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The trend toward herbal medicine as an alternative treatment for disease

medication is increasing worldwide. However, insufficient pharmacologic

information is available about the orally taken medicines. Not only herbal

medicine, but also Western drugs, when passing through the gastrointestinal

tract, interact with trillions of microbes (known as the gut microbiome [GM])

and their enzymes. Gut microbiome enzymes induce massive structural and

functional changes to the herbal products and impact the bioavailability and

efficacy of the herbal therapeutics. Therefore, traditional Chinese medicine

(TCM) researchers extend the horizon of TCM research to the GM to better

understand TCM pharmacology and enhance its efficacy and bioavailability.

The study investigating the interaction between herbal medicine and gut

microbes utilizes the holistic approach, making landmark achievements in

the field of disease prognosis and treatment. The effectiveness of TCM is a

multipathway modulation, and so is the GM. This review provides an insight into

the understanding of a holistic view of TCM and GM interaction. Furthermore,

this review briefly describes the mechanism of how the TCM–GM interaction

deals with various illnesses.

KEYWORDS

Chinese medicine, TCM, gut microbiota, prebiotics, TCM-microbiota interaction,
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1 Introduction

Traditional Chinese medicine (TCM) is a medicinal system

that is thousands of years old and has been widely adopted for

treating diseases. The precarious therapeutic approach of

Western medicine has limited TCM application to the Chinese

people only. To make TCM a good competitor with Western

medicine, the Chinese government has established 16 TCM

centers to modernize TCM application (Feng et al., 2017).

Toward the moderation of TCM, OMICS is one of the

imperative fields of research that can search for potential

targets on which TCM acts and trigger downstream signaling

cascades (Joshi et al., 2010).

Unlike Western drugs, TCM holistically improves body

physiology against diseases and, therefore, is prescribed for

holistic characterization of the patient’s syndrome by following

the yin and yang and five elements theory, visceral meridian

theory, etiology and pathogenesis theory, diagnosis, and therapy

theory (Huang K. et al., 2021). TCM can be available in the form

of decoction, powder, pill, and paste. Interestingly, the same

ingredients can compose a prescription; however, different

dosages can have distinct functions.

A bigger part of TCM is orally taken, which then passes

through physiological changes, mainly, through the enzymatic

activities that are secreted by trillions of gut-residing microbes

(known as gut microbiota [GM]) and host cells. These activities

can remodel the functional constituents of TCM. Importantly,

GM display a critical role in host health even in the occurrence of

disease. It is estimated that GM constitutes about 43% of the

human body by cell count and encodes 100 times more genes

than our body genes (Knight et al., 2017). According to the latest

statistics, the human microbiome encodes 2-20 million genes,

surpassing ∼20,000 human genes (Knight et al., 2017). These

microbial genes are presented to hosts for various functions,

including digestion, metabolism, and immune system

maturation (Cani, 2009). The human GM (approximately

99%) is composed of bacteria. And, among the body parts, the

gastrointestinal tract is more densely populated. These

commensals inhabit the human gut with a magnitude of about

100 billion to 1 trillion bacterial cells in one gram of human stool

(Hugon et al., 2015). A balanced GM is key to host health, and

any dysbiosis in gut microbial composition could put the host at

a risk for obesity, inflammatory bowel disease, diabetes, autism,

rheumatoid arthritis, and colorectal cancer (CRC) (Musso et al.,

2010; Stefka et al., 2014; Sun and Kato, 2016; Maeda and

Takeda, 2017).

Most importantly, TCM–GM research is updating our

understanding of disease prognosis and treatment. A growing

trend is developing among TCM researchers to define the

pharmacology of orally taken TCM by harnessing the

potentials of the GM. TCM interacts with trillions of gut-

residing microbes and their enzymes that present massive
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structural and functional changes. These microbes can affect

the bioavailability and efficacy of the herbal therapeutics. Not

only herbal medicine, but also the efficacy of Western medicines

relies on the GM. For instance, the efficacy of cyclophosphamide,

an anticancer immune-suppressant drug, is dependent on two

intestinal commensals called Enterococcus hirae and Barnesiella

intestinihominis (Viaud et al., 2013). This interaction also

unmasks the holistic therapeutic approach of TCM and reveals

the vital role of GM. With a growing understanding of TCM–

GM, various GM-based therapeutic approaches are developing.

However, being a new topic, there are questions that still need to

be addressed: (a) How does TCM remodel GM diversity and

composition? (b) How can the GM remodel TCM constituents

and their function? (c) Does TCM function as a growth substrate

for the GM? Nevertheless, the study of GM–TCM interaction

has opened an exciting avenue for drug discovery and new drug

targeting (El Kaoutari et al., 2013) (Chen F. et al., 2016). This

review focuses on highlighting key achievements from TCM–

GM research.
2 TCM–GM interaction

TCM–GM interaction employs a comprehensive

approach and is making groundbreaking achievements in

the field of disease prognosis and treatment. Since targeted

intervention for remodeling GM composition has shown

encouraging results in the field of disease prevention and

treatment, in this regard, TCM has become one of the

approaches through which GM composition is targeted and

remodeled for predetermined therapeutic outcomes. Various

TCM components, such as dietary fiber, phenolic compounds,

and undigested carbohydrates, are proven to upregulate the

growth of beneficial intestinal microbes, improve gut

homeostasis, and alleviate disease symptoms (Makki et al.,

2018). For example, several studies show GM remodeling

effects of saponins, naturally occurring compounds extracted

from a Chinese medicinal herb (known as Gynostemma

pentaphyllum). Saponins are reported to facilitate the

growth of beneficial bacteria and suppress cachexia-like

symptoms in mouse models (Chen L. et al., 2016; Huang

et al., 2017).

Not only does TCM affect the GM composition and

diversity, but TCM therapeutic efficacy is dependent on the

presence of certain bacterial species and their enzymes. For

instance, PHY906 (derived from four Chinese herbs) is an

anticancer medicine that can reduce irinotecan toxicity in

advanced-stage CRC patients. However, the efficacy of

PHY906 is dependent on b-glucuronidase, an enzyme

produced by intestinal bacteria (Lam et al., 2010). Similarly,

curcumin supplements to a Il10−/− mouse promote the

abundance of Lactobacillales and increase bacterial diversity
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that is concurrently accompanied by a reduced polyp burden

(McFadden et al., 2015). Nonetheless, GM also improves the

availability of TCM, which is one of the classic limitations

of TCM.

Another classic example of the TCM–GM interaction is the

ingestion of indigested polysaccharides. Indigestible

polysaccharides undergo biochemical processes in the

gastrointestinal tract and are converted into short-chain fatty

acids (SCFAs) by gut microbes. SCFAs are indispensable in

maintaining our health, especially colon health (Figure 1).

Nonetheless, SCFAs are the energy sources for colonocytes to

guarantee the activity of the colon (Wong et al., 2006). Besides

this, through inhibition of histone deacetylases and activation

of G-couple protein receptors (GPRs), SCFAs can regulate the

immune system and correct metabolic disorders (Sun et al.,

2017). In addition, SCFAs can also contribute to the gut barrier

construction via enhancement of the expression of the MUC-2

gene, modulation of oxidative stress, and upregulation of tight

junction molecules (Wang et al., 2012; van der Beek et al.,

2017). Furthermore, SCFAs also help in alleviating metabolic

syndrome in a high-fat-diet mouse model by inhibiting the

expression of pro-inflammatory cytokines, such as IL-1b and

IL-6 as well as toll like receptor 4 (TLR4) in adipose tissue (Zhai

et al., 2019). The nexus of TCM–GM is a relatively new

concept, and interests have been developing toward this field

since 2015. In the following section of the manuscript, we

summarize how TCM and GM influence each other directly

and/or indirectly.
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2.1 Effects of TCM on GM

2.1.1 Direct effects
TCM plays a significant role in promoting the growth of

intestinal probiotics and is one of the ways for TCM to exert its

curative effect (Table 1). For instance, Pogostemon cablin

(Blanco) Benth (PC) is a Chinese medicinal plant, traditionally

used for the treatment of gastrointestinal symptoms. Four

extractions of PC (i.e., patchouli essential oil, patchouli

alcohol, pogostone, and b-patchoulene) were found to

promote the abundance of beneficial bacteria, such as

Anaerostipes butyraticus, Butytivibrio fibrisolvens, Clostridium

jejuense, Eubacterium uniforme, and Lactobacillus lactis

(Leong e t a l . , 2019) . Other compounds , such as

polysaccharide, also have well-known prebiotics. It is reported

that the Lycium barbarum polysaccharides reduce the

abundance of potential pathogens, such as Allobaculum

stercoricanis, Parasutterella excrementihominis, and Tannerella

spp., and enhance the abundance of beneficial bacteria, including

Clostridium sp., Lachnoclostridium clostridium xylanolyticum,

Lachnoclostridium clostridium saccharolyticum , and

Lactobacillus reuteri in C57 mice (Xia et al., 2020b). Besides

this, mushroom polysaccharides (Ganoderma lucidum and Poria

cocos) can also exert beneficial effects by altering GM

composition and improving the ratio of beneficial bacteria to

potential pathogens (Khan et al., 2018).

Several studies report promoted growth of beneficial bacteria

after feeding a host with the saponin of the Gynostemma
FIGURE 1

TCM–GM combinatorial therapeutic effect, taking polysaccharides as an example. Dietary and medicinal fibers are converted into SCFAs by the
action of the GM. SCFAs are an energy source for colonocytes and possess other health-promoting abilities; a few of these abilities are
displayed in the figure.
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pentaphyllum. But it was unknown how saponin could promote

the growth of bacteria. In a recent study, Liao et al. found out, in

an in vitro setup, that saponin promotes growth of the beneficial

bacteria (such as Bifidobacterium animalis and Lactobacillus

casei) by upregulating several bacterial key genes involve in

biogenesis and metabolic pathways (e.g., gatC, rpmH, ruvA,

yajC , and rsfS) (Hugon et al . , 2015). For a better

understanding, Figure 2 shows how TCM can directly impact

the composition of the GM. This can also be taken as a guide to

investigate the interaction between TCM and GM.

2.1.2 Indirect effects
Certainly, the TCM therapeutic mechanism has outcomes

far beyond simply changing the composition of the GM. As

mentioned above, in health maintenance and disease

development, the GM exerts its function in multiple ways. In

this regard, the immune system has an impactful role in both

health and diseases. TCM affects the host’s immune system to

secrete materials that possess GM-modulating properties

(Ostaff et al., 2013). For instance, the extracts of Codonopsis

pilosula, Saussurea lappa, Imperata cylindrical var. major and

Melia toosendan increase the secretion of antimicrobial

peptides that markedly impact GM composition (Zhou et al.,

2016). In addition, TCM can also regulate GM composition

and diversity by affecting the structure of the intestinal barrier.

For instance, rhubarb enema is a common TCM medicine that

can improve intestinal barrier integrity and consequently

regulate GM dysbiosis (Ji et al., 2020). This TCM increases

the expression of tight junction (TJ) molecules, thereby
Frontiers in Cellular and Infection Microbiology 04
promoting the proliferation of gut epithelial cells and

significantly enhancing the gut intrinsic mucosal defense,

which results in the prevention of harmful substances and

sequentially helps to restore GM composition (Tian., 2020).

Another way that TCM promotes the growth of beneficial

bacteria in the gut is stimulating the gut mucosa, which is a

source of nutrients for bacteria such as Lactobacillus and

Akkermansia (Tian., 2020). These bacteria have a mutual

collaboration in repairing the gut barrier by promoting the

growth of goblet cells and mucin 2 (Lu et al., 2021). TCM (such

as herbal polysaccharides) can also regulate GM composition

through the gut–brain axis (Sun et al., 2020). The direct and

indirect effects of TCM on GM composition and diversity is

displayed in Figure 3.
2.2 Effects of GM on TCM

2.2.1 GM transforms TCM into
functional metabolites

In the gastrointestinal tract, TCM exerts a curative effect

through a series of complex processes, such as absorption,

transformation, and metabolism. During these processes, the

GM plays an important role in the modification, absorption, and

detoxication of TCM ingredients and consequently improves its

efficacy (Wilson and Nicholson, 2017). The GM can also

contribute to the bioavailability of TCM biochemical

components (Wu and Tan, 2019; Zhang et al., 2021). Below

we explain and display in Figure 3 how the GM can transform
TABLE 1 Herbal formula effects the GM.

Herbal
formula

Typical diseases/model Effects on GM References

Xiexin Tang High-fat diet-induced type-2
diabetic Sprague-Dawley rats

Increased phyla Proteobacteria and Actinobacteria. Elevated abundance of Alloprevotella,
Barnesiella, Ventriosum group, Lachnospiraceae UCG-001, and Papillibacter was observed.

(Wei et al., 2018)

Chaihu-
Shugan-San

High-fat diet-induced
non-alcoholic fatty liver disease
Sprague-Dawley rats

Decreased level of Enterobacteriaceae, Staphylococcaceae and Veillonella was detected whereas
Anaeroplasma was elevated

(Liang et al.,
2018)

Coptis
chinensis
decoction

Normal Sprague-Dawley rats
(male)

Acidovorax, Enterobacter and Veillonella increased whereas Bacteroides and Prevotella were
suppressed.

(Li et al., 2015)

Dahuang-
Mudan
decoction

DSS induced colitis mice Firmicutes, Actinobacteria, Butyricicoccus pullicaecorum were promoted, whereas
Proteobacteria and Bacteroidetes were decrease

(Luo et al., 2019)

Gegen-Qinlian
decoction

T2D patients Promoted abundance of Faecalibacterium spp., Gemmigar, Lachnospiracea_incertae_sedis
Escherichia, Parasutteralla

(Xu et al., 2015)

Si Miao
Formula

High fat diet induced NAFLD
mouse model

Enhanced abundance of Akkermansia muciniphila (Han et al.,
2021)

Huai Hua San ApcMin/+ CRC mouse model Promoted abundance of Akkermansia, Barnesiella, Lachnoclostridium, Ruminococcus;
And suppressed Helicobacter species and hydrogen sulfide producing-bacteria

(Xia et al.,
2020a)

Huangqin
Decoction

UC mouse model Increased Lactococcus; Decreased
Desulfovibrio and Helicobacter

(Li et al., 2020)

Zengye
Decoction

Constipated rat model Decreased Desulfovibrio and Ruminococcus (Liu et al., 2019)
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TCM into functional metabolites by taking polysaccharides,

flavonoids, polyphenols, and saponin (Table 2).

2.2.1.1 Polysaccharides

A considerable portion of TCM comprises polysaccharides,

and they are reported to possess prebiotic effects (Khan et al.,

2018; Xia et al., 2020b). Polysaccharides possess anticancer

properties (Zhang et al., 2018), antiobesity effects (Wu et al.,

2019), and anti-inflammatory effects (Niu et al., 2021). Due to

the limited digestive enzymes encoded in the human genome,

polysaccharides remained undigested until they reach the colon

(Baumann and Bisping, 1995), where they degrade into

fermentable oligosaccharides, such as b-glucans, and are

broken down by microbial saccharolytic machinery (Lin et al.,

2021; Niu et al., 2021). Polysaccharides are also converted to

SCFAs and other secondary metabolites (Niu et al., 2021).

SCFAs are a source of energy for colonocytes, regulate the

immune system, and correct metabolic disorders (Sun et al.,

2017). In addition, SCFAs contribute to the gut barrier

construction via enhancement of the expression of MUC 2,
Frontiers in Cellular and Infection Microbiology 05
modulation of oxidative stress, and upregulation of TJs (Wang

et al., 2012; van der Beek et al., 2017).

2.2.1.2 Flavonoids

Flavonoids are important ingredients of TCM, usually

combined with carbohydrates to form glycosides. Inside the

gastrointestinal tract, flavonoids are converted into various by-

products through the action of the GM and, hence, affect

flavonoids’ health-related abilities for the host (Chiou et al.,

2014). Bacteria that can convert dietary flavonoids include

Bacteroides uniformis, Bacteroides ovatus, Bifidobacterium

adolescentis, Enterococcus casseliflavus, Enterococcus avium,

Flavonifractor plautii , Lactobacillus plantarum IAM,

Parabacteroides distasonis, Eubacterium cellulosolvens, E.

coli ATCC BAA-97 and several others (Braune and Blaut,

2016). These bacteria convert dietary flavonoids through

several enzymatic reactions that include O-Deglycosylation, C-

Ring cleavage, Reduction, O-Desmethylangolensin cleavage, and

Dehydroxylation. Most of the bacteria are capable of flavonoid

conversion through O-deglycosylation (Braune and Blaut, 2016).
FIGURE 2

Graphic illustration of the TCM effect on GM composition and gene expression and a guide to investigate the TCM–GM interaction. This
illustration shows the direct effect of TCM on GM composition. TCM intake promotes growth of certain bacteria; for instance, in the case of
saponins, B animalis and L. reuteri become abundant. To check how TCM modulates the genome expression of microbes, target bacteria
should be culture in vitro in the presence of TCM, and their growth kinetics and gene expression should be monitored. In the case of saponins,
it is observed that saponins promote the expression of genes involved in metabolism and biogenesis that contribute to promoting growth of
these bacteria in a habitat.
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Through GM-secreted enzymes, the glycosyl is removed to

form aglycon, which can then be absorbed by the body. Bacterial

enzymes, such as a-rhamnosidase, exo-b-glucosidase, and endo-
b-glucosidase, transform rutin, hesperidin, naringin, and

poncirin into their aglycones, which have more of an

antiplatelet effect and cytotoxicity than their parental

compounds (Kim et al., 1998). Trinh et al. found that the

products of baicalin (a flavone glycoside) when undergoing
Frontiers in Cellular and Infection Microbiology 06
physiological changes exerted by the GM result in

deglycosylated baicalein, methylated aglycon, and oroxylin-A.

It is noticed that baicalin and oroxylin-A are more potent than

the parental compound (Trinh et al., 2010). Another flavanol,

named kaempferol, is reported to lower the tumor burden in the

host by promoting the abundance of beneficial bacterial that

were involved in secondary bile acid synthesis. These changes

were concurrently accompanied with improved expression of
TABLE 2 Transformation of typical TCM compounds by GM.

TCM compounds New metabolites Effects Reference

Geniposide Genipin Increased the
bioavailability

(Kang et al., 2012)

Rutin Quercetin, 4-hydroxybenzoic acid; 3,4-dDihydroxybenzoic acid; 3,4- dihydroxyphenylacetic acid (Kim et al., 1998)

Baicalin Deglycosylated baicalein and methylated aglycon oroxylin A (Trinh et al., 2010)

Naringin Naringenin, 4-hydroxybenzoic acid, phloroglucinol, 2,4,6-trihydroxybenzoic acid, 4-
hydroxyphenylacetic acid

(Kim et al., 1998)

Berberine Dihydroberberine (Feng et al., 2015)

Procyanidins,
anthocyanins

Phenylacetic acid, mono- and dihydroxyphenylacetic acids, mono- and dihydroxyphenylpropionic
acids, and hydroxybenzoic acid and protocatechuic acid

(Moco et al., 2012)

Tea polyphenols Hydroxyphenyl-c-valerolactone (Chen and Sang, 2014)

Protopanxadiol-type
ginsenosides

Compound K and ginsenoside Rh2 (Kim, 2018)

Rhein Rheinanthrone (Takayama et al., 2012)

Sennoside Sennidin (Hattori, 1988)

Aconitine (Diester
diterpene alkaloids)

Mono-ester aconitum alkaloids and lipo-alkaloids Reduced the
toxic

(Wang et al., 2015;
Zhao et al., 2007)

Strychnine 16 hydroxystrychnine Increased the
toxic

(El-Mekkawy et al.,
1993)

Amygdalin Mandelonitrile (Carter et al., 1980)
FIGURE 3

A schematic diagram displaying the interaction between TCM and GM.
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the farnesoid X receptor (FXR), a main regulator in bile acid

signaling (Li et al., 2022).

2.2.1.3 Polyphenol

Polyphenol, one of the most important secondary metabolites

of plants, has received increasing awareness in recent years. Since

most polyphenols have lower bioavailability and they reach the

colon, a densely inhabited part of the gastrointestinal tract, thus, a

bidirectional interaction between the GM and polyphenols

commences. GM convert polyphenols to aglycones by removing

organic acids, glucuronides, and glycosides (Makarewicz et al.,

2021). The GM can convert polyphenols through several

enzymatic processes to various metabolites. For instance,

enterolactones are produced from lignans, equol is produced

from daidzin, and urolithins from ellagitannins (Espıń et al.,

2017). Contrarily, polyphenols can also affect GM composition

by promoting the growth of beneficial bacteria, such as

Akkermansia muciniphila, Lactobacillus reuteri, Lactobacillus

acidophilus, and Faecalibacterium prausnitzii (Cueva et al., 2017;

Espıń et al., 2017; Gowd et al., 2019; Liu et al., 2020). In addition to

the growth-promoting abilities of polyphenols, these compounds

are also antimicrobial in nature and can inhibit the growth of

bacteria, mostly potential pathogens (Rodrıǵuez-Daza et al., 2021).

Bes ides th i s , mic robes a l so produce pheno l i c

metabolites that possess antioxidant, anti-inflammatory, and

antiproliferative activities (Saha et al., 2016). This metabolite

production is dependent on the (poly)phenol-associated

enzymes produce by the GM. Interindividual differences of the

GM are connected to different metabotypes, which are related to

different health outcomes in people after taking polyphenol

(Cortés-Martı ́n, 2020). In short, among the gut-dwelling

bacteria, it is beneficial for the host to inhabit (poly)phenol-

degrading bacteria in the gut that could ensure the

bioconversion of polyphenols and enhance the host’s health.

2.2.1.4 Saponin

Saponins are markedly studied and practiced in TCM for

various therapeutic purposes. More recently, it has been

observed that the therapeutic ability of saponin, at least partly,

is through improving GM composition (Chen L. et al., 2016;

Huang et al., 2017; Khan et al., 2019; Xu et al., 2020). As with

several other TCM constituents, the absorption rate of saponin

in the human body is exceedingly low, and therefore, the

bioconversion of saponins through microbes (such as

Aspergillus sp., Bacillus sp., and lactic acid–producing bacteria)

is gaining popularity. Microbes mainly hydrolyze the glycosyl

group of the saponin. For instance, protopanaxatriol

ginsenosides are hydrolyzed into G-Rh1 and G-F1 when

interacting with the GM in the gut (Tawab et al., 2003).
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The gut-residing microbes harbor a variety of enzymes

that metabolize saponin into by-products. For instance,

Bifidobacterium , Bacteroides , and Prevotel la species

encode a-arabinopyranosidase, b-glucosdiase, and a-
arabinofuranosidase enzymes that can cleave the sugar

moiety and hydrolyze Protopanaxadiol-type ginsenoside into

monoglucosylated ginsenoside compound K (Karikura, 1992;

Hasegawa et al., 1996; Park et al., 2000; Eun-Ah Bae, 2002). In

addition, B. adolescentis and L. rhamnosus are also reported

for the bioconversion of saponin in the host gut (Wang et al.,

2021). A pharmacokinetic study through an oral treatment

with a ginseng saponin fraction confirmed that ginsenosides

Rh1, F1, and compound K are the metabolites for parental

ginsenosides by GM (Tawab et al., 2003). The metabolites,

such as compound K, ginsenoside Rh2, and protopanaxatriol,

have potent cytotoxicity against tumor cells, which may

suggest the GM has a crucial role in exploiting the

advantage of the bioactive compounds of ginsengs in full

(Kim, 2018).

Importantly, the differences in GM composition among

individuals is related to different metabolite outcomes. For

instance, in a control setup, individuals who consume a fat-

and protein-rich diet carry different microbes in the gut and,

thus, higher concentrations of GF1 and GC-K metabolites were

noticed after taking Panax notoginseng saponins. However,

people who ate a fibrous diet had more GRh2, PPT, and PPD

metabolites after taking Panax notoginseng saponins (Wang

et al., 2021).
2.2.2 GM can detoxify lower grade TCM
In “Sheng Nong’s herbal classic,” TCM is divided into

three grades. Among them, the lower grade is more toxic, and

it is often used after concocting to reduce its toxicity. It is

recently reported that the GM can contribute to the

detoxification of TCM. For instance, the GM lowers the

toxicity of diester diterpene alkaloids by partly converting

them to mono-ester aconitum alkaloids and lipo-alkaloids.

Diester diterpene alkaloids are the main components of the

radix aconiti, Kusnezoff monkshood, and Aconitum

carmichali debx (Zhao et al., 2007; Wang et al., 2015; Yang

et al., 2018). Another typical case is Baicalin, a glycoside

present in Scutellaria baicalensis Georgi, which is converted

to baicalein, a flavone with lower cytotoxic side effects (Khanal

et al., 2012). However, the GM should be taken carefully in the

context of reducing the toxicity of lower grade TCM. A host

could inhabit certain bugs that could worsen the toxicity of a

compound. The GM role has been suspected in elevating the

toxicity of amygdalin that is extracted from Armeniacae

Amarae Semen (Carter et al., 1980).
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3 A complex interaction and
collaboration between TCM–GM
and Western medicine

In TCM classic theories, once TCM is combined, some will

increase toxicity and some will reduce others’ efficacy (Zhou

et al., 2017), which are the so-called 18 incompatible

medicaments (ShiBaFan) and 19 medicaments of mutual

restraint (ShiJiuWei) principles. To achieve a better curative

effect and avoid side effects, combined TCM should be under the

guidance of compatibility theories. Modern pharmacology

reveals the rationality of the compatibility of TCM, besides

this, from another angle, and GM modulation also explains

the compatibility theory.

Even in the case of Western drugs, not all of them work for

every patient, and a considerable number of patients are

nonresponsive; this observation is known as nonresponse bias.

And it is a growing consensus that the nonresponders are

missing some important bacterial species in their gut. For

instance, the efficacy of cyclophosphamide, an anticancer drug,

is dependent on the presence of Barnesiella intestinihominis and

Enterococcus hirae in the gut of a patient (Daillère et al., 2016).

Not only GM but TCM has also been taken for consideration of

enhancing the effectiveness of Western medicine. In one such

case, a group of researchers found improved efficacy of the

antiprogrammed cell death 1/programmed cell death ligand 1

(anti-PD-1/PD-L1) in the presence of ginseng polysaccharides.

It was further confirmed that Parabacteroides distasonis and

Bacteroides vulgatus were dominating the gut of the treated

patient. Those patients who did not respond to the

combinatorial treatment of the anti-PD-1/PD-L1 and ginseng

polysaccharides had a depleted abundance of the

Parabacteroides distasonis and Bacteroides vulgatus (Huang J.

et al., 2021).
4 GM-based investigation of
medicine’s efficacy – an exciting
prospect for TCM–GM research

Nowadays, with the continuous development of culture,

multi-omics combination and gene sequencing technologies,

the exploration of TCM and microbiota is making exciting

discoveries. The mechanism behind TCM theory about Qi,

Xue, Ying, Yang, four properties and five flavors have received

much attention. TCM regulates the composition and metabolites

of intestinal flora, which can be regarded as one of the

mechanisms for expounding the efficacy of TCM. We predict

that one of the emerging research areas in TCM–GM research

will be the investigation of the GM’s role in TCM’s efficacy.

Particularly for those therapeutics that are taken orally. By
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taking the studies carried out on Western drugs as an

example, here we try to explain how much the GM could

contribute to the efficacy of the medicine. This could help

TCM researchers to orient their research.

(1) As an example, we discuss a therapeutic approach that is

based upon the development of antibodies to block CTLA-4,

known as the cluster of differentiation 152 (a protein receptor

working as an immune checkpoint), for the treatment of cancer.

This technique is a current hot topic and has shown promising

results in clinical trials. During this process, the body’s T cells are

recruited against tumors that pose limited damage to the normal

cells (Sivan et al., 2015). Preclinical studies have shown that the

efficacy of anti-CTLA-4 therapy is dependent upon the

composition of the GM. For instance, it has been discovered

that anti-PD-L1 (an antibody that blocks CTLA-4) efficacy

improves in the presence of Bifidobacterium . Oral

administration of anti-PD-1 and Bifidobacterium has been

observed with augmented dendritic cell function and improved

CD8+ T cell priming in the tumor microenvironment (Sivan

et al., 2015). Besides this, anti-CTLA-4 therapies have also

shown dependence on the presence of Bacteroides

thetaiotaomicron or Bacteroides fragilis. Nonetheless, the anti-

CTLA-4 therapy has failed in germ-free mice and those treated

with antibiotics (Vétizou et al., 2015). More recently, these

preclinical experiments were reproduced in melanoma patients

and it was found that patients who responded effectively to anti-

CTLA-4 treatments were harboring enriched bacterial diversity

belonging to the family Ruminococcaceae (Gopalakrishnan

et al., 2018).

(2) As a second example, we discuss the efficacy of

cyclophosphamide, an anticancer immune suppressant

chemotherapeutic that also remodels the gut microbial

composition. During cyclophosphamide treatment, the gram-

positive bacteria translocate into the lymphoid organ and mimic

the production of pathogenic T helper 17 cells and memory Th1

immune responses C. Especially, cyclophosphamide efficacy is

dependent on two intestinal commensals known as Barnesiella

intestinihominis and Enterococcus hirae. During cyclophosphamide

therapy, Barnesiella intestinihominis accumulates in the colon and

infiltrates gdT cells in the cancer lesion, whereas Enterococcus hirae

translocates to secondary lymphoid organs and stimulates

intratumoral CD8/Treg ratio (Daillère et al., 2016). Similarly,

another study reports the interconversion of fluoropyrimidines

(the first-line anticancer drug) by gut microbial vitamin B6, B9,

and ribonucleotide metabolism (Scott et al., 2017). Microbial

influences on the efficacy of chemotherapeutic drugs, 5-fluoro-2′-
deoxyuridine, and 5-fluorouracil are also reported (Garcıá-

González et al., 2017).

It is important to mention that microbiome-based therapies

should be tailored to disease types and affected body sites. For

example, men with metastatic prostate tumors who responded to

checkpoint inhibition have been found to have lower levels of a

microbe called Akkermansia muciniphila in their stool than men
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who did not respond. But the opposite is true of people with lung

and kidney cancers: Those with more A. muciniphila in their

guts tended to fare better on the therapy (Dolgin, 2020).
5 TCM–GM in mental disease

TCM has been used in treating neuropsychiatric diseases for

thousands of years. Synopsis of Golden Chamber (a classic

Chinese medicine book written by Zhang Zhongjing in the

Han Dynasty) recorded a disease, Zang Zao, in which the

main symptoms are depression of spirit, emotional

disturbance, weeping and laughing hysterically. Although this

kind of disease cannot be solved thoroughly, it can be alleviated

effectively by the TCM formula Ganmai Dazao Decoction.

Nowadays, lots of evidence uncovers TCM exerting alteration

and restoration function of GM. In addition, the altered

microbiome, through repairing the gut barrier, regulates the

gut permeability, alleviating the inflammation and other

potential mechanisms to cure or relieve the symptoms and

disease. A gradual but strong link is establishing the

connection of TCM, GM, and mental disease. For instance, it

is demonstrated that TCM treatment of chronic unpredictable

mi ld s t r e s s (CUMS) ra t s a l t e r ed the abundance

of Ruminococcus and Roseburia and potentially increased the

expression of cysteine [83]. Meanwhile, N-acetylcysteine is

considered beneficial for brain disorders [84].

In addition, it is reported that GM diversity has a strong

association with insular resting state functional connectivity. A

higher fecal bacterial microbiota diversity is linked to a higher

resting state insular functional connectivity [78]. Interestingly,

the fecal microbiota-derived indole metabolites are found to

associate with functional and anatomical connectivity of the

amygdala and anterior insular nucleus [79]. For example,

Bacteroides, Parabacteroides and Escherichia species can

promote production of the g-aminobutyric acid (GABA).

Particularly, a lower abundance of Bacteroides was found in

depression patients [80]. A series of human mental diseases

(such as posttraumatic stress disorder, bipolar disorder, anxiety,

and stress, and so on) are associated with altered GM

diversity [81].

Recent research shows that gut bacteria are directly sensed

by hypothalamic neurons through bacteria muropeptides to

regulate host feeding behavior. In this process, muropeptides

are recognized by cytosolic Nod-like receptors, which are

expressed by a subset of hypothalamic neurons. This subset

also responds to muramyl dipeptide from the intestine, thus

regulating food intake and associated behaviors [82]. It is

revealed that Nod 2 mutation has a strong association with

bipolar disorder, schizophrenia, and Parkinson’s disease [82].
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6 Conclusion

TCM–GM interaction is a fertile research field for

identifying the faulted signaling pathways during disease and

finding a treatment for them by manipulating GM, and this

could provide a modern framework for evaluation and

validation of TCM. It is well-known that TCM exerts

therapeutic abilities that are holistic in nature, which could be

impractical to comprehend with conventional research tools.

Therefore, we propose that the integration of TCM with GM

research can target the wholeness of a biological system. In a few

cases, the integration of GM with TCM and other natural

products have already made landmark achievements in the

field of diseases prognosis and treatment.
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