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Abstract

Summary: Single-cell RNA-sequencing is increasingly employed to characterize disease or ageing cell subpopula-
tion phenotypes. Despite exponential increase in data generation, systematic identification of key regulatory factors
for controlling cellular phenotype to enable cell rejuvenation in disease or ageing remains a challenge. Here, we
present SigHotSpotter, a computational tool to predict hotspots of signaling pathways responsible for the stable
maintenance of cell subpopulation phenotypes, by integrating signaling and transcriptional networks. Targeted per-
turbation of these signaling hotspots can enable precise control of cell subpopulation phenotypes. SigHotSpotter
correctly predicts the signaling hotspots with known experimental validations in different cellular systems. The tool
is simple, user-friendly and is available as web-server or as stand-alone software. We believe SigHotSpotter will
serve as a general purpose tool for the systematic prediction of signaling hotspots based on single-cell RNA-seq
data, and potentiate novel cell rejuvenation strategies in the context of disease and ageing.

Availability and implementation: SigHotSpotter is at https://SigHotSpotter.lcsb.uni.lu as a web tool. Source code,
example datasets and other information are available at https://gitlab.com/srikanth.ravichandran/sighotspotter.

Contact: antonio.delsol@uni.lu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The ability to control cellular phenotypes offers a great potential for
developing novel regenerative medicine strategies. In particular, reju-
venation strategies for counteracting the detrimental effect of the aged
or diseased niche that impairs normal cellular functioning are essential
(Cheung and Rando, 2013; Del Sol et al., 2019; Lane et al., 2014;
Neves et al., 2017). Advances in single-cell RNA-seq that allows for
profiling of distinct cell subpopulations could aid in this endeavor.
However, despite increasing amount of data generation, there is a lack
of computational approaches that leverages single-cell omics data to
identify specific factors that can enable cell rejuvenation. Here, we pre-
sent a general computational tool, SigHotSpotter, which relies on a
probabilistic Markov chain model of signal transduction, previously
developed by our lab, for the prediction of hotspots (key molecules) of
signaling pathways that are constantly activated/inhibited by the niche
that maintain neural stem cells in a quiescence state (Kalamakis et al.,
2019). We define signaling hotspots as those specific molecules that are
involved in the sustained transmission of the external niche signals for

the stable maintenance of the cell subpopulation phenotypes.
Importantly, the tool aims at predicting hotspots, that exhibit highest
signal flux through them in a sustained manner, rather than inferring
the whole signaling pathways. Functionally, such hotspots are more
likely to transmit the constitutive signals from the niche for phenotype
maintenance, in contrast to strong but transient signals which are usu-
ally associated with a change in cellular response or phenotype (Wang
and Wagers, 2011). With the increasing amount of single-cell RNA-seq
data being generated, especially in the context of ageing and
disease, SigHotSpotter can be of general utility for predicting signaling
hotspots that that maintain cell subpopulation phenotypes. Further,
this could aid the development of novel cell rejuvenation strategies that
aim to counteract the detrimental effect of the diseased or aged niche.

2 Materials and methods

The key steps involved in SigHotSpotter are represented in Figure 1A.
Detailed description of the method is provided in the Supplementary
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Material. As an input, SigHotSpotter requires single-cell RNA-seq
data. Further, it relies on a signaling interactome network, constructed
by combining Reactome, Omnipath databases and transcriptional
interactions from Metacore (Clarivate Analytics) obtained from Turei
et al., (2016), Wu et al., (2010) and Zaffaroni et al., (2019). In the first
step, a state transition matrix is constructed based on the signaling
interactome and the input single-cell RNA-seq data. The signal trans-
duction process from the niche to intracellular signaling pathways is
modeled as a finite discrete time-homogenous Markov chain
(Kalamakis et al., 2019). The stationary distribution of this Markov
chain enables shortlisting those signaling molecules (defined as recep-
tors, ligands, kinases and phosphatases) that exhibit high steady state
probability, which reflects the high signal flux through them for a given
phenotype (Fig. 1). This information alone is not sufficient to infer
whether these molecules are in an active or inactive state to maintain
the phenotype. In the second step, SigHotSpotter attempts to delineate
the potential regulatory activity status of the high probability signaling
molecules by employing a topological characterization of their com-
patibility with differential expression status of the downstream tran-
scription factors (TFs; Fig. 1 and Supplementary Figs S1 and S2). A
compatibility score is calculated for each high probability signaling
molecule based on their net effect on the differentially expressed down-
stream TFs, via all the shortest paths in the network. This score relies
on the steady state probabilities from the Markov chain model and
serves to both classify and rank; the active and inactive signaling hot-
spots by their importance to maintain the corresponding phenotype
(Fig. 1). Finally, we use Igraph (Csardi and Nepusz, 2006) implementa-
tion of Dijkstra’s shortest paths algorithm (Dijkstra, 1959) to extract
the subnetwork controlled by the predicted hotspots. A screenshot of
SigHotSpotter web tool is shown in Supplementary Figure S3.

3 Results

We demonstrate SigHotSpotter as a case study in four different cel-
lular systems based on single-cell RNA-seq data from embryonic

stem cells (ESCs) (Kolodziejczyk et al., 2015), hematopoietic stem
cells (Kowalczyk et al., 2015), hair-follicle stem cells (Yang et al.,
2017) and oligodendrocyte progenitor cells (Marques et al., 2016).
The list of computational predictions and associated literature sup-
port is listed in Supplementary Table S1. ESCs maintained under
in vitro culture conditions serve as good model system to initially
assess the performance of SigHotSpotter, since these cells can be
stably maintained in different defined culture conditions such as 2i
(inhibition of Gsk3b and Mek) or leukaemia inhibitory factor, and
also exhibit condition dependent differences in their phenotypes
(Ying et al., 2008). The culture conditions employing 2i (inhibition
of Gsk3b and Mek) is known to maintain the mESCs in a naive
pluripotency state, whereas, the LIF alone maintain the mESCs in
a relatively primed/metastable pluripotency state (Ying et al.,
2008). Importantly, sustained inhibition of Gsk3b and Mek is
required for stable maintenance of naive pluripotency. In the ex-
ample of mESCs (Kolodziejczyk et al., 2015), where exact signal-
ing molecules that are constantly inhibited by the niche (culture
conditions in this case) are clearly known, SigHotSpotter could
correctly predict the inhibition (i.e. as inactive) of Gsk3b and Mek
(Map2k1) under 2i conditions (Supplementary Table S1 and
Supplementary Fig. S1). Although, to our knowledge no general
method currently exists for the task of identifying signaling hot-
spots that control cellular phenotypes, we compared the perform-
ance of SigHotSpotter with other general methods for signaling
pathway/network inference and enrichment analysis that rely on
only differential expression or network topology characterization
(Drier et al., 2013; Kuleshov et al., 2016; Tarca et al., 2009).
Notably, these methods were not able identify either Wnt signaling
or Map kinase signaling along with their deregulation status for
mESCs phenotype control (Fig. 1). Other case study applications
(Fig. 1 and Supplementary Table S2) and the comparison of
SigHotSpotter with four other pathways/network inference and en-
richment methods, namely, SPIA (Marques et al., 2016), GSEA
(Subramanian et al., 2005), EnrichR (Wu et al., 2010) and
Pathifier (Drier et al., 2013) are described in the Supplementary
Material.

4 Discussion and conclusion

Computational methods that combine molecular interaction data-
bases and genomics data have been very useful for the inference of
dysregulated signaling pathways and networks, especially in the
context of cancer (Leiserson et al., 2015). However, these methods
are not specifically built for the prediction of key molecules or hot-
spots that constantly mediate cell-extrinsic niche cues for the stable
maintenance of the cellular phenotype. Furthermore, this is a chal-
lenge, since signal transduction involves several post-translational
modifications, and is not a deterministic linear cascade of biochem-
ical interactions (as often depicted in pathway diagrams), but rather
a probabilistic process involving multiple protein–protein interac-
tions (Ladbury and Arold, 2012). In this regard, although
SigHotSpotter is based on transcriptomics data, it benefits from the
heterogeneity of single-cell gene expression, and attempts to over-
come some of these challenges by relying on a probabilistic model to
infer signaling hotspots that most likely transmit the sustained
niche-induced signals, rather than inferring the entire dysregulated
signaling pathways. Hence, SigHotSpotter is qualitatively different
from the plethora of methods for pathway enrichment or inference
of functional signaling networks (Amadoz et al., 2018), as it predicts
specific signaling molecules and their regulatory effect on the cellu-
lar phenotype. In addition, the ranking of the hotspots along with
their associated network controlling the downstream TFs will serve
as a guide experimentalists to prioritize the predicted targets for fur-
ther study.

In summary, SigHotSpotter employs single-cell RNA-seq data to
serve as a general purpose tool for predicting signaling hotspots that
control cell subpopulation phenotypes. Importantly, this can enable
the development of cell rejuvenation strategies for counteracting the
detrimental effect of the niche due to disease or ageing, where en-
dogenous stem cells lose their activation potential.
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Fig. 1. SigHotSpotter steps involved and case study application. (A) Series of steps

involved in SigHotSpotter. (B) Model of a toy-signaling network in two different

phenotypes. The node colors in the network represent the steady state probability of

the signal to be in a specific node (signaling molecule). Inhibitory edges are shown in

red and activation edges in green. The edge thickness represents the interaction

probability of the two molecules inferred from single-cell RNA-seq. The inverted tri-

angle nodes represent receptors/ligands, circles represent intermediate signaling mol-

ecules and the squares represent TFs. Nodes that exhibit both high steady state

probability and compatibility with the downstream TF expression are identified as

signaling hotspots. The black dotted circle indicates the higher compatibility of

Node 12 in niche condition 2. (C) Results of SigHotSpotter for the case study appli-

cations, a comparison with other signaling pathways/network inference and enrich-

ment methods. Comparison of SigHotSpotter with SPIA, Pathifier and differential

expression based enrichment with Enrichr. Yes/No denote if the pathway was found

significant, pathway inhibition and activation are represented by red and green

color, respectively. If the pathways were not available for certain methods, we

looked up similar pathways from KEGG, these are marked in superscript with nota-

tion: 1PI3K-Akt signaling pathway, 2TGF-beta signaling pathway and 3Notch4 sig-

naling pathway. (Color version of this figure is available at Bioinformatics online.)
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