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Abstract

Rationale: Long-term antibiotic use for managing chronic respiratory
disease is increasing; however, the role of the airway resistome and its
relationship to host microbiomes remains unknown.

Objectives: To evaluate airway resistomes and relate them to host
and environmental microbiomes using ultradeep metagenomic
shotgun sequencing.

Methods: Airway specimens from 85 individuals with and without
chronic respiratory disease (severe asthma, chronic obstructive
pulmonary disease, and bronchiectasis) were subjected to
metagenomic sequencing to an average depth exceeding 20 million
reads. Respiratory and device-associated microbiomes were
evaluated on the basis of taxonomical classification and functional
annotation including the Comprehensive Antibiotic Resistance
Database to determine airway resistomes. Co-occurrence networks of
gene–microbe association were constructed to determine potential
microbial sources of the airway resistome. Paired patient-inhaler

metagenomes were compared (n= 31) to assess for the presence of
airway–environment overlap in microbiomes and/or resistomes.

Measurements and Main Results: Airway metagenomes exhibit
taxonomic and metabolic diversity and distinct antimicrobial
resistance patterns. A “core” airway resistome dominated by
macrolide but with high prevalence of b-lactam, fluoroquinolone,
and tetracycline resistance genes exists and is independent of disease
status or antibiotic exposure. Streptococcus and Actinomyces are key
potential microbial reservoirs of macrolide resistance including the
ermX, ermF, and msrD genes. Significant patient-inhaler overlap in
airwaymicrobiomes and their resistomes is identifiedwhere the latter
may be a proxy for airway microbiome assessment in chronic
respiratory disease.

Conclusions:Metagenomic analysis of the airway reveals a core
macrolide resistome harbored by the host microbiome.
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The development, progression, and
associated phenotypes of chronic airways
disease has been associated with
perturbation of the airway microbiome.
Such airway dysbiosis is often characterized

by predominance of pathogenic bacteria
such as Haemophilus, Streptococcus,
and/or Pseudomonas, which coexist with a
gamut of other taxa forming the airway
“pathobiome” (1, 2). Patients with airways
disease and frequent exacerbations are
therefore prescribed long-term antibiotic
regimes aiming to reduce bacterial burden
and inflammation and improve clinical
symptoms with variable results (3–5). The
selective pressure resulting from such an
approach, however, promotes antimicrobial
resistance, a key global concern and serious
threat to public health (5).

The impact of antimicrobial exposure
on lung microbiome architecture and
mechanisms promoting antimicrobial
resistance remains an intense area of clinical
and research interest. In addition, the
broader implications of antibiotic exposure
on the resident airway resistome, beyond
that related to the target bacterial pathogen
alone, has lacked study. This is important as
interspecies interactions are plentiful in the
airway, and the emergence of resistance in
nonpathogenic organisms is a key factor
potentially influencing therapeutic
outcomes (6). Moreover, the environment
remains a vast, mobilizable reservoir of
resistance determinants with great potential
to seed the airway resistome but remains
inadequately characterized in the setting of
chronic respiratory disease states (7).

As next-generation sequencing
becomes cheaper, the era of clinical
metagenomics represents an emerging
and robust molecular tool allowing
characterization of airway microbiomes in
tandem to assessment of their functional
properties for use in diagnosis, treatment,
and/or patient risk stratification (8, 9).
Work performed in cystic fibrosis (CF)
reveals the cumulative effect of antibiotic
exposure on the airway microbiome,
and recent data in chronic obstructive
pulmonary disease (COPD) confirm the
airway as an important reservoir for
antimicrobial resistance genes; however, no

work has been performed using
metagenomics, and no dedicated studies
including severe asthma or bronchiectasis
(10, 11). Unlike targeted amplicon-
sequencing approaches (e.g., 16S rRNA),
metagenomic shotgun sequencing remains
less susceptible to PCR amplification bias, is
not influenced by copy number variation,
and, critically, provides scope to probe the
functional aspects of the microbiome
including its resistome (9, 12, 13).

Here, we report the largest application of
deep metagenomic shotgun sequencing to
airway samples across a range of chronic
respiratory disease states (severe asthma,
COPD, and bronchiectasis) and include
nondiseased (healthy) individuals to
characterize resident airway resistomes. We
provide taxonomic and functional insight to
airway-based resident antibiotic resistance in
health and disease and further assess patient-
inhaler devices as a potential environmental
reservoir of resistance. Some of the results of
these studies have been previously reported
in the form of an abstract (14).

Methods

Study Population(s)
Patients with respiratory disease were
prospectively recruited during routine
attendance at respiratory outpatient clinics
at two tertiary hospital sites in Singapore
(Table 1): Singapore General Hospital and
Tan Tock Seng Hospital. Nondiseased
(healthy) individuals were recruited
through an established voluntary exercise
program at Nanyang Technological
University, Singapore. Patients with severe
asthma were graded as being on at least step
four of the Global Initiative for Asthma
guideline treatment ladder and met current
criteria for severe asthma. COPD was
defined according to the Global Initiative
for Chronic Obstructive Lung Disease
(GOLD) criteria, and bronchiectasis (non-
CF) was defined by radiological
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At a Glance Commentary

Scientific Knowledge on the
Subject: Long-term and prophylactic
antibiotics including macrolides are
being increasingly used in the
management of frequently
exacerbating patients with chronic
respiratory disease including severe
asthma, chronic obstructive
pulmonary disease, and bronchiectasis.
The airway resistome, although
recognized, is poorly characterized,
and its relationship to the host
microbiome unknown.

What This Study Adds to the Field:
We, for the first time, in the largest and
deepest metagenomics assessment of
the airway evaluate airway resistomes
across chronic respiratory disease
states and relate them to host
microbiomes. We identify a “core”
airway resistome, harbored by the host
microbiome and dominated by
macrolide resistance genes but with
high prevalence of b-lactam,
fluoroquinolone, and tetracycline
resistance. This core resistome is
independent of health status or
antibiotic exposure and shares
significant overlap with resistomes
detected on paired patient-inhaler
devices where the latter represents a
proxy for the host microbiome.
Metagenomic analysis of the airway
reveals a core macrolide resistome
with implications for potential
macrolide antibiotic resistance in the
management of respiratory disease.
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confirmation of bronchiectasis by either
dynamic computed tomography or high-
resolution computed tomography thorax in
accordance with British Thoracic Society
guidelines along with the absence of any
other major concurrent chronic respiratory
disease state (15–18). Nondiseased (healthy)
individuals had no active or past history of
any respiratory or other medical disease and
normal spirometry measured in accordance
with European Respiratory Society/American
Thoracic Society criteria. Nondiseased
individuals were free from any exposure to
inhaled medications or antibiotic use in the
preceding 12-month period. Demographics
and associated clinical data were collated
including age, sex, ethnicity, body mass
index, lung function (FEV1% predicted),
smoking status, and antibiotic use in the
preceding 6-month period. In addition, the
number of exacerbations in the year
preceding study recruitment was recorded
for all patients with respiratory disease
(severe asthma, COPD, and bronchiectasis),
and these patient groups had their respective
disease severity/control scores recorded by
the Asthma Control Test, GOLD score, and

Bronchiectasis Severity Index, respectively
(15, 19, 20).

Whole-Genome Shotgun Sequencing
of Clinical and Environmental
Samples
Representative, spontaneously expectorated
sputum samples were obtained from all
participants through directed coughing using
the huff cough maneuver. An independent
and prospective cohort of patients with
severe asthma, COPD, or bronchiectasis (as
defined above) using regular inhaled
bronchodilator and/or corticosteroid therapy
were recruited and the inhaler used most
frequently sampled (Table E1 in the online
supplement). Patients had documented self-
reported inhaler adherence over the
preceding 6-month period and demonstrated
objective evidence of stable and/or improved
pulmonary function on spirometry. Paired
airway specimen (sputum) and an inhaler
swab was obtained and subjected to
metagenomic analysis. DNA was extracted
from airway and environmental samples
according to previously described clinical and
environmental sampling methods (21, 22).

DNA was used in the preparation of
metagenomic shotgun-sequencing libraries
as described (23). Resultant sequence data
were processed and quality-trimmed before
subjecting it to secondary analysis to derive
taxonomic and functional genomic profiles
including analysis with specific reference
to the Comprehensive Antimicrobial
Resistance Database (CARD) to assess the
metagenomic resistome in all patient and
environmental specimens (24).

Full details on DNA extraction,
metagenomic sequencing, functional and
taxonomic assignment of metagenomic
sequence reads, data analysis, visualization,
statistical analysis, and details on ethical
approvals are provided in the online
supplement.

Results

The Airway Metagenome Exhibits
Functional Metabolic Dysbiosis and
Antibiotic Resistance
Functional classification of microbial gene
content based on read assignment to

Table 1. Patient Demographics

Demographic ND

D P Value

Severe Asthma COPD Bronchiectasis ND vs. D D vs. D

n 13 11 15 15
Age, yr 346 8 70617 7069 64615 <0.001 0.472
Sex 0.528 0.012
M 62% (8) 73% (8) 100% (15) 53% (8)
F 38% (5) 27% (3) 0% (0) 47% (7)

BMI, kg/m2 236 3 27.968 21.768 18.46 6 0.237 0.009
FEV1 % predicted 1096 14 72614 456 13 65620 <0.001 0.005
Disease severity*
Mild — 0% (0) 7% (1) 6% (1) — 0.797
Moderate — 27% (3) 40% (6) 27% (4) — —
Severe — 73% (8) 53% (8) 67% (10) — —

Exacerbations in year preceding study recruitment 06 0 061.5 36 3 261 0.032 0.013
Smoking status <0.001 <0.001
Never-smoker 100% (13) 91% (10) 0% (0) 67% (10)
Ex-smoker 0% (0) 0% (0) 47% (7) 27% (4)
Current smoker 0% (0) 9% (1) 53% (8) 7% (1)

Antibiotic use in 6 mo preceding recruitment 0.050 <0.001
Yes 0% (0) 0% (0) 67% (10) 20% (3)
No 100% (13) 100% (11) 33% (5) 80% (12)

Inhaled corticosteroid use
Yes — 100% (11) 53% (8) 53% (8) — 0.064
No — 0% (0) 47% (7) 47% (7) — —

Inhaled bronchodilator use
Yes — 100% (11) 100% (15) 53% (8) — 0.009
No — 0% (0) 0% (0) 47% (7) — —

Definition of abbreviations: ACT=Asthma Control Test; BMI =body mass index; BSI =Bronchiectasis Severity Index; COPD=chronic obstructive
pulmonary disease; D=diseased; GOLD=Global Initiative for Chronic Obstructive Lung Disease; ND=nondiseased.
Demographic data is presented as median values6 interquartile range or percentages (patient numbers) as appropriate. Significant P values (P,0.05) are bolded.
*Defined according to disease-specific criteria. Severe asthma: ACT score; >20=mild, 19–15=moderate, ,15= severe. COPD: GOLD stage; 1 =mild,
2 =moderate, >3= severe. Bronchiectasis: BSI; 0–4=mild, 5–8=moderate, >9= severe.
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functional categories illustrates variability in
patients with COPD and bronchiectasis in
contrast to relatively comparable profiles in
healthy individuals and patients with severe

asthma (Figure 1A). A dysbiotic shift in the
abundance of carbohydrate- and amino
acid–related pathways toward lipid-
associated pathways is evident in COPD

and bronchiectasis with the latter exhibiting
greatest change (Figure 1A). Classification
of metagenomic data with reference to the
Kyoto Encyclopedia of Genes and Genomes
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Figure 1. Airway shotgun metagenomics reveals functional metabolic dysbiosis and an increased antibiotic resistance gene abundance across chronic
respiratory disease states. (A) Heatmap illustrating the relative abundance of functionally classified sequence reads assigned to functional categories
(Kyoto Encyclopedia of Genes and Genomes) in each microbiome profile. Values are expressed as z-scores (calculated on the basis of the deviation from
the mean abundance in each group and scaled to the SD). Higher abundance (indicated in red) is associated with specific functional pathways including
lipid metabolism, xenobiotic biodegradation, and antibiotic-associated biosynthetic pathways. These are highest in patients with chronic obstructive
pulmonary disease (COPD) and bronchiectasis. (B) Heatmap illustrating specific antibiotic resistance gene abundance (by class) based on read alignment
to the Comprehensive Antimicrobial Resistance Database. b-Lactam, fluoroquinolone, macrolide, and tetracycline resistance genes are detectable in
subjects with and without disease. Patients with COPD and bronchiectasis have the highest load of antibiotic resistance determinants. (C) Patient
antibiotic usage and respective class (in the 6 mo preceding airway sampling) is indicated by black dots.
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functional database further reveals
alteration in genes associated with
antibiotic-associated pathways including
degradation, detoxification, and
antimicrobial resistance (25). Although
drug-related and xenobiotic metabolism is
increased in COPD and bronchiectasis,
genes involved in streptomycin, butirosin,
neomycin, and b-lactamase biosynthesis
are abundant in severe asthma and healthy
individuals (Figure 1A). To probe
specifically for the composition of antibiotic
resistance genes within the airway
metagenome, reads were classified with
reference to the CARD database—a dataset
of curated antibiotic resistance genes (24).
Derived antibiotic resistance gene profiles
exhibit variability across the healthy and
diseased states with contrasting abundances
of aminoglycoside, bicyclomycin,
diaminopyrimidine, multidrug, peptide,
phenicol, sulphonamides, sulfones, and
triclosan resistance genes (Figure 1B).
Critically, recent antibiotic exposure
(selective pressure) did not translate to a
detectably higher relative abundance of
antimicrobial resistance (AMR), and,
importantly, AMR profiles of healthy
individuals and patients unexposed to
antibiotics in the preceding 6-month period
exhibit a significant presence of AMR

suggesting the presence of a core airway
resistome (Figure 1C and Table 2).

The Core Airway Resistome
Variable assemblages of antibiotic resistance
genes are identified across individual disease
cohorts including healthy individuals.
Patients with COPD and bronchiectasis
have the greatest repertoire of antibiotic
resistance determinants, although this was
potentially biased by the greater number of
patients in these groups (Figure 2A).
Patients with COPD harbored the highest
diversity of resistance genes (n= 92; 85%
shared with other cohorts) distinguished by
the presence of specific b-lactam,
fluoroquinolone, macrolide, multidrug,
phenicol, and tetracycline resistance
determinants. Although healthy individuals
and severe asthmatics had a slightly lower
number of cumulative AMR sequences,
analysis revealed a strikingly consistent
subset of 18 AMR genes common to all
cohorts (including healthy) representing a
“core resistome” (Figure 2B and Table 2).
Importantly, this core resistome was
predominated by AMR genes from the
b-lactam, fluoroquinolone, macrolide, and
tetracycline classes (Figures 1B and 2B and
2C and Table 2); detectable in every
individual recruited into our study

irrespective of health or disease status;
and did not differ by type of chronic
respiratory disease. In aggregate, genes
encompassing a core macrolide resistome
were most abundant and included msrD
(mel), ermB, ermX, and ermF accompanied
by genes encoding tetracycline (tetW, tetA
[46], tetB [46]), b-lactam (cfxA2), and
fluoroquinolone (pmrA) resistance
(Figure 2C and Table 2).

The Microbial Ecology of Sputum
Samples across Respiratory Disease
States
Deep sequencing of sputum revealed a
microbiome profile dominated by bacteria,
with fungi and viruses accounting for
,0.01% and ,0.25% average relative
abundance, respectively (Figure E1).
Dysbiosis of the respiratory microbiome
was evident across chronic respiratory
disease in line with established literature
(Figure 3A) (26). Microbiome a-diversity
between groups varied with healthy
individuals exhibiting highest Shannon
diversity compared with disease (Figure
E3A). Simpson diversity was comparable
across cohorts, whereas patients with severe
asthma and bronchiectasis exhibited
reduced Chao1 (Figures E3B and E3C).
Among the respiratory disease cohorts,
microbiome profiles were distinguished
by Actinobacteria (Rothia spp.) and
proteobacteria (Pseudomonas and
Haemophilus spp.), which exhibited
increased abundance in diseased cohorts
with corresponding reductions in Prevotella
spp., Treponema spp. Fusobacteria spp.,
and diverse Firmicutes compared with
healthy individuals on the basis of linear
discriminant analysis (Figures E3D and
E3E). Among patients with disease,
the increased abundance of Rothia
mucilaginosa and Pseudomonas aeruginosa
were among the most striking species-level
differences associated with disease status in
our analysis (Figure 3A). Fungi were
detected sporadically and at low abundance,
and microbiome b-diversity reveals
heterogeneity to be highest in
bronchiectasis, followed by COPD
(Figure 3B). Conversely, healthy subjects
and patients with severe asthma have more
evenly distributed and diverse bacterial
species in their airways further supported
by analysis of average centroid distances,
which is greatest in COPD and
bronchiectasis (Figure 3C).

Table 2. Genes of the Core Resistome (n=18) Identified across Study Cohorts

Gene Name Drug Class Resistance Mechanism

aac (3)-VIIa Aminoglycoside Antibiotic inactivation
aph (3)-IIIa Aminoglycoside Antibiotic inactivation

oxa-255 Cephalosporin, penam (b-lactam) Antibiotic inactivation
cfxA2 Cephamycin (b-lactam) Antibiotic inactivation

dfrA1 Diaminopyrimidine Antibiotic target replacement

pmrA Fluoroquinolone Antibiotic efflux

mel (msrD) Macrolide, lincosamide, streptogramin,
tetracycline, phenicol, oxazolidinone,
pleuromutilin

Antibiotic target protection

ermB Macrolide, lincosamide, streptogramin Antibiotic target alteration
ermF Macrolide, lincosamide, streptogramin Antibiotic target alteration
ermX Macrolide, lincosamide, streptogramin Antibiotic target alteration
lnuC Lincosamide Antibiotic inactivation

efrB Rifamycin, macrolide, fluoroquinolone Antibiotic efflux

catS Phenicol Antibiotic inactivation

tetA (46) Tetracycline Antibiotic efflux
tetW Tetracycline Antibiotic target protection
tetB (46) Tetracycline Antibiotic efflux
tet(D) Tetracycline Antibiotic efflux
tetO Tetracycline Antibiotic target protection
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Gene–Microbe Co-occurrence in the
Core Resistome
We next looked at correlation between
microbial taxa and the core resistome by
constructing a co-occurrence network of

microbes and their respective antibiotic
resistance genes (Figure 4). This revealed
significant relationships (including
correlation) between resistance genes
(Figure 4A) and airway microbiota

(Figure 4B) allowing inference of
gene–microbe associations within an
integrated holistic network. We
focused on the core macrolide resistome
because it formed a key component of
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the core resistome (Figures 2B and
2C) and is an antibiotic class gaining
widespread use across chronic
respiratory disease states (17, 27, 28).
The macrolide resistance gene ermX

represents a highly connected node
associated with several microbial
taxa (Figure 4C). These predominantly
consist of upper airway commensals
containing only few overtly pathogenic

species (Figure 4C). Network inference
further identifies a lesser number of
microbial associations with ermF
(Figure 4D) and msrD (Figure 4E),
respectively. Streptococci and
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Actinomyces were associated with ermX
and ermB, whereas the strongest
association detected is between ermF
and the gut microbe Bacteroidetes
thetaiotaomicron. Associations
between msrD and the gut pathogen
Clostridioidies difficile and the
largely unstudied Morococcus cerebrosus
were also detected (Figures 4D
and 4E).

Metagenomics Identifies Inhaler
Devices as Potential Sinks for
Antibiotic Resistance
To assess for potential sites of resistance
host–environment transfer, patient-inhaler
devices with respectively paired airway
specimens were obtained in an independent
prospectively recruited cohort of patients
with chronic respiratory disease and
subjected to metagenomics sequencing and

analysis (Table E1). We identify significant
overlap between the airway metagenome
and that detectable on patient-paired
inhaler devices with a significant number of
microbial taxa found on both specimens
(Figure 5A). This suggests that an inhaler
swab, when subjected to metagenomics,
could represent a surrogate measure of a
patient’s airway microbiome. The number
of microbes observed on inhaler devices
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(n= 207) exceeds that detected from the
airways (n= 116), suggestive of other
potential environmental influences;
however, 80 overlapping microbial taxa
were observable in paired airway–inhaler
specimens with 36 and 127 microbial taxa
found in airway and inhaler devices,
respectively, suggesting increased microbial
diversity on inhaler devices including
microbes of potential environmental origin
(Figure 5B). Among the 80 co-occurring

microbial taxa, most (63 species and 78.8%
of all co-occurring taxa) were detected at
the individual level in specimens obtained
from the same patient, illustrated for the
most abundant taxa in Figure 5C. Similar
analyses focused on antibiotic resistance
genes reveals comparable metagenomic
profiles from paired airway–inhaler device
specimens but with lower resistance gene
abundance on inhaler devices (Figure 5D).
Here, multidrug, macrolide, and

tetracycline antibiotic resistance
determinants were most frequently
observed, a finding consistent with our
previously described core resistome
(Figure 5D). A slightly higher number of
resistance determinants (n= 98) were found
associated to inhaler devices as compared
with airway specimen (n= 89), a finding
consistent with the greater diversity of
microbes seen on inhalers, whereas 53
resistance genes were overlapping between
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inhalers and sputum (Figure 5E). Among
overlapping resistance genes between the
airway–inhaler device, 86.8% (46 resistance
genes) co-occurred in paired
airway–inhaler device specimens illustrated

for the most abundant resistance genes in
Figure 5F. A subset of identified resistance
genes was associated with inhaler devices
without detectable levels in the sputum of
any patient or nondiseased control.

These genes may reflect potential
environmental sources of resistance gene
diversity, 12 of which were independently
observed on at least two inhaler devices
(Table E2).
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Figure 6. Metagenomic derivation of microbe–gene associations highlighting a potential source of resistance implicated in airway–inhaler device
crossover. (A) Correlation plot of microbes and resistance genes coidentified in metagenomic profiles from paired patient airway and inhaler device
specimens. The presence of a circle indicates significant association (P, 0.05), whereas circle size and color intensity reflect observed Pearson’s
correlation for all pairwise comparisons indicating the strong positive correlations detected between microbes and resistance genes. The antibiotic

ORIGINAL ARTICLE
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Co-occurrence Analysis of
Gene–Microbe Associations in
Sputum and Inhaler Devices
We next sought to further assess microbial
correlates of resistance among the subset of
microbes (n= 63) and resistance genes
(n= 46) with confirmed co-occurrence
detected across the paired airway–inhaler
devices (Figures 5C and 5F). Consistent
with resistance gene abundance, the most
highly correlated gene–microbe pairs
included genes conferring resistance to
macrolides (n= 4), tetracyclines (n= 4),
b-lactams (n= 1), and fluoroquinolones
(n= 1). Several species exhibit significant
correlation with co-occurring resistance
genes and predominantly comprise
Firmicutes (Carnobacterium,
Granulicatella, Prevotella, and
Streptococcus) and Actinobacteria
(Actinomyces, Corynebacterium, and
Rothia) (Figure 6A). Correlation analysis
reveals significant association for all four
macrolide genes (msrD, ermF, ermB, and
ermX) as well as fluoroquinolone (pmrA),
tetracycline (tetA_46 and tetB_46), and
b-lactam (cfxA2) resistance determinants.
The most highly correlated species
associated with msrD was Carnobacterium
maltaromanticum; a lactic acid bacterium
frequently found in food products
including fish, meat, and some dairy.
Prevotella intermedia was most closely
correlated with ermF, whereas Actinomyces
ICM47 was associated with ermF and ermX
gene abundance. Streptococci was associated
with the presence of fluoroquinolone and
tetracycline resistance determinants,
whereas Prevotella pallens was identifiable
as the most likely microbial source of cfxA2
b-lactamase on the basis of maximal
correlation coefficients and significance
compared with other taxa. The abundance
of these putative microbial resistance
vehicles and their associated resistance
genes are illustrated in Figure 6B.

Discussion

We describe the largest airway clinical
metagenomics analyses performed to date
linking the antimicrobial resistome to host
microbiomes in chronic respiratory disease.
Our work highlights the versatility and
usefulness of metagenomics in assessing
functional aspects of the human
microbiome, including antibiotic resistance.
The airway metagenome exhibits functional
metabolic dysbiosis including increased
antibiotic resistance, predominant in COPD
and bronchiectasis. Variability exists in
antibiotic-associated functional pathways in
healthy and diseased airways, mirrored by a
presence and high abundance of resistance
genes. Critically, we uncover, even in a
healthy state, the presence of a core
resistome, dominated by genes from
common antibiotic classes including
macrolides, b-lactams, and fluroquinolones
unrelated to antibiotic exposure. By
assessing host microbiomes with increased
robustness provided by metagenomics, we
link the presence of specific bacterial taxa to
the core resistome and specifically genes
conferring macrolide resistance. Analysis of
paired patient-inhaler metagenomes
illustrates significant overlap suggesting
the latter as a surrogate for the host
microbiome. Patient-inhaler overlap
confirms our identified resistance
gene–microbe associations as well as
identifies resistance determinants unique to
inhaler devices aligning with the concept
of the wider environment as source of
resistance determinants linked to microbial
and, therefore, resistance transfer between
environment and host.

A key observation from this work is the
high abundance of resistance genes within
the Macrolide–Lincosamide–Streptogramin
(MLS) axis, which dominates the airway
resistome. This is important given the
widespread and increasing use of

macrolides across a variety of clinical
respiratory diseases (4, 29–31). Prior work
illustrates that macrolide resistance is
among the most prevalent in the wider
environment, representing a rich source
of resistance determinants with strong
potential for horizontal transfer (32). Our
detection of a core airway resistome
dominated by macrolide resistance is
therefore of particular concern considering
the selective pressure exerted by macrolides
toward resistance in both the airway and
wider environment (30, 33, 34). Recent
work focused on environmental resistomes
illustrates their distinct core and
discriminatory elements (35). We, in
similar fashion, detected core and
discriminatory elements within the airway
metagenome, where discriminant resistance
genes had higher occurrence in diseased
states (e.g., multidrug resistance in COPD
and bronchiectasis), which associated with
their microbiomes. A core airway resistome
is also evident comprising genes from the
macrolide, fluoroquinolone, b-lactam, and
tetracycline antibiotic classes. This core
resistome demonstrates stability across all
respiratory diseases including healthy
individuals and therefore explains the
detected relative microbiome stability
during exacerbations despite antibiotic
pressure (30, 36, 37). Our description of the
core airway resistome also provides a novel
perspective on reasons why pathogens,
expected to exhibit in vivo susceptibility to
a particular antibiotic, are not necessarily
eradicated by appropriate antimicrobial
therapy (38).

Predominance of macrolide resistance
within the core resistome is of relevance in
respiratory disease. Macrolide use is
advocated in severe asthma, COPD, and,
more recently, bronchiectasis, particularly
for patients demonstrating recurrent and
persistent exacerbations (27, 28, 39). The
core macrolide resistome includes msrD
(mel), ermB, ermX, and ermF genes, which

Figure 6. (Continued). resistance genes are color-coded according to their respective antibiotic class. (B) Bubble chart illustrating the co-occurrence of the
most highly correlated microbe (open circle) and resistance gene (solid circle) combinations illustrated by disease (i.e., SA, COPD, and BE). Bubble size
represents the number of classified reads, whereas color indicates the antibiotic class. Black bars along x axis indicate each individual paired airway
and inhaler specimen, respectively (from left to right). A. graevenitzii=Actinomyces graevenitzii; A. rava=Alloprevotella rava; BE= bronchiectasis;
COPD=chronic obstructive pulmonary disease; C. maltaromaticum=Carnobacterium maltaromaticum; C. durum=Corynebacterium durum;
F. alocis= Filifactor alocis; F. nucleatum= Fusobacterium nucleatum; G. adiacens=Granulicatella adiacens; G. haemolysans=Gemella haemolysans;
G. sanguinis=Globicatella sanguinis; L. mirabilis= Lautropia mirabilis; N. meningitidis=Neisseria meningitidis; P. histicola=Prevotella histicola;
P. intermedia=Prevotella intermedia; P. multiformis=Prevotella multiformis; P. oris=Prevotella oris; P. pallens=Prevotella pallens; P. pleuritidis=
Prevotella pleuritidis; P. salivae=Prevotella salivae; P. sp. C561=Prevotella sp. C561; R. dentocariosa=Rothia dentocariosa; R. mucilaginosa=Rothia

mucilaginosa; SA= severe asthma; S. longum=Stomatobaculum longum; S. mitis=Streptococcus mitis; S. moorei=Solobacterium moorei;
S. parasanguinis=Streptococcus parasanguinis; S. salivarius=Streptococcus salivarius; S. sanguinis=Streptococcus sanguinis.
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incorporates efflux (msrD) and rRNA
methylases (erm), mechanisms previously
established in the human gut and sewage
effluent (32, 34, 40). Of all macrolide
resistance genes identified, ermX exhibits
greatest abundance in respiratory disease
and presents as a highly connected node in
our co-occurrence analysis, its presence
relating to several resident airway bacteria.
Interestingly, ermF and mstD exhibit
association with low-abundance gut
microbiota including C. difficile and B.
thetaiotaomicron, which are reported to
harbor these genes in association with
mobile genetic elements (41, 42). This
suggests seeding of the airway resistome
may occur, through aspiration of gut
microbes, in the case of ermF and msrD,
contrasting ermX, which strongly associates
more directly with the respiratory
microbiota. Silent aspiration and/or
gastroesophageal reflux is proposed to
occur in chronic respiratory disease
including asthma, COPD, and
bronchiectasis and therefore should be
considered as a contributor to the airway
resistome (43–46).

To better understand direct
relationships and potential transfer between
host and environmental resistomes, we next
assessed metagenomes in paired patient-
inhaler specimens in individual patients. We
demonstrate that an inhaler swab, when
subjected to metagenomics, may act as a
surrogate of the airway microbiome and/or
resistome: a feature of relevance in patients
with dry nonproductive cough commonly
seen in severe asthma but also COPD and
bronchiectasis (47). Co-occurrence of
microbe-resistance gene combinations
was evident, strongly indicative of
environmental contributors and microbial
sources of the airway resistome. By
generating comparable microbiome and
resistome profiles between airway and
inhalers, we confirm the potential for such
therapeutic devices to act as resistance
reservoirs, allowing trafficking of
pathogenic microbes and resistance
determinants between the environment and
airway. Recent work illustrates the COPD
airway to be an important reservoir for
antibiotic resistance genes, linking their
abundance to bacterial colonization (11).
Interestingly, existing data further propose
that macrolide resistance genes, including
ermX, may be aerosolized and associate
with COPD patient filter masks in the
hospital setting (48). Our work further

builds on such concepts, demonstrating the
potential of clinical metagenomics in
inhaler devices to uncover microbe-
resistance gene associations through
gene–species co-occurrence in
environmental and airway specimens. We
identify a subset of microbes and genes co-
occurring between the airway and
inhaler surface when integrated into a co-
occurrence network leading to the
identification of bacteria highly correlated
to genes conferring macrolide, tetracycline,
b-lactam, and fluoroquinolone resistance.
Interestingly, this reveals taxa previously
associated with antimicrobial resistance
including Actinomyces, Streptococcus, and
Prevotella species, implicating them as
potential key vehicles for resistance (36,
49). Prevotella is known to exhibit reduced
susceptibility to b-lactams in the CF lung,
findings consistent with our observed
association between P. pallens and the
b-lactamase–encoding cfxA2 gene, whereas
the presence of tet genes in Streptococcus is
also previously described (50). Association
between Carnobacterium maltaromaticum
and msrD is not previously described,
although the clinical relevance of
Carnobacterium species remains to be
fully established. Our detected relationship
between Actinomyces species and resistance
genes appears in contradiction to its
described macrolide sensitivity; however,
it should be noted that molecular
(sequence) data related to Actinomyces spp.
ICM47 have yet to be taxonomically
confirmed and therefore potentially
represent an exception to the general trend
in this genera favoring macrolide
susceptibility (30).

Our work is novel and represents
the largest clinical metagenomics study
performed on airway specimens using
robust state-of-the-art methodologies
effectively applied to low-biomass samples
such as outdoor air (23). Using this
approach, we uncover a core airway
resistome dominated by macrolide
resistance linked to the host microbiome.
We further illustrate that inhaler devices
may act as a surrogate of the host airway
microbiome and remain a key resistance
reservoir. Despite our study’s strengths and
novelty, we acknowledge its limitations.
First, despite being the largest clinical
metagenomics study to date, we include
only 85 individuals, which are further
nested into healthy and diseased groups,
within a cross-sectional study design

requiring validation in larger longitudinal
studies given the myriad of confounders
that could possibly influence microbiome
profiles. For instance, although patients
with disease were relatively well matched
for age, the healthy cohort were
significantly younger. Even with a limited
sample size, we could identify microbiome
perturbation characteristic of respiratory
disease (e.g., COPD and bronchiectasis).
Heterogeneity and relationships between
the resistome, microbiome, and specific
disease phenotypes (e.g., very frequent
exacerbators) within the diseased cohorts,
most prominent for the bronchiectasis
group, could not be fully resolved by this
work because of the limited sample size.
Recently, Taylor and colleagues have
demonstrated the effect of macrolide
exposure on the resistome in a longitudinal
study of patients with severe asthma.
Following azithromycin exposure, the
abundance of several macrolide genes
(including those observed in our analysis)
ermB, ermF, mef, and mel (msrD) were
detected, supporting the functional
importance of these genes to the resistome
in response to antibiotic exposure (30).
Interestingly, shifts in the resistome in
response to therapy were accompanied
by clinical resistance in Haemophilus
influenzae isolates, suggesting metagenomic
resistome profiling may reflect clinically
observed resistance that warrants further
analysis in terms of diagnostic implications
in the context of the findings from our
study. Next, although metagenomic
shotgun sequencing is a powerful tool, it
remains relatively expensive with slower
turnaround times compared with other
sequencing approaches. This poses
challenges for real-time diagnostic or
therapeutic use and translation into
everyday clinical practice (51). Although
challenging owing to the nature of sample
variability in particular conditions such as
asthma or (dry) bronchiectasis compared
with nondiseased controls, as a matrix,
sputum is advantageous in terms of
accessibility and scope for broad
application in large studies across a range of
clinical settings. This clearly contrasts
with more invasive BAL or tissue biopsy
sampling where sample acquisition and
control subject recruitment are major
limiting factors. Our study recruited several
nondiseased participants, from which
airway specimens were readily obtained by
applying the huff cough technique in a
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protocol applied previously to nondiseased
control samples in assessment of their
airway microbiomes (21). Although clearly
important, the degree to which sputum
reflects the true microbial ecosystem of the
lower airway has been the subject of debate,
and its accessibility likely comes at a cost of
reduced resolution of lower airway taxa,
which may be particularly relevant in
diseased states (52). Consistency of sputum
sampling in terms of the relative
proportions of upper and lower airway
biomass in a given sample, variability in
sampling during acquisition, and also
changes with respect to disease severity are
all likely to influence clinical association
and remain important areas for future
exploration. In our assessment of patient
inhalers, we included rigorous swab-
sampling contamination controls but
lacked the additional experimental control
of a swab taken from an unused inhaler
device—an important consideration given
the sensitivity of metagenomics to
detect minute levels of background
contamination. The high abundance of
human DNA in sputum is an additional
hurdle with implications for adequate
and unbiased detection of resistance genes,

as sequencing depth will influence
detection. However, recent work in the
area of host DNA removal may address
this issue, allowing for greater microbial
read depth and scalability of sputum
metagenomics in this field (53).
Furthermore, metagenomic data
processing requires specialized personnel
with bioinformatic skills and a facility
with the capability to perform high-
performance computing, both significant
barriers to clinical implementation. The
use of short-read sequencing also largely
precludes a definitive assessment of
mobile genetic elements associated with
resistance genes, and long-read
metagenomic workflows currently being
developed may offer better insights
going forward. Finally, our study detected
change to genes controlling lipid
metabolism across a range of chronic
respiratory disease states. Alterations in
lipid metabolism are identified in COPD
and bronchiectasis and potentially
contribute to their pathogenesis through
initiation and resolution of inflammation.
Emerging data suggest that microbial
dysbiosis associates with such metabolic
change and remains an important

avenue for future study particularly in
regard to effect on host immune function
(26, 54, 55).

Despite economic, analytical, and
resource-related challenges to the application
of clinical metagenomics into respiratory
practice, its ability to concurrently capture
individual microbial taxonomy, function,
and resistance in an unbiased robust
manner using a single specimen makes it
an attractive tool for the delivery of
precision respiratory medicine. This is
important in the current era of patient
endophenotyping including disease overlap.
Our identification of a core airway
resistome, dominated by macrolide
resistance, is an important cautionary
warning worthy of clinical consideration.
Despite advances in the use of
antimicrobials to improve clinical outcomes
across a range of chronic respiratory
diseases, we must be cognizant of their
potential long-term resistance implications
and weigh this against the perceived short-
term clinical benefit in individual
respiratory patients. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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