscope
(Olympus, Tokyo, Japan) at x100 magnification.

2.5. Cellular ROS Level Analysis. Intracellular ROS was mea-
sured using the oxidant-sensing 2',7'-dichlorofluorescein
diacetate (DCFH-DA, 5uM, Invitrogen, Grand Island, NY,
USA) as previously described [15].
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2.6. Electron Microscopy. Cells were fixed with 2.5% glu-
taraldehyde at 4°C overnight. After removing the fixative,
cells were then serially dehydrated in graded ethanol series,
rinsed in propylene oxide, and incubated in propylene oxide
and resin infiltration. Samples were embedded in Epon 812.
The section was then visualized and photographed on Hitachi
7650 TEM (Hitachi, Japan).

2.7 Immunofluorescence and Confocal Microscopy. Cells were
grown on coverslips in a 24-well plate overnight. Cyto-ID®
Autophagy Detection Kit (Enzo Life Sciences, Plymouth
Meeting, PA, USA) was used to detect the expression of
LC3 according to the manufacturer’s protocol. In brief, cells
were seeded on coverslips in 6-well plates. Following different
treatments, cells were suspended with 1x Assay buffer and
stained with Cyto-ID Green Detection Reagent and Hoechst
33342 Nuclear from light for 30 minutes at 37°C. The pictures
were captured using confocal laser scanning microscope
(Nikon, Tokyo, Japan) and processed using the software
provided by the manufacturer.

2.8. Western Blotting. Cells were lysed with ice-cold RIPA
buffer (Cell Signaling Technology, Danvers, MA, USA), sup-
plemented with a protease inhibitor cocktail (Sigma-Aldrich).
Protein concentration was measured with a BCA protein
assay kit (Thermo Scientific, Waltham, MA, USA). Equal
amounts of extracts (40 ug) were separated on 10% SDS-
PAGE gels and then transferred onto PVDF membrane (Bio-
Rad, Hercules, CA, USA). Membranes were blocked with
blocking buffer (5% skim milk) for 2 h at room temperature
and incubated with primary antibodies overnight at 4°C.
The primary antibodies used are as follows: rabbit poly-
clonal LC3 antibody (Proteintech Group, Chicago, IL, USA),
rabbit polyclonal HIF-la antibody, Beclinl antibody (Cell
Signaling Technology), rabbit polyclonal CLOCK antibody,
and beta-actin antibody (Abcam, Cambridge, MA, USA).
After being washed in TBST, the membranes were incubated
with horseradish peroxidase-conjugated secondary antibod-
ies (Cwbiotech, China), and the protein bands were visualized
using the SuperSignal™ West Pico Chemiluminescent Sub-
strate (Thermo Scientific). Beta-actin was used as a loading
control.

2.9. Statistical Analysis. The data were calculated and ex-
pressed as mean + standard deviation (SD). All experiments
were conducted at least three times. Differences between
groups were evaluated using one-way ANOVA combined
with Bonferroni’s post hoc test and those between two
groups were evaluated using Student’s ¢-test. P values were
considered significant when P < 0.05.

3. Results

3.1. Hypoxia Induced Autophagy and Repressed Cell Prolifer-
ation and Migration in HUVECs. Previous studies showed
that different degrees and durations of low oxygen could
induce autophagy [9, 18]. To investigate whether autophagy
was involved in HUVECs dysfunction under chronic hypoxia



Oxidative Medicine and Cellular Longevity

Control

10-tube_005

300
250
200
150

100 ’—_"—‘
0

(control%)

w
(=}

LC3 positive dots

Control  Hypoxia
(b)

8-tube_010 8-tube_009

2 i
Control Hypoxia
10 - * %
5 E 84 T
E e 61 Hypoxia
3y
Z. §* 2 ] ’__I__|
20 . ;
Control  Hypoxia
(@
1.2
TE 09 .
2 E 06 i
:q;f g 03
0.0 -
0 12 24 48 72
(Hours)
10° 4
= Control
= Hypoxia < 104
B 103 ]
10°

T

V& Pyl

o D Rﬁ; o "

:.,' . R:.{é 'r."," 4

".;1%5;"‘, *iﬁéﬁg BTV TN
Control i

150

100

50

Invaded cells
(control%)

0

Control
Hypoxia
Control
Hypoxia

O 24h
m 48h

(e)

10% 10% 10* 10°

T T T

10% 10% 10* 10°

10% 10° 10* 10°

FITC-A FITC-A FITC-A
Control Hypoxia 24h Hypoxia 48h
g 30 o
2
g 20 .
2 10
=9
=}
<°~ 0
Control 24h 48h
Hypoxia
(d)
Beclin] S SEES S am——
LC3 — ——
Hif-1oc s TN eee— e —

CLOCK S st . wuee el

Aclin emm— G S G— —
Control Rapamycin 8h 24h  48h

Hypoxia
()

F1GURE 1: Effects of hypoxia on cell viability and autophagy in HUVECs. (a) Representative transmission electron micrographs showing
autophagosomes in HUVECs at normoxia or hypoxia condition. Bars represent quantitative analysis. (b) The punctate GFP-LC3 dots were
determined by confocal microscopy in HUVECs at normoxia or hypoxia condition. (c) CCK-8 assay was used to determine the proliferation
of HUVECs as indicated treatment. (d) Flow cytometry detected the apoptosis of HUVECs for 24 and 48 h hypoxia. (e) Representative images
of migrating cells for 24 and 48 h hypoxia. (f) The expression of CLOCK, HIF-1«, LC3, and Beclinl was detected as indicated. Rapamycin was
used as a positive control. The expression of f-actin was used as a loading control. *P < 0.05, **P < 0.01.

state, we first examined the procedure of autophagy. As
the representative images showed in Figure 1(a), hypoxia
increased the formation of autophagy bubbles in HUVECs
under hypoxia (5% O,) for 48 h. Furthermore, the percentage
of cells with punctate LC3 was also increased (Figure 1(b)).
The effect of different durations of hypoxia on HUVECs

viability was measured. Significant differences occurred at
48 h, though the cellular viability was observed to decrease at
24h (Figure 1(c)). In addition, an increase in the percentage
of cells apoptosis was observed following hypoxia at 24 and
48h (Figure 1(d)). Then, we assessed mobility capability
of HUVECs using migration assay under either normoxic



or hypoxic conditions for 24 and 48h in vitro, and the
data showed that the amounts of cell migration induced by
hypoxia for 48 h were significantly reduced compared with
the migration value under normoxia (Figure 1(e)). Then, the
expressions of LC3 and Beclinl, key components required
for autophagy, were measured for further characterizing the
autophagy under hypoxic state. As we expect, an increase
in the level of CLOCK, HIF-l&, LC3-II, and Beclinl was
observed in HUVECs under hypoxia for 24h and 48h
(Figure1(f)), indicating that hypoxia induced cell damage and
autophagy in HUVECs. We therefore selected 48 h as the time
point to be used in the following experiments.

3.2. Inhibition of CLOCK Decreased Autophagy and Reversed
Cell Dysfunction under Hypoxic Condition. Our previous
study has shown that CLOCK had played a crucial role in
hypoxia-induced oxidative stress and cell damage [15]. To
test whether CLOCK regulates autophagy under hypoxia
condition, HUVECs stably knock down CLOCK cultured
in complete medium at normoxia or hypoxia condition for
48 h. Interestingly, decreased autophagosomes were observed
under hypoxia condition but there were no significant dif-
ferences under normoxia condition (Figure 2(a)). CLOCK
silencing resulted in a decrease of the percentage of HUVECs
with punctate LC3 under hypoxia condition (Figure 2(b)),
but there is no change at normoxia condition. Knock-
down of CLOCK reversed hypoxia-induced inhibition of
cell viability (Figure 2(c)), mobility (Figure 2(f)), and cell
apoptosis (Figure 2(d)) under hypoxia condition, not under
normoxia condition. Inhibition of autophagy by CLOCK
silencing™was also verified by western blot analysis that
identified a significant decrease of LC3-1I and Beclinl expres-
sion in HUVECs exposure to hypoxia, compared to the
negative control (SCR). However, the downregulation of
LC3-II and Beclinl expression was not significant under
normoxia condition. Taken together, these results sug-
gested that CLOCK was increased and involved in hypoxia
induced autophagy and cellular functions under hypoxia
condition.

3.3. CLOCK Aggravated Autophagy and Inhibited Cell Migra-
tion under Hypoxic Condition. In order to further confirm
whether CLOCK regulated autophagy under hypoxia condi-
tion, HUVECs stable overexpression CLOCK was cultured in
complete medium at normoxia or hypoxia condition for 48 h.
Ectopically expressed CLOCK significantly increased the
number of autophagosomes under hypoxia condition. Intro-
duction of the CLOCK expression also enhanced the number
of autophagosomes; however, the difference was not obvi-
ous under normoxia condition (Figure 3(a)). Furthermore,
autophagic flux analysis of LC3-II expression confirmed this
observation (Figure 3(b)). CCK-8 assay demonstrated that
the proliferation of HUVECs significantly decreased in the
CLOCK overexpression compared with the control vector
under hypoxia condition (Figure 3(c)). Results from cell
apoptosis and migration experiments show overexpression of
CLOCK induced cell apoptosis (Figure 3(d)) and inhibited
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cell migration (Figure 3(e)) under hypoxia condition. How-
ever, cell viability, apoptosis, and capability of migration did
not significantly change at normoxia condition. Moreover,
western blot analysis showed that overexpression of CLOCK
increased the expression of LC3-II and Beclinl under hypoxia
condition (Figure 3(f)). However, significant difference was
not observed at normoxia condition (Figure 3(f)). These
results suggest that CLOCK has played an important role in
hypoxia-induced autophagy.

3.4. 3-MA Attenuates CLOCK-Mediated Autophagy and Mig-
ration under Hypoxic Condition. It has been reported that
autophagy played a general role in coordinating growth
and metabolism of endothelial cells [19-21]. To explore
whether the CLOCK-induced inhibition of cellular function
and increased LC3-II was owing to increased autophagy,
HUVECs were treated with 3-MA (10nM) to inhibit
autophagic flux prior to hypoxia. As shown in Figures 4(a)
and 4(b), compared with the PSB control, 3-MA treatment
resulted in a decrease of number of autolysosomes and
autophagy vacuoles. Then we examined the cell viability,
apoptosis and capability of mobility. Our results have indi-
cated that 3-MA treatment could obviously reverse CLOCK-
induced inhibition of cell proliferation (Figure 4(c)) and
mobility (Figure 4(e)), as well as cell apoptosis (Figure 4(d)).
Autophagy could be enhanced by reactive oxygen species
(ROS) in pathological conditions [22, 23]. Our previous
study has shown that CLOCK mediated hypoxia induced
production of ROS [15]. Then we assessed whether the
production of ROS was changed in HUVECs treated with
3-MA. As shown in Figure 4(f), 3-MA treatment did not
reverse the production of ROS induced by CLOCK. More-
over, autophagy markers including the LC3-II and Beclinl
were tested by western blotting. The expressions of LC3-II
and Beclinl were markedly decreased after 3-MA treatment
(Figure 4(g)). These results demonstrated that autophagy was
directly involved in CLOCK-mediated induction of cellular
cytotoxicity.

3.5. ROS Is Involved in CLOCK-Induced Autophagy and Inhi-
bition of Migration. Studies have shown that ROS played an
important role in dysfunction of human vascular endothe-
lial cells [24, 25]. Moreover, ROS was crucial in hypoxia-
induced autophagy [26, 27]. Therefore, we further explored
if ROS plays a role in CLOCK-induced cell autophagy and
dysfunction in HUVECs. We eliminated the production
of ROS with Tiron, a ROS scavenger (Figure 5(a)). Our
results indicated that the stimulatory effects of CLOCK
on the level of autophagy were significantly reversed
by specific inhibition of ROS generation (Figures 5(b)
and 5(c)). Furthermore, inhibition of ROS could abolish
the adverse effect induced by CLOCK following hypoxia
insult (Figures 5(d)-5(f)). In addition, western blot anal-
ysis showed that the levels of LC3-II and Beclinl were
decreased in Tiron-treated HUVEC cell in response to
hypoxia (Figure 5(g)). These findings suggested that ROS
played a critical role in CLOCK-induced cell autophagy and
dysfunction.
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FIGURE 2: CLOCK silencing inhibited the effects induced by hypoxia in vitro. (a) HUVECs stably knock down CLOCK, followed by
hypoxia treatment for 48 h. Autophagosome was determined by Electron Microscopy. (b) Representative fluorescence micrographs display the
expression of LC3 in HUVECs with CLOCK knockdown under hypoxia condition. ((c)-(e)) Cell vitality, apoptosis, and migration capacity
of HUVEC:s after CLOCK knockdown, followed by hypoxia treatment for 48 h. (f) Western blotting was used to detect CLOCK, HIF-1a, LC3,
and Beclinl expression. **P < 0.01.
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4. Discussion

In this study, we further investigated molecular mechanism
of CLOCK in hypoxia-induced cell death. Previous studies
have demonstrated that hypoxia caused injury via regulating
autophagy [9, 27]. Consistent with these reports, our findings
showed that hypoxia induced autophagy and endothelial
dysfunction. CLOCK silencing attenuated the effects of
hypoxia-induced autophagy and endothelial dysfunction.
Antioxidants such as Tiron blocked ROS production thereby

sured in CLOCK overexpressed HUVECs under normoxia or hypoxia

avoiding autophagy and cell damage. 3-MA also relieved cell
damage by inhibiting autophagy, except cell apoptosis. A
schematic illustration of the interaction model of hypoxia,
CLOCK, ROS, and autophagy was shown in Figure 6.
Autophagy was highly conserved intracellular degra-
dation of misfolded or aggregated cytoplasmic proteins,
damaged organelles [10, 17]. Previous studies demonstrated
that autophagy was involved in irreversible cellular dysfunc-
tion or cell death by various stressors, including ischemia,
hypoxia, energy deprivation, and excitotoxic stimuli [10, 27].
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By contrast, autophagy was reported to play a protective
role in MMP-2-mediated cell transmigration and cell death
in high glucose-stimulated HUVECs [28]. Autophagy can
regulate high glucose-induced endothelial cellular senes-
cence and apoptosis [29]. Therefore, the roles of autophagy
in different condition may be beneficial, detrimental, or
bifurcate. Autophagy was a protective factor for endothelial
cells in the physiological state, which could scavenge the
waste cytoplasmic cargo [30]. In our present study, the

occurrence of autophagy was observed in HUVECs under
hypoxia. Biological functions of HUVECs were also damaged
response to hypoxia. The analysis of autophagy-associated
proteins confirmed the induction of autophagy by hypoxia.
Our previous study has shown that CLOCK was a positive
regulator of ROS in HUVECs under hypoxia [I5]. We
further demonstrated that silencing of CLOCK expression
can eliminate the effects of hypoxia on HUVECs. In contrast,
overexpression of CLOCK triggered the levels of autophagy
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and the injury of HUVECs. There was no significant change
under normoxia condition.

Since the relationship between ROS and autophagy has
been investigated in many biological processes [7, 16, 19],
we further explored whether ROS was involved in CLOCK-
mediated autophagy. It was possible that autophagy at basal
levels was required to maintain metabolism while excessive
autophagic activation induced cell injury. In present study,
we found that 3-MA, an inhibitor of autophagy, significantly
inhibited cell autophagy and the protein levels of LC3-II

and Beclinl. However, the intracellular ROS and apoptosis
level were not changed. Furthermore, Tiron has been shown
to diminish ROS production via removal of superoxide
radicals [15, 31]. Therefore, we investigated whether ROS was
involved in CLOCK-mediated activation of autophagy and
endothelial cell injury. We found that Tiron could effetely
suppress cell autophagy and restore cell viability. It has been
shown that CLOCK was found to be significantly increased
in gliomas and colorectal carcinoma [32, 33]. ROS levels
were also increased in many cancers. So CLOCK-ROS might
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provide a new perspective for the clinical therapy. Therefore,
our data indicated that dysregulation of ROS was crucial
for CLOCK-stimulated cell autophagy and damage. How-
ever, other molecular mechanisms underlying continuous
hypoxia-induced cell autophagy and damage remained to be
elucidated.

In summary, the results of the present study indicated that
hypoxia can induce autophagy in vascular endothelial cells
through activation of the CLOCK-ROS pathway. It is possible
to present a promising avenue for therapeutic opportunities
for hypoxia-induced endothelial injury.
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