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Summary The activity of the aromatase enzyme, which converts androgens into oestrogens and has a major role in regulating oestrogen
levels in the breast, is thought to be a contributing factor in the development of breast cancer. We undertook this study to assess the role of
constitutional genetic variation in the human aromatase gene (Cyp19) in the development of this disease. Our genotyping of 348 cases with
breast cancer and 145 controls (all Caucasian women) for a published tetranucleotide repeat polymorphism at intron 4 of the Cyp19 gene
revealed the presence of six common and two rare alleles. Contingency table analysis revealed a significant difference in allelic distribution
between cases and controls (χ2 5df = 13.52, P = 0.019). The allele measuring 171 bp was over-represented in cases; of 14 individuals
homozygous for this allele, 13 were cases. These individuals had a higher incidence of cancer in family members and an earlier age at
diagnosis than other cases. In sequencing Cyp19 ’s coding exons and regulatory regions, we discovered a perfect association between a
silent polymorphism (G→A at Val80) and the high-risk genotype. Our conclusion is that constitutional genetic variation at the Cyp19 locus is
associated with the risk of developing breast cancer, with the 171-bp allele serving as the high-risk allele.
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This work examined the role of constitutional genetic variation at
a candidate locus, the human aromatase gene (Cyp19), in breast
cancer development. Cyp19 encodes for a cytochrome P450
aromatase, an enzyme catalysing the conversion of androgens
into oestrogens (Tan and Muto, 1986; Mendelson et al, 1990).
Aromatase activity has been demonstrated in multiple tissues
including normal and transformed breast tissues (James et al,
1987; Bulun and Simpson, 1994; Santen et al, 1994; Sasano et al,
1994). Several reports suggest a positive feedback between
breast tumours and aromatase activity in neighbouring breast
parenchyma (James et al, 1987; Sasano et al, 1994; Schmidt and
Loffler, 1994; Purohit et al, 1995). This suggests that local
oestrogen production within the breast, by the aromatase enzyme,
might affect breast cancer development and progression.

The Cyp19gene has been previously characterized and mapped
to chromosome 15q21.1 (Chen et al, 1988). It is a single copy gene
which spans over more than 70 kb, with the translated exons IIÐX
spanning over only 30 kb (Harada, 1988; Harada et al, 1990; Toda
et al, 1990). Multiple non-translated exons I are located at the 5′
region and control the gene expression in a tissue-specific manner
and under complex hormonal regulation (Mahendroo et al, 1993;
Means et al, 1991; Harada et al, 1993; Toda and Shizuta, 1993;
Honda et al, 1994; Toda et al, 1995; Zhao et al, 1995) (Figure 1).
These regulatory regions might also participate in the pathogenesis
of malignant breast transformation because different exons I are
found to control aromatase expression in normal breast (exon 1.4)
and during malignant transformation (exon I.3 and promoter II)
(Agarwal et al, 1996; Utsumi et al, 1996; Zhou et al, 1996a, b).
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The open reading frame is identical in all expressing tissues exam-
ined to date and consists of 1509 bp encoding a 503-amino-acid
residue protein (Corbin et al, 1988; Harada, 1988; Means et al,
1989). Rare syndromes of complete aromatase deficiency have
been described at the DNA sequence level (exon 6/intron 6
splicing mutation with an 87-bp insert described by Harada et al,
1992; a compound heterozygosity state for exon 10 mutations
described by Conte et al, 1994). A common, high heterozygosity
tetranucleotide simple tandem repeat polymorphism (STRP) in
intron 4 has been previously described (Polymeropoulos et al,
1991). It is not known, however, whether genetic polymorphism at
this locus in associated with specific phenotype.

In this study, association-based gene mapping methods were
used to assess whether the Cyp19locus plays a role in determining
breast cancer risk. Patterns of constitutional genetic variation
were measured at the Cyp19 intron for STRP (modified after
Polymeropoulos et al, 1991) and contrasted in cases with breast
cancer and healthy controls. To identify whether specific STRP
alleles were in linkage disequilibrium with other mutations, Cyp19
coding and regulatory regions were sequenced in cases identified
with the high-risk genotype and controls with the putative low-risk
genotype.

PATIENTS AND METHODS

Study population

Participants were consecutive non-related Caucasian women, aged
27Ð79 years old, living in the greater Philadelphia region and
attending Fox Chase Cancer Center (FCCC) breast cancer and
cancer-screening clinics and FCCC network hospitals (cancer
clinics and non-cancer-related clinics), or hospital employees,
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Figure 1 Cyp 19 coding region and major non-translated tissue-specific
exon 1 in the placenta, adipose and ovarian tissues that were sequenced in
cases with a high-risk genotype and controls with a low-risk genotype. Points
to note: (1) coding regions: exons 2–10; (2) placenta-specific major exon 1:
exon I.1; (3) regulatory elements for exon I.1: cis1/2 (Toda et al, 1995); (4)
adipose-specific exon 1: exons I.4, exon I.3, promoter II (the 5′ region to
exon 2,→P); [Overlapping primers were designed to include the non-
translated exons and their 5′ regulatory regions (Zhao et al, 1995, 1996a, b).]
exon I.4 controls aromatase expression in normal breast adipose tissue, and
exon I.3 and promoter II are up-regulated during malignant transformation;
and (5) ovarian-specific exon I: promoter II (→P)
from 1988 to 1994. Participation was voluntary, and participants
were required to sign an institutionally-approved consent form.
Cases were women diagnosed with breast cancer, controls were
women with no history of cancer other than non-melanomatous
skin cancer or cervical carcinoma in situ. The study group
included 348 cases and 145 controls with a similar age distribu-
tion: mean age (at diagnosis for cases and at enrolment for
controls) of 54.3 and 54.9 years old and median age of 53.5 and 55
years old in cases and controls respectively.
© Cancer Research Campaign 1999

Table 1 Primers used to sequence Cyp19 coding regions and major non-translat
also Figure 1)

Exon Primer Forward oligonucleotide Revers
sets

Cis1 Cis1 CCAGGAATCAGGAGACCT TTC
Cis2 Cis2 GGATTTTTTGGCACAGGAG CC
I.1 ExI.1 AGAGAGGAAGAAGAATCTGAAC ATC

ExI.1a AAGGACAGGGTTCAGGGAGT GC
ExI.1b AGCCTTCTGGGCTTCTCTTT CTT

I.4 ExI.40 TCCTGAAAGAATGTCAGCTCG GC
ExI.41 AGTAGTGCATTTGAGAATGGG AG
ExI.42 TCCTTGATCCCAGGAAACAG TG
ExI.43 AAGGAATGGTGAGAGTTTGG TTT

I.3 ExI.3 GATTTGGCTTCAAGGGAAGA ATC
2 Ex2 GGACTCTAAATTGCCCCCTC ATG
3 Ex3 AGTAACACAGAACAGTTGCA GC
4 Ex4 AGCTGCCTCCTAGTCAAAATG TTA

Ex4aa AGCTGCCTCCTAGTCAAAATG TAC
5 Ex5 TCTGTAGGCTGATTCTCTG GG
6 Ex6 CTCAGAGCAACCTTCTTAGGC AG
7 Ex7 CATGGCAAATAAATCTGTTTCG GG
8 Ex8b AGTGTCACCTCCCCTCATTT GAT
9 Ex9 CCACAGGTGAGAGAGACATAA GC
10c Ex10.1 TGAATCAAACAGAGACTGAGTG AC

Ex10.2 TCTGCTCCTGTTCACACCAG AC
Ex10.3 TGATTAGAAAGACCAGGCCA TCT
Ex10.4 ATTATTAGGGCCCTGTGTCT TCT
Ex10.5 TGAATCATTGTATGTGGTCATG TTT

aEx4a was designed to amplify exon 4 and its immediate flanking regions, whereas
products in both cases and controls did not include the 35-bp region located at –80
Ex10.1 were used to amplify the coding region of exon 10, and Ex10.2 to 10.5 to a
Information on tumour characteristics at time of diagnosis was
abstracted retrospectively through review of the computerized
medical charts. This review was blind with respect to the outcome
of any genetic test used for this study. The following data were
obtained: staging status according to the TNM system (American
Joint Committee on Cancer, 1992); histopathological type and
grade; fibrocystic changes and ductal carcinoma in situ (DCIS);
oestrogen and progesterone receptor status; bilateral breast cancer;
and clinical or gross-pathological multifocal tumours. These data
were available for about 50Ð80% of participants. In 88%, staging
information was based on pathological finding at time of diagnosis;
in only 12% was it clinically based. The majority of cases had
invasive breast tumors (96%), with 84% diagnosed with T1 and 2
(tumour up to 5 cm in greatest dimension) and 12% with T3 and 4
(tumours more than 5 cm in greatest dimension or with
dermal/chest wall invasion). Axillary nodal metastases were noted
in 38% of cases; in 74%, the histology type was ductal carcinoma
and in 8% it was lobular carcinoma. The rest had either both or
adenocarcinoma not otherwise specified. Histology grade was well
to moderate in 54% and steroid receptors were positive in 63% of
cases. The cases in our population had a relatively low incidence
of DCIS in comparison with 1991 National Institute of Health
Surveillance, Epidemiology, and End Results (SEER) data (4% vs
12.4% respectively). In other respects, the cases were comparable
to women newly diagnosed with invasive breast cancer in the
United States during the study period (Ries et al, 1994).

Information on family history of cancer was available for 262
cases. A positive family history of breast cancer in a first-degree
family member was noted in 60 families (23%). Family history
consistent with hereditary breast or breast and ovarian syndromes
British Journal of Cancer (1999) 79(3/4), 456–463

ed exons I that are transcribed in adipose, ovarian and placenta tissues (see

e oligonucleotide Annealing temperature Size
(°C) (bp)

TAGGAGAAGCTGAGAAAGA 56 303
CAGTCATCATATCCCCAC 58 278
TACCTGGAAAGAGTGTCTG 59 310

AGTGTTTTCCCTCTGCTC 66 321
CCTCTCTTTGTGCAGCA 58 514

AGGGGTGTCAGAGTTTTC 60 155
CTGAAGACGACAGATGAA 57 347
CCAAAGCACAGAACAGTC 57 334
TTGTGTCCTGACTGTGG 56 420
GGGTTCAGCATTTCCAA 62 480
ATGGACCAAAATCCCAA 57 246

AATGTTAGATTTCTGGGG 55 374
CAGTGAGCCAAGGTCGT 65 414
CTTTCATAAAGAAGGGTCG 58 238

TCAAGATGTGAGAGTGA 53 242
AAAAGTTACCTGAGAGGCC 56 288
GCTATTTGGATTGGGATT 56 333
ATCAGATTCTTAGGAC 52 324

TCCTTACATTCTTTGCAA 57 257
TCTTGGCCTCTGCTTTTTC 57 538
ACTAGCAGGTGGGTTTGG 56 285
CTTGGTTAGCCACACTAA 56 489
CTTGGTTAGCCACACTAAT 59 480
CAGGGAGTTACACTGTCA 53 279

 primers Ex4 amplified also the intron 4 STRP region. bThe sequencing
bp to –45 bp upstream to exon 8 according to gene bank data. cPrimers

mplify its 3′ UTR up to the second polyadenylation site.
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(having two or more affected first-degree relatives with these
cancers; affected first- and second-degree relatives on the maternal
side of the family; or two affected second-degree relatives on
paternal side of the family) was evident in 26 families (10%).

Genetic analysis

DNA extraction from peripheral nucleated cells was performed
using a salt extraction protocol (Miller et al, 1988). The STRP at
intron 4 of the Cyp19gene was typed using primers described by
Polymeropoulos et al (1991). The polymerase chain reaction (PCR)
was performed on 15 ng of genomic DNA using 2.5 pmol of each
Cyp19primer. Amplification was carried out for 35 cycles (denatu-
ration at 94°C for 30 s, annealing at 60°C for 30 s, and extension at
72°C for 30 s). The products were denatured (5 min at 95°C) and
applied to a 6% denaturing acrylamide gel along with size markers.
Dried gels were exposed to radiographic films for 48Ð72 h.

To confirm Mendelian transmission and the allele calling for the
STRP, the CYP19 locus was genotyped on the CEPH reference
pedigree panel. A total of 90 independent individuals were geno-
typed from 45 families. A subset of 12 pedigrees was genotyped
for all three generations of the families. Genetic mapping methods
were carried out as described previously (Buetow, 1996).

To rigorously determine absolute allele sizes in bp, samples
from 78 individuals were also genotyped using the ABI 373 fluo-
rescent electrophoresis system. Three fluorescent deoxyuridine
triphosphates (dUTP) were added to the PCR reaction described
above (Prism dUTP Set, Applied Biosystems, USA), each to a
different DNA sample. A lambda phage DNA digested with PstI
was labelled with a fourth fluorescent dye and used as internal lane
standard. The products were pooled and run on a 6% denaturing
acrylamide gel with an internal size standard in each lane. They
were analysed using the Genotyper software to determine allele
size, identification and peak height. Contingency table analysis
was used to compare allele and genotype distribution between
cases and controls and to assess allele distribution and tumour
characteristics.

Sequence analysis

Sequencing was performed on the ABI 377 using the ABI Prism
Dye terminator Cycle Sequencing Ready Reaction Kit with
AmpliTaq DNA Polymerase, FS (Applied Biosystems). Primers
were designed using the Primer program (v0.5) for the regions
shown in Figure 1 and are listed in Table 1. PCR products of sizes
British Journal of Cancer (1999) 79(3/4), 456–463

Table 2 Allele frequencies in Caucasian women (expressed as percentage
of a specific allele in the total group) for 692 chromosomes of cases and 284
chromosomes of controlsa

Allele no. Allele size (bp) Frequency in Frequency in
controls cases

1 168 0.334 0.327
2 171 0.134 0.185
3 175 0.116 0.118
4 183 0.018 0.019
5 187 0.345 0.335
6 191 0.053 0.016

*Chi-squared analysis revealed the allele distribution to be significantly
different between cases and controls at P = 0.019, χ2 5df = 13.52.
less than 300 bp were sequenced on 36-cm plates, whereas prod-
ucts larger than 300 bp were sequenced on 48-cm plates. The
sequence generated by the ABI 377 instrument was analysed using
a combination of software tools including ABIÕs sequence analysis
software (for conversion of gel files to electropherograms),
Phred/Phrap (for base determination and sequence assembly) and
Conscript (for mutation/polymorphism identification within
sequence assemblies). Phred and Phrap were provided courtesy of
P Green, University of Washington, USA.

RESULTS

Genetic mapping of the Cyp19 locus

Genotyping was first conducted on the CEPH reference panel. The
CYP19 locus was observed to be in HardyÐWeinberg equilibrium
and transmitted in a Mendelian fashion. To confirm that the locus
under investigation was indeed the CYP19 locus previously
described in the literature, the STRP was genetically mapped using
the CEPH genotype resource (Buetow, 1996). Significant pairwise
linkage was observed between the CYP19 STRP and six markers
localized to human chromosome 15 (D15S220, D15S117, D15S125,
D15S131, D15S114 and D15S175). Complete linkage (no recombi-
nation) was observed between CYP19 and D15S220 (lod score =
16.26). Multipoint linkage analysis localized CYP19 with lod 3
support to the interval defined by loci D15S172 and D15S117 in
the Cooperative Human Linkage CenterÕs (CHLC) version 4.0
recombinationÐminimization map (http://WWW.CHLC.ORG). The
maximum likelihood location for the locus was in the 3.5-cM interval
defined by D15S648ÐD15S117, and is in agreement with prior
mapping to 15q21.1 (Chen et al, 1988).

Cyp19 allele’s distribution in cases and controls

Cases and controls analysed by autoradiography showed six
common alleles with sizes ranging from 168 bp to 191 bp (allele 1,
168 bp; allele 2, 171 bp; allele 3, 175 bp; allele 4, 183 bp; allele 5,
187 bp; allele 6, 191 bp). Two rare alleles of sizes 179 bp and
195 bp were also identified in two cases and three controls. Table 2
summarizes the frequencies of the six common alleles in the study
participants (692 alleles for cases and 284 alleles for controls). The
171-bp allele (allele 2) was over-represented in cases (odds ratio
1.47, confidence interval 0.993Ð2.17), whereas the 191-bp allele
(allele 6) was over-represented in controls. Contingency table
analysis revealed the allelic distribution to be significantly
different between cases and controls (χ2 5df = 13.52, P = 0.019).
Inclusion of the two rare alleles in the analysis did not significantly
affect the results (χ2 7df = 16.07, P = 0.024).

To rigorously determine absolute allele size in base pairs, we
genotyped samples from 78 individuals using the ABI 373 auto-
mated electrophoresis apparatus and software. As expected, the
results for the six common alleles were 100% concordant with
those obtained by autoradiography. Genotyping results by both
methods are shown in Figure 2 (autoradiography results from the
CEPH reference panel in A, and genotyping Cyp19locus on the
ABI 373 in B).

Cyp19 genotype’s distribution in cases and controls:
identifying a high-risk genotype

Genotype analysis revealed that homozygotes for the 171-bp allele
were 5.4 times more likely to be in the cases group, with a
© Cancer Research Campaign 1999
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Figure 2 Genotyping for the Cyp19 locus. (A) Cyp19 genotyping by the
autoradiography method: CEPH family no. 1354. (B) Genotyping Cyp19
locus on ABI 373 sequencer
frequency of 3.78% and 0.70% in cases and controls respectively.
Moreover, of 14 study participants homozygous for the 171-bp
allele, 13 were cases. All 13 cases had unilateral invasive breast
tumours, with comparable tumour characteristics to those of other
cases (data not shown). They had a median age at diagnosis 5.5
years younger than other cases (mean and median age at diagnosis
were 50.9 and 48 years in cases homozygous for the 171-bp allele,
© Cancer Research Campaign 1999
54.2 and 53.5 years in total case group respectively), but this
difference was not statistically significant. The only control indi-
vidual homozygous for the 171-bp allele was 46 years of age at
time of inclusion.

Family data were available for 13 of these individuals and are
summarized in Table 3. In ten individuals, there was a first-degree
family relative with a solid cancer or leukaemia. In six cases, there
was a family history of breast cancer (in families 6, 9 and 10 it is
suggestive of putative hereditary breast or breast/ovarian cancers).
Although individuals homozygous for the 171-bp allele had a
higher prevalence of a positive history of breast cancer in a first-
degree family relative compared with other cases, this difference
was not statistically significant (P = 0.12).

Two additional genotypes were disproportionally distributed
among cases and controls. Heterozygotes for the 171-/187-bp
alleles were 1.85 times more likely to be in the cases group
(frequency of 13% and 7% in cases and controls respectively), and
heterozygotes for the 187-/191-bp alleles were five times more
likely to be controls (frequency of 1.12% and 5.63% in cases and
controls respectively). No participants were homozygous for the
191-bp allele, which was observed to be over-represented in
controls (Table 2). Other genotypes were either rare (frequency of
less than 1.5%) or occurred with a similar frequency among cases
and controls.

We concluded that the 171-bp allele represents a high-risk
allele. Individuals homozygous for this allele are considered to
carry a high-risk genotype. Heterozygotes for the 187-/191-bp
alleles are considered to carry a putative low-risk genotype.

No significant association was observed between the occurrence
of one or more copies of the 171-bp allele and the following casesÕ
characteristics: menopausal status (using age 50 as a cut-off
point); invasive vs non-invasive tumours; tumour size (T-stage 1
and 2 vs 3 and 4); lymph node involvement; multifocal or bilateral
tumours; histology type and grade; background histology changes
and receptor status.

Sequencing results

To identify whether specific STRP allele variants were in linkage
disequilibrium with other mutations at the CYP19 gene,
sequencing results were contrasted for cases with the high-risk
STRP genotype (homozygous for the 171-bp allele) and controls
with the low-risk STRP genotype (heterozygotes for the 187-/191-
bp alleles). Sequencing efforts were targeted at the coding regions
of Cyp19 (including the 3′ UTR of exon 10 up to the second
polyadenylation site), and at major non-translated regulatory
exons I for adipose, ovarian and placenta tissues (see Figure 1). At
least five individuals in each group were sequenced. Sequence
variants confirmed by the reverse sequence were extended to addi-
tional individuals (up to 12 cases and the one control) homozygous
for the 171-bp allele (DNA for one high-risk case was not avail-
able for sequencing reactions).

Table 4 summarizes the identified Cyp19sequence variants and
their frequencies among cases with the high-risk genotype and
controls with the low-risk genotype (the 12 cases and one control
carrying the high-risk genotype are reported together, as they
displayed the same sequence variants). Of identified sequence
variants, two occurred in coding exons of the Cyp19gene, and
were detected only among individuals carrying the high-risk geno-
type. The first, a silent variation at exon 3 (G→A, Val80), occurred
in its homozygous state in all individuals carrying the high-risk
British Journal of Cancer (1999) 79(3/4), 456–463



460 N Siegelmann-Danieli and KH Buetow

British Journal of Cancer (1999) 79(3/4), 456–463 © Cancer Research Campaign 1999

Table 3 Family history of cancer in 14 Caucasian women homozygous for the 171-bp allelea

Individual’s number Age (years) First degree Second or more degree

Cases
1 52 Mother, breast cancer at

51
Father, lung cancer at 62

2 51 M uncle, lung cancer
P uncle, lung cancer

3 58 Brother, lung cancer at 55 M grandmother’s brother,
prostate cancer at 86

4 47 Mother, breast cancer at M grandmother, leukaemia at 60
30 M grandmother’s brother,

cancer at 89
5 60 Brother, leukaemia at 59

Brother, head and neck
cancer

6 59 Sister, ovarian cancer at 49
Sister, breast cancer at 50
Brother, lung cancer at 59
Brother, lung cancer at 66

7 72 Daughter, breast cancer at
49

8 45 (Not known) (Not known)
9 48 P aunt, breast cancer at 70

P cousin, breast cancer at 28
P cousin, breast cancer at 30
P uncle, colon cancer
P uncle, lung cancer
P uncle, CNS cancer
P uncle, spine cancer

10 47 Mother, breast cancer M great aunt, breast cancer
11 36 Father, lung cancer
12 47 Mother, uterine cancer
13 40 P aunt, colon cancer

P uncle, colon cancer

Control
14 46 Brother, testicular cancer M grandmother, uterine cancer

aIn seven individuals, data were available from self-administered questionnaires, and in six individuals by reviewing the medical chart with
confirmation by a phone call. In individual no. 8 data were not available. M, maternal; P, paternal.

A control with low-risk genotype

A case with high-risk genotype

Figure 3 G→A variation at exon 3 of the Cyp19 gene (silent polymorphism at Val80) which appeared in complete association with the high-risk genotype



Cyp19 and breast cancer risk 461

Table 4 Identified Cyp19 sequence variants and their frequencies among cases with the high-risk genotype and controls with the low-risk genotype

Cases with the high-risk Controls with the low-risk
genotype (5–13 tested) a genotype (five tested)

Sequence variants in coding exons
Exon 3 (13 tested) (Five tested)
G→A at Val80 AA, 1.0 GG, 1.0

Exon 7 (Nine testedb) (Five tested)
C→T in codon 264 (Arg→Cys264) CC, 0.9 / CT, 0.1 CC, 1.0

Variants in non-coding regions
5′ Region to exon I.1 (Five tested) (Five tested)
G→A at – 483 bp to exon I.1 start GG, 0.6 / GA, 0.2 / AA, GG, 0.8 / GA, 0.2

0.2

5′ Region to exon I.1 (12 tested) (Five tested)
C→T at – 41 bp to exon I.1 start CC, 0.66 / CT, 0.17 / TT, CC, 0.8 / CT, 0.2

0.17

Intron 4 (Five tested) (Five tested)
TTTA repeats at intron 4 Short repeatc Long repeatc

Intron 5 (12 tested) (Five tested)
G→T at – 16 bp to exon 6 start TT, 0.6 / GT, 0.4 GT, 0.2 / GG, 0.8

Intron 6 (12 tested) (Five tested)
T→A at + 36 bp to intron 6 start AA, 0.6 / TA, 0.4 TA, 0.2 / TT, 0.8

Intron 7 (Nine testedd) (Five tested)
C→T at + 26 bp to intron 7 start CC, 0.1 / CT, 0.2 / TT, 0.7 CC, 1.0

3′ UTR (11 tested) (Five tested)
T→C at + 19 bp to intron 10 start CC, 0.6 / TC, 0.4 TC, 0.2 / TT, 0.8

3′ UTR (11 tested) (Five tested)
G→T at + 162 bp to intron 10 start GG, 0.2 / GT, 0.35 / TT, GG, 0.8 / GT, 0.2

0.45

3′ UTR (Five tested) (Five tested)
T→C at + 1294 to intron 10 start TT, 1.0 TT, 0.6 / TC, 0.4

aThe 12 cases and one control carrying the high-risk genotype are reported together because they displayed the same sequence variants. bAdditionally, one CC
homozygote and three CT heterozygotes were observed among high-risk cases for which sequencing results could be obtained in only one direction. cThe
sequencing results for exon 4 and its 3′ flanking region indicated that allele 2 would produce a 171-bp product and allele 5 a 187-bp product. dTwo additional CC
homozygotes and two CT heterozygotes were observed among high-risk cases for which sequencing results could be obtained in only one direction.
STRP genotype and in none of the low-risk controls (Figure 3).
The second, a heterozygous state for C→T in exon 7
(Arg→Cys264), appeared in one of nine high-risk cases sequenced
in both directions, and in three of four additional high-risk cases
with sequencing results obtained in only one direction (frequency
of 0.1Ð0.3 among high-risk cases). All other identified variants
were in non-translated regions of the Cyp19 gene. Of note, in
concordance with the results of the automated electrophoresis
genotyping analysis, the sequencing results for exon 4 and its 3′
flanking region indicated that allele 2 would produce a 171-bp
product and allele 5 a 187-bp product.

The 168-bp and 187-bp alleles were the most common alleles in
the study population. While the latter (together with the low-risk
191-bp allele) was found to be associated with G in Val80, we
elected to check this region in individuals carrying the 168-bp
STRP allele. By sequencing ten individuals homozygous for the
168-bp allele (five cases and five controls), we found all to be
homozygous for G in codon Val80.

DISCUSSION

Our study examined the association of constitutional genetic vari-
ation in the human aromatase gene (Cyp19) with breast cancer
© Cancer Research Campaign 1999
occurrence among Caucasian women in the greater Philadelphia
region. Our cases population displayed typical features of non-
selected cases with invasive breast cancer diagnosed in the United
States during the study period, both in tumour characteristics and
family history (see Patients and methods section). By typing close
to 1000 chromosomes, we were able to identify eight alleles in the
study population, sizes ranging from 168 bp to 195 bp [Poly-
meropoulos et al (1991) identified five alleles sized 154Ð178 bp,
on a typing of only 46 chromosomes]. To facilitate future replica-
tive studies, accurate allele sizes were determined by typing 78
samples using florescence-based, automated electrophoresis, and
confirmed the alleleÕs transmission in co-dominant segregation in
12 CEPH families.

Contingency table analysis revealed a statistically significant
difference in allelic distribution between cases and controls.
Specifically, the 171-bp allele was over-represented in cases, and
the 191-bp allele was more common in controls. All but one of 14
individuals homozygous for the 171-bp allele were cases. Though
not formally significant, these homozygous cases were diagnosed
at a younger mean and median age than the total casesÕ group, and
displayed a remarkably high incidence of breast and other cancers
in their family histories. Preliminary data in AfricanÐAmerican
women show over-representation of individuals homozygous for
British Journal of Cancer (1999) 79(3/4), 456–463
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the 171-bp allele in cases with breast cancer (5 out 13 cases; one
out of eight controls). These results provide additional support for
the suggestion that constitutional genetic variation at or near the
Cyp19 locus is associated with the risk of developing breast
cancer, with the 171-bp allele serving as the high-risk allele or at
least its surrogate.

Our DNA sequencing efforts focused on the coding regions of
the CYP19locus and the major non-translated exons I controlling
its expression in adipose, ovarian and placental tissues. It included
the non-translated exons I, which control aromatase expression in
normal breast adipocytes (exon I.4) and during malignant breast
transformation (exon I.3 and promoter II). By analysing sequences
obtained for individuals with the high-risk genotypes (homozy-
gous for the 171-bp allele) and controls with the putative low-risk
genotypes (heterozygous for the 187-/191-bp alleles), we identi-
fied several common nucleotide variants. Of particular interest is
the silent variation in exon 3 (G→A, Val80), which was observed
to be in complete association with the high-risk genotype and was
not observed in 15 sampled individuals carrying the common
alleles (168-bp and 187-bp alleles) or the low-risk allele (191 bp
allele). Further studies should assess its occurrence in a larger
population of cases and controls, and test whether this variant can
affect aromatase activity by modifying Cyp19RNA splicing or
stability. This variant was previously observed by Sourdaine et al
(1994) in genomic DNA from two breast tumours selected for
insensitivity to the aromatase inhibitor 4-hydroxyandrostenedione
(4-OHA), but not in two other breast tumours showing slightly
lower basal aromatase activity and sensitivity to inhibition by 4-
OHA. Sourdaine et al (1994) also observed the T→C variant at
+19 to intron 10 start in the two resistant tumours (which in our
work was more common among controls carrying the low-risk
genotype), and a heterozygous state for the exon 7 C→T
(Arg→Cys264) in only one of them. A fifth breast tumour evalu-
ated by Sourdaine et al (1994), with no detectable aromatase
activity, did not show any of the sequence variants detected in the
tumours resistant to 4-OHA. Sourdaine et al (1994) identified no
other coding region sequence variants in any of the breast tumours;
the intron 4 STRP region and the non-translated regulatory exons I
were not evaluated in their work. Taken together with our work, it
is possible to theorize that the G→A variant in codon Val80, which
occurred in complete association with the high-risk STRP geno-
type, is related to the phenotype of slightly elevated basal
aromatase activity with resistance to inhibition by 4-OHA.
However, only direct analysis addressing the effects of G→A
(Val80) variation on aromatase expression in the breast can prove
it, especially considering that Sourdaine et al (1994) selected the
breast tumours in their work by their response to inhibition by 4-
OHA and not their baseline aromatase activity.

Another possibility is that the intron 4 STRP itself produces an
intrinsic effect on aromatase expression. Triplet repeat variations
in non-coding regions of the FMR1 gene and MK-PK gene are
known to result in fragile X syndrome and myotonic dystrophy
respectively (Fu et al, 1991; Verkerk et al, 1991; Brook et al, 1992;
Mahadevan et al, 1992; Kunst and Warren, 1994). Constitutional
genetic variation in variable tandem repeats located some 1000 bp
downstream from the coding region of the H-RAS1 proto-onco-
gene have been shown to be associated with cancer risk in
caseÐcontrol studies (Krontiris et al, 1985, 1993). Functional
studies have also suggested that the variable tandem repeats them-
selves might interact with transcription factors affecting expres-
sion of associated genes, or might alter RNA stability (Green and
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Krontiris, 1993; Trepicchio and Krontiris, 1993; Kennedy et al,
1995). Finally, it is possible that the high-risk STRP allele is asso-
ciated with a novel breast-specific exon I not yet described.
Recently, Stratakis et al (1996) reported a family with a trans-
mitted phenotype of increased aromatase activity, which was
observed to be associated with a specific STRP variant and a novel
non-translated exon I. This finding implies the existence of an as-
yet-unidentified variation in the 5′ flanking sequence, which
controls aromatase expression and is associated with the high-risk
STRP variant.

In BALB/cD2 mice, integration of the mouse mammary tumour
virus to the Int5 locus (located at the 3′ UTR of mouse Cyp19
gene) resulted in up-regulation of the aromatase gene; it was asso-
ciated with the development of preneoplastic mammary tumours
(Durgam and Tekmal, 1994; Tekmal and Durgam, 1995). In female
SpragueÐDawley rats, treatment with the aromatase inhibitor
fadrozole hydrocholoride prevented the appearance of sponta-
neous benign and malignant mammary tumours (Gunson et al,
1995). Understanding the biological significance of the human
high-risk allele may lead to prevention of breast cancer in high-
risk individuals identified by Cyp19genotyping.

In conclusion, our study shows a significant difference in consti-
tutional genetic variation at intron 4 of the human Cyp19 gene
between cases and controls (Caucasian women). We identified a
high-risk allele at this locus, although its biological significance
has yet to be determined. Confirmatory studies are necessary to
conclude that Cyp19genotyping can conclusively identify women
at an increased risk for developing breast cancer. Ultimately, it is
our hope that an understanding of the biological significance of the
high-risk allele will bring us closer to a medical prevention of
breast cancer, in which high-risk individuals identified with Cyp19
genotyping are offered specific treatment affecting aromatase
activity.
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