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Abstract

Microbial communities have become a major research focus due to their importance for bio-

geochemical cycles, biomedicine and biotechnological applications. While some biotechno-

logical applications, such as anaerobic digestion, make use of naturally arising microbial

communities, the rational design of microbial consortia for bio-based production processes

has recently gained much interest. One class of synthetic microbial consortia is based on

specifically designed strains of one species. A common design principle for these consortia

is based on division of labor, where the entire production pathway is divided between the dif-

ferent strains to reduce the metabolic burden caused by product synthesis. We first show

that classical division of labor does not automatically reduce the metabolic burden when

metabolic flux per biomass is analyzed. We then present ASTHERISC (Algorithmic Search

of THERmodynamic advantages in Single-species Communities), a new computational

approach for designing multi-strain communities of a single-species with the aim to divide a

production pathway between different strains such that the thermodynamic driving force for

product synthesis is maximized. ASTHERISC exploits the fact that compartmentalization of

segments of a product pathway in different strains can circumvent thermodynamic bottle-

necks arising when operation of one reaction requires a metabolite with high and operation

of another reaction the same metabolite with low concentration. We implemented the

ASTHERISC algorithm in a dedicated program package and applied it on E. coli core and

genome-scale models with different settings, for example, regarding number of strains or

demanded product yield. These calculations showed that, for each scenario, many target

metabolites (products) exist where a multi-strain community can provide a thermodynamic

advantage compared to a single strain solution. In some cases, a production with sufficiently

high yield is thermodynamically only feasible with a community. In summary, the developed

ASTHERISC approach provides a promising new principle for designing microbial commu-

nities for the bio-based production of chemicals.
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Author summary

Communities of microbes are ubiquitous in nature and also of high relevance for indus-

trial applications, e.g. for the production of biogas. The development and use of non-natu-

ral communities for biotechnological applications has become an important subject of

research. In this work, we present a new computational method to design synthetic com-

munities with improved capabilities for the synthesis of desired target metabolites. Our

method takes a constraint-based metabolic model of an organism as input and searches

for a suitable partitioning of the product pathway via different strains of the organism

such that the thermodynamic driving force for product synthesis is maximized. Essen-

tially, this approach exploits the fact that having multiple strains allows adjustment of dif-

ferent metabolite concentrations in the different strains by which the thermodynamic

driving force for product synthesis can often be increased. We tested this approach with a

core and with a genome-scale metabolic network model of Escherichia coli. We found

that, for dozens of metabolites, there exist communities with specifically designed strains

of E. coli where the maximal thermodynamic driving force can be increased compared to

a single E. coli strain. In summary, our presented method provides a new approach,

together with a new design principle, for the computational design of microbial

communities.

Introduction

In nature, organisms rarely occur as isolated populations of single species. They rather form

communities (or consortia) with different types of complex interactions between the partici-

pating species which often drive evolution [1]. In particular, communities of microorganisms

are ubiquitous in nature and play a fundamental role for ecology, bioremediation, geochemical

cycles and human health. Microbial communities typically consist of different species, how-

ever, especially under controlled laboratory conditions, they may also comprise coexisting

strains of a single species with certain physiological differences between the strains. One way

to establish such single-species (multi-strain) communities is to construct and co-culture dif-

ferent, genetically modified strains with obligate mutual metabolic dependencies [2].

Mathematical modeling has become a valuable tool to formally describe and simulate com-

plex microbial communities and to gain a deeper understanding of their behavior and proper-

ties. A range of different methods has been developed for community modeling [3–5]. As for

modeling single species, two major approaches are kinetic modeling based on differential

equations [6,7] and steady-state modeling utilizing constraint-based (flux balance analysis

(FBA) [8]) techniques [9–13]. FBA-related methods are limited to predictions on stationary

metabolic fluxes, but they require as input only the metabolic reaction network of the partici-

pating species and no data on kinetic mechanisms and parameters and can therefore be used

to analyze large (genome-scale) metabolic models. Applying (linear) FBA-techniques to study

communities models requires partially adaptations, e.g. due to arising bilinearities. Two partic-

ular examples of such formalizations are SteadyCom [14] and RedCom [15]. Both methods are

based on the concept of balanced growth of a community [16] and allow predictions of growth

rates, metabolic exchange rates and feasible community compositions. An example of an

FBA-based method for the design of single-species (multi-strain) communities with certain

constraints is DOLMN (Division Of Labor In Metabolic Networks) [17].

Microbial consortia are extensively used in biotechnological applications. One example is

anaerobic digestion in biogas plants where methane is produced by naturally occurring
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communities. In recent years, artificial co-cultures have been constructed for synthesizing bio-

fuels and value-added products in bioreactors [18]. While some of these realizations use multi-

species communities [19,20], more and more realizations focus on the use of communities

with different, purposefully constructed strains of a single species. Successful examples of sin-

gle-species communities for product synthesis include (a) a two-strain E. coli community for

the conversion of xylan to ethanol with high ethanol yields [21], (b) another two-strain E. coli
community for the synthesis of flavonoids [22] with much higher synthesis rates than without

communities, and (c) the synthesis of anthocyanins with a community of four E. coli strains

[23], the first successful production of this chemical by microbes at all.

The high potential of dedicated single-species communities for optimizing biotechnological

production of a certain compound has been intensively discussed in recent literature. Division

of labor (DoL) is seen as one major design principle of such artificial co-cultures [24–28]. The

basic idea of DoL is illustrated with the toy example shown in Fig 1A, where we consider a lin-

ear metabolic pathway converting a substrate S into a desired target product P. Concretely, S is

taken up, then, in a first reaction catalyzed by enzyme E1, converted to the intermediate metab-

olite M, which is in turn further converted to the product P in a second reaction catalyzed by

enzyme E2, after which P is finally excreted. In a biotechnological application, the goal is to

achieve a high flux through this pathway which will require a high abundance of the enzymes

E1 and E2. Due to limited intracellular resources, the synthesis of each of the two enzymes

competes with each other and with other cellular processes, which may result in a reduced pro-

duction performance of the strain. Here, DoL may help to reduce the “metabolic burden” of

Fig 1. An example illustrating that DoL does not reduce the overall metabolic burden. (A) Basic idea of DoL: a two-step

pathway converting a substrate S to a product P via the two reactions R1 (catalyzed by enzyme E1) and R2 (catalyzed by

enzyme E2) in a single strain is split into two parts each being performed by one dedicated strain. (B) Assuming an identical

total amount of biomass, the metabolic burden (enzyme cost per biomass) is identical for the single strain and the DoL

solution.

https://doi.org/10.1371/journal.pcbi.1009093.g001
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the single strain by dividing the respective metabolic task and thus the metabolic costs on sev-

eral strains of the same species [24,29]. In our example, a DoL strategy could be to split the

pathway into two parts (or tasks) each being implemented in one dedicated strain. With an

exchange of the intermediate metabolite M, each of the two strains may now concentrate on

its dedicated task which could circumvent physiological bottlenecks. Clearly, the effectiveness

of a DoL strategy will depend on the relative burden on each pathway step. However, even in

the ideal case that the metabolic burden is equally distributed over the two reactions and thus

over the two different strains, this DoL perspective neglects one major constraint: if we assume

that we are given a certain amount of biomass that can be used for product synthesis (higher

amounts of biomass will inevitably reduce product yield), DoL will not necessarily lead to

increased product flux (Fig 1B). In the single strain approach, the specific rates (in [mmol/

(gDW�h)]) for reaction R1 are given by

rSS
1
¼ ½E1�

SS
� kcat;1 � f1ðcÞ ð1Þ

where [E1]SS is the concentration of enzyme E1 in the single strain, f1 the saturation function

characterizing the kinetic rate law of reaction R1, and c the vector of the metabolite concentra-

tions. Analogously, for the specific rate of reaction R2 we have:

rSS
2
¼ ½E2�

SS
� kcat;2 � f2ðcÞ ð2Þ

For simplicity, in the following we assume that the same amount of enzyme E1 and E2 is

needed to induce a certain flux in the reactions R1 and R2 (implying kcat,1�f1(c) = kcat,2�fs(c)),
and that both enzyme costs are identical (S1 Text shows that the same conclusions can be

drawn in the more general case with arbitrary pathway length and enzyme costs under

assumption of constant metabolite concentrations in the strains). Therefore, since the

specific rates in the single-strain solution must fulfill rSSS ¼ rSS
1
¼ rSS

2
¼ rSSP in steady state, the

enzyme concentrations must be identical: [E1]SS = [E2]SS. For the total product synthesis flux

JSSP [mmol/h] we need to multiply the specific flux with the amount of biomass BSS (unit

[gDW]): JSSP ¼ BSS � rSS
1
ð¼ BSS � rSS

2
Þ. Now, in the DoL approach with the assumed simplified

case of identical enzyme requirements and costs, the biomass of the single strain would be

divided into two equal parts (strains 1 and 2, each having 50% of the original total biomass:

BDoL
1
¼ BDoL

2
¼ 0:5 � BSS). For the steady-state product synthesis flux in the DoL approach, we

obtain JDoLP ¼ BDoL
1
� rDoL

1
¼ BDoL

2
� rDoL

2
. Therefore, in order to obtain the same total product syn-

thesis flux as for the single-strain solution, the specific rates rDoL
1

and rDoL
2

must be doubled due

to the halved biomass available for each strain. This requires doubled enzyme concentrations

in the two strains, [E1]DoL = 2[E1]SS = [E2]DoL = 2[E2]SS, implying that the total concentration

of enzymes required for the product pathway is identical in all three strains considered:

½E�SStot ¼ ½E1�
SS
þ ½E2�

SS
¼ ½E1�

DoL
¼ ½E2�

DoL
. Thus, the total enzyme costs per biomass in the DoL

scenario are the same as with the single-strain solution and the metabolic burden is not

reduced. Furthermore, the exchange of the intermediate metabolite M between the strains

under DoL is also associated with additional metabolic costs (transporters must be produced,

energetic costs of transport etc.). In fact, as also shown for the more general case (S1 Text), a

DoL strategy cannot be advantageous (or is even unfavorable) with respect to metabolic bur-

den as long as a potential kinetic advantage due to different metabolite concentrations in the

different strains does not outweigh the added costs of metabolite transport. This point has

rarely been considered when discussing DoL strategies.

As indicated in the last statement, one degree of freedom in a community that could be

used to truly enhance the overall production rate, is the possibility of having different metabo-

lite concentrations in the strains. In this study we present a new approach for designing and
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optimizing communities with multiple strains of a single species, which exploits this degree of

freedom. Specifically, our concept seeks to identify a suitable division of the metabolic net-

work, such that the thermodynamic driving force of the entire product synthesis pathway is

maximized. The basic concept is shown with the toy model in Fig 2: The pathway from sub-

strate S to product P includes a thermodynamic bottleneck at the reactions R2 and R5 because

of their relatively low thermodynamic driving forces (positive standard Gibbs free energies).

The driving force of reaction R2, where X is a reactant, could be increased by adjusting a lower

concentration of metabolite X, however, this would simultaneously further reduce the driving

force of reaction R5, where X is a product. In fact, with the chosen set of constraints for the

metabolite concentrations in Fig 2, the pathway is thermodynamically infeasible indicated by

the negative optimal MDF (OptMDF) value. For a given pathway, the MDF (max-min-driving

force [30]) maximizes the minimum of the driving force (i.e., the negative value of the Gibbs

free energy change) of all participating reactions in a pathway and OptMDF finds the pathway

in a metabolic network with maximal MDF [31]. Here, splitting the pathway in two sub-

pathways and implementing them in two different strains with an exchange of intermediate B

Fig 2. Example illustrating how division of labor may lead to a thermodynamic advantage in the production of a target

metabolite. In the left, a metabolic pathway in a cell is considered that synthesizes the target product P. The red values

indicate positive values for the standard Gibbs free energy change (DrG00 [in kJ/mol]) and thus potential thermodynamic

bottlenecks. With an allowed concentration range from 1 M to 10 M for all metabolites except for Pex, where a minimum

concentration of 5 M was assumed to consider product synthesis under high external product concentrations, a negative

optimal MDF (OptMDF) value would follow, indicating thermodynamic infeasibility of product synthesis in the single strain.

In the two-strain community (right), the pathway is divided and an exchange of metabolite B introduced. With this,

individual concentrations of metabolite X can be adjusted in the two strains by which thermodynamic feasibility (a positive

OptMDF) of the overall transformation is achieved (the blue triangles indicate the direction of the concentrations of X (high/

low) when maximizing the driving force). Black arrows in the two-strain solution indicate active and grey arrows inactive

reactions.

https://doi.org/10.1371/journal.pcbi.1009093.g002
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(Fig 2) circumvents these bottlenecks as the concentration of metabolite X can now be adjusted

individually in each strain (low in strain 1, high in strain 2) through which product synthesis

becomes thermodynamically feasible. Following this idea, we developed a new framework,

ASTHERISC, for an automated design of single-species (multi-strain) communities that

enable higher thermodynamic driving forces for product synthesis compared to a single-strain

approach. Focusing on pure production (without growth), we demonstrate the power of the

method by identifying multi-strain communities of E. coli that maximize the thermodynamic

driving force of product synthesis for a wide range of compounds.

Methods

Structure of community models

We first summarize the representation of stoichiometric models of microbial communities

under balanced growth (for a detailed description can be found in [15]). Herein, we will focus

on communities with different strains of one species, which can be seen as a special case of

communities with multiple species. As common for constraint-based metabolic models we

represent the metabolic network (with m metabolites and q reactions) of the given species with

a m×q stoichiometric matrix N, a flux vector r containing the net reaction rates, and upper (βi)
and lower (αi) flux bounds for each reaction. The steady-state assumption for the internal

metabolites implies

Nr ¼ 0 ð3Þ

and the flux bounds restrict the range of possible reaction rates:

aj � rj � bj ð4Þ

While the stoichiometric matrix N comprises internal metabolites only, this matrix can be

extended to ~N, which also contains the stoichiometries of the external metabolites (substrates,

products etc.) which need not fulfill the steady state constraint (3). We also allow the definition

of additional linear flux constraints (such as demanded minimal product-to-substrate yields)

with a suitable matrix D and vector d:

Dr � d ð5Þ

In the description of microbial communities, the net reaction rates r are normalized with

respect to the total community biomass [mmol/(gDWtotal� h)]. Furthermore, the biomass frac-

tions Fi = BMi/BMtot (0�Fi�1) of each strain i at the total biomass are variables of the model.

To fulfill the constraint of balanced growth (i.e., constant composition and identical specific

growth rate for each strain), the ratio of biomass production of strain i to total biomass synthe-

sis must also equal Fi. Importantly, as the original flux bounds (4) for each strain are given in

mmol/(gDWi�h), they must be multiplied with the fraction of the respective strain in the com-

munity to obtain flux bounds with units normalized to total biomass

Fiaji � rji � Fibji ð6Þ

In communities with (balanced) growth, the formulation leads to bilinearities [15], which

can be resolved by fixing either the strain fractions or the community growth rate in order to

obtain a linear optimization problem. However, in this study we focus on optimal partitioning

of the product synthesis pathway (without growth) and the only flux bound used will be the

(community) uptake rate of the carbon source. With that we can disregard the production

of biomass and assume identical fractions for all involved strain (e.g. 50% in two-strain
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communities and 33% in three-strain communities; see S2 Text and Results section). However,

in general, growth or/and different biomass fractions may be considered if this is desired.

In the community model, each of the n strains represent a compartment with an associated

metabolic network, captured by stoichiometric matrices N1 to Nn. In a multi-strain model of

one species, the n stoichiometric matrices are, at least initially, identical. In addition, an

exchange compartment is added from/to which the strains can uptake/release compounds

(Fig 3). In particular, this enables the exchange of metabolites between strains. The quasi-

steady-state condition (3) must also be fulfilled for the compounds within the exchange com-

partment, but a defined selection of those can themselves be exported/imported to/from the

environment. Accordingly, the stoichiometric matrix Nc of the community model reads as fol-

lows:

Nc ¼

N1 � � � 0 0

..

. . .
. ..

.
0

0 � � � Nn 0

E1;ex � � � En;ex Ec

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð7Þ

E1,ex . . . En,ex represent the stoichiometries of the exported/imported metabolites from

strains 1 . . . n
to/from the exchange compartment and Ec describes the exchange of metabolites between

the exchange compartment and the environment. The steady-state constraint (3) for the com-

munity now reads:

Ncrc ¼ 0 ð8Þ

Inclusion of thermodynamics

Several FBA-based modeling techniques incorporate thermodynamic constraints, which

reduce the solution space by removing thermodynamically infeasible or unrealistic pathways

[32–36]. An example for the usage of thermodynamics-including FBA-based methods in a

community model is the analysis of a methanogenic consortium of S. fumaroxidans and

M. hungatei [37]. Thermodynamics-based methods are usually based on the Gibbs free energy

ΔrG0 of (bio)chemical reactions and the fact that the net rate of a reaction can only be positive

if its ΔrG0 is negative. Generally, the DrG0i of reaction i depends on the concentrations of the

participating reactants and the reaction-specific standard change in Gibbs free energy ΔrG00

Fig 3. Community model structure used in this study and possible exchange directions of metabolites. Dashed

arrows indicate exchange reactions, all other arrows biochemical conversions.

https://doi.org/10.1371/journal.pcbi.1009093.g003
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[38]:

DrG
0

i¼ DrG
00

i þ RT � ð~N �;iÞ
T
� x ð9Þ

R is the gas constant, T the temperature and x the logarithmized metabolite concentration

vector and ð~N�;iÞ
T

the transposed i-th column (reaction) of the extended stoichiometric matrix

~N with explicitly included external metabolites. In the following, we do not distinguish

between community and single-strain models, hence, the stoichiometric matrices and reaction

rate vectors may also refer to the community versions Nc and rc. As a quantitative measure of

how thermodynamically feasible a specific reaction i is under given metabolite concentrations,

the thermodynamic driving force fi can be defined, which simply is the negative value of the

Gibbs free energy of that reaction:

fi ¼ � DrG
0

i ð10Þ

This reaction-centric concept was extended to quantify the thermodynamically feasibility

of an entire pathway by introducing the concept of the max-min driving force (MDF) [30].

With a given range of feasible metabolite concentrations, the MDF is the maximal value B

such that all reactions of the pathway have a driving force of at least B. The MDF is thus the

maximal driving force an entire pathway can reach. The original MDF formulation only allows

the computation of the MDF for a given pathway. In order to find, within a genome-scale net-

work, a pathway with maximal MDF that fulfills certain constraints (e.g. with a given minimal

yield of a certain target product) the OptMDFpathway method was developed [31]. As it is

fundamental for the ASTHERISC algorithm presented herein we summarize its basic features.

Binary variables zi2{0,1} are introduced for each reaction i of the model and we constrain it

to be 1 if the associated reaction flux ri is non-zero (βi is the upper bound for ri):

ri � zi � bi ð11Þ

The logarithmized metabolite concentration values in x are constrained by physiologically

meaningful lower (cmin) and upper bounds (cmax) for the respective concentrations:

lnðcminÞ � x � lnðcmaxÞ ð12Þ

Sometimes constraints on certain ratios of metabolite concentrations are included (e.g. for

cofactors such as NADH and NAD). For a fixed ratio h ¼ Ci
Cj

of two metabolites i and j we can

write

xi � xj ¼ lnðhÞ ð13Þ

and a feasible range of a metabolite concentration ratio can be expressed by the following two

constraints (hmin and hmax representing the minimal and maximal ratio, respectively):

xi � xj � lnðhminÞ ð14Þ

xi � xj � lnðhmaxÞ ð15Þ

In a preprocessing step, the minimal and maximal possible driving forces fi,min and fi,max
under the given concentration ranges (12)-(15) are determined for each reaction i. With K we
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denote the maximal possible driving force over all reactions

K ¼ maxðfi;maxÞ ð16Þ

Next, we introduce B as a lower bound for the driving force of all active reactions:

fi þ ð1 � ziÞ � K � B ð17Þ

Finally, maximization of B then yields the optimal (maximal) MDF, abbreviated with

OptMDF, for the given constraints:

Maximize
x;r;B

B ð18Þ

s.t. Eqs (6)–(17)

The defined OptMDF optimization problem combines binary and continuous variables in

linear constraints and thus represents a mixed-integer linear program (MILP).

ASTHERISC algorithm

ASTHERISC (Algorithmic Search of THERmodynamic advantages in Single-species Commu-

nities) searches for multi-strain communities that compared to solutions with a single strain,

improve the thermodynamic driving force of product synthesis. The algorithm starts with build-

ing a community model with n (initially identical) strains of a given species. Standard exchange

metabolites (e.g. substrates, nutrients, oxygen, carbon dioxide, common fermentation products

such as acetate, ethanol etc.) can be specified, which can be exchanged by the strains with the

exchange compartment via standard exchange reactions and exchange reactions between the

exchange compartment and the environment are added as well to allow uptake/release of these

metabolites from/to the environment. In addition, to allow the exchange of (intermediate)

metabolites between the strains in the community, we add, to each internal metabolite deemed

to be eligible for exchange between the strains, a reversible transport reaction which can import

or export the metabolite from/to the exchange compartment. Accordingly, we distinguish stan-
dard exchanges as introduced above, from extra exchanges which allow metabolic interactions

between the strains but, in contrast to standard exchanges, no exchange with the environment.

The standard as well as the extra exchanges can be specifically defined for every application. Fur-

thermore, when designing a community for the production of a given target metabolite, an

export reaction from the exchange compartment to the environment is temporarily added to

allow its net production. ASTHERISC searches then for optimal pathways that traverse between

the strains to maximize the MDF for synthesizing the target product with a given minimum

product yield. The optimal pathway will involve individual (but possibly overlapping) sets of

reactions and metabolite concentrations in the different strains.

With this model setup, ASTHERISC employs the OptMDFpathway MILP and slightly

modified variants thereof with additional constraints or/and an altered objective function.

These variants are described in the following.

1. OptMDF: the original OptMDFpathway algorithm as described above

2. OptMDF2: limited number of (extra) exchanges

If EX contains the indices of the extra exchange reactions, an upper bound c for the number of

active extra exchanges can be demanded by adding the following constraint to the OptMDF MILP:
P

i2EX zi � c: ð19Þ
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3. OptMDF3: adding a constraint demanding a lower bound for the MDF

In this variant, we take OptMDF2 and drop the objective function given in Eq (18) and

include instead a constraint demanding a minimum value γ for the MDF B:

B � g: ð20Þ

Note that OptMDF3 just searches for a feasible solution. It returns infeasible if no solution

with the demanded minimal MDF exists.

4. OptMDF4: minimize the overall flux

OptMDF4 uses OptMDF3 together with the objective of minimizing the sum of absolute

fluxes:

Minimize
Pq

i¼1
ri ð21Þ

Note that the OptMDF algorithm splits reversible reactions internally into two irreversible

ones ensuring that all rates are non-negative and that (21) really maximizes the sum of absolute

fluxes.

5. OptMDF5: searching for minimal/maximal metabolite concentrations

Based on OptMDF3, this variant first maximizes and then minimizes the (logarithmized)

concentration of a given metabolite i:

Maximize xi ð22Þ

Minimize xi ð23Þ

This concentration variability analysis is done for all metabolites and determines the feasible

metabolite concentrations under the given constraints (including Eq (20)).

The pseudo code of the ASTHERISC algorithm is given in Fig 4. For each (target) metabo-

lite to be tested by ASTHERISC as target product, the ASTHERISC algorithm seeks to find a

flux vector and associated metabolite concentrations in the community model such that (a)

the community reaches a higher OptMDF than the single-strain solution under (b) the

constraint of a minimal defined target product yield. Accordingly, in the first step of the

ASTHERISC algorithm, the maximal target product yield, achievable without thermodynamic

constraints, is computed for the single-strain model in mol/mol (technically, all single-strain

calculations are done via the community model in which only one single strain has unblocked

default and target metabolite exchanges) and a specified minimal fraction of this maximum

yield must be reached in all subsequent community model calculations. Next, the OptMDF is

computed in the single strain and then for multiple strains in the community; in the latter

case, an upper bound for the number of active extra exchange reactions can be specified (step

2). If the OptMDF in the multi-strain community model is higher than in the single-strain

model, the next steps are performed to characterize the solution (otherwise the algorithm con-

tinues with the next target metabolite). Steps 3 and 4 determine the flux vector in the commu-

nity model that has the minimal flux (sum) under the maximal product yield possible with the

found OptMDF. This step removes unnecessary and thermodynamically irrelevant reactions

and the obtained minimal flux vector thus indicates the truly required reactions in the MDF-

optimal community solution. This flux vector can be optionally further analyzed to determine

the feasible metabolite concentration ranges for the optimal community solution (step 5) and

to identify thermodynamic bottleneck reactions (step 6) in a single-strain representation of the

community solution. As in [31], thermodynamic bottlenecks are defined as those reactions
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where a change of the standard Gibbs free energy alone is enough to further increase the

OptMDF value.

Our implementation of the algorithm uses, for some MILPs, indirect approximation steps

as they turned out to be advantageous and more robust than direct MILP optimizations in

Fig 4. Pseudo-code of the ASTHERISC algorithm. For detailed explanations see text.

https://doi.org/10.1371/journal.pcbi.1009093.g004
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larger models. For example, direct optimization of MDF with the standard OptMDFpathway

MILP algorithm may require several hours to days in a genome-scale community model, even

when using a high-performance computer cluster. However, approximating the OptMDF with

iterative application of OptMDF3 (testing of feasibility with a fixed MDF level) may run in sev-

eral minutes. This can be used to approximate the OptMDF value by iterative refinement of

this value for which a feasible solution can be found (the approximate algorithms stops when a

demanded precision level has been reached). The same is done for maximization of product

yields under a given optimal MDF constraint.

Implementation

The generation of community models in the described forms as well as the application of the

introduced ASTHERISC algorithm are implemented in two separate packages, the CommMo-

delPy and the ASTHERISC package (Fig 5).

CommModelPy. The CommModelPy package can be used to compile multi-strain com-

munity models as described in this study, but it also supports construction of multi-species

community models under balanced growth. While other Python-based program packages

for the generation of communities have been published (including CarveMe [39] and

micom [40]), CommModelPy can create community models with a format required for the

ASTHERISC package (e.g. fixed species fractions and simulations without growth are

allowed). CommModelPy is written in Python and based on the module cobrapy [41]. Among

others it supports the SBML format [42]. Herein we used it with Python in version 3.7 and

cobrapy 0.17.1. CommModelPy is free and open-source and can be retrieved via its GitHub

repository at:

https://github.com/klamt-lab/CommModelPy

Fig 5. Schematic overview of the combined usage of CommModelPy and the ASTHERISC package. Orange boxes

stand for user settings, green boxes for generated or given data files, red boxes for primary program package

dependencies, and blue boxes for the programs themselves.

https://doi.org/10.1371/journal.pcbi.1009093.g005
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The repository also includes a manual and, as a usage example, the CommModelPy-based

scripts for the generation of all multi-strain community models used in this study.

ASTHERISC package

The actual ASTHERISC algorithm with all its subroutines has been implemented in the form

of the ASTHERISC package. As input, it takes a CommModelPy-generated multi-strain com-

munity model from an SBML file and a list of reaction-associated ΔrG00 values from a JSON

file. As output, it generates detailed text reports for which target metabolites OptMDF advan-

tages could be found in a community. The package is written in MATLAB and uses API func-

tions from CellNetAnalyzer [43] and the IBM CPLEX solver. Herein, it was used with

MATLAB 2018a, CellNetAnalyzer 2019.2 and CPLEX 12.9. The ASTHERISC package is free

and open-source and can be found under its GitHub repository:

https://github.com/klamt-lab/astheriscPackage

This repository includes all scripts and detailed report files of the ASTHERISC-based analy-

ses performed in this study.

Results

Application of ASTHERISC to a small example model

We first illustrate our developed ASTHERISC framework with the toy model given in Fig 2.

CommModelPy was used to build a community model. As feasible metabolite ranges, we

assumed 1 M-10 M for all metabolites, except for the external product (Pex) where we demand

a narrower range of 5M-10M so that the product can be synthesized also under higher external

product concentrations (see legend of Fig 2). The application of ASTHERISC successfully

identified the shown community solution in Fig 2, which improves the maximal thermody-

namic driving force as quantified by the OptMDF value. With the single strain, the calculated

OptMDF of the pathway from external substrate to external product had a negative value of

-0.19 kJ/mol and would thus be infeasible. With the found two-strain community solution, the

OptMDF had a positive value of around 0.46 kJ/mol. Hence, in this scenario, the OptMDF is

not only increased; the sign change indicates that the community makes product synthesis fea-

sible at all.

The detailed report generated by ASTHERISC for this example is shown in S3 Text. One

important information provided in this report is which metabolite concentrations differ in the

two strains in the found community solution indicating where a separation in two strains

helps to overcome thermodynamic bottlenecks. To obtain the OptMDF of 0.46 kJ/mol in the

community solution, X must have a lower concentration between 1 M and 1.37 M in strain 1

and a higher concentration range between 3.65 M and 10 M in strain 2. This explains why the

two reactions R2 and R5 had to be separated into strains. Together with the P-exporting reac-

tion R6, which has a low maximal driving force due to the constraint of a high external product

(Pex) concentration, these two reactions were also identified by ASTHERISC as the sole bottle-

neck reactions of the single-strain case.

Applying ASTHERISC to multi-strain community models of E. coli
As a practically relevant case, we apply ASTHERISC to identify multi-strain communities of

on E. coli that could potentially improve the thermodynamic driving force of the production of

metabolites. In total, we considered three different community models. Two of them, ecolicor-
e2double and ecolicore2triple, are based on the EColiCore2 model [44] (a reduced version of

the genome-scale model iJO1366 [45] containing 499 reactions and 486 metabolites).
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ecolicore2double contains two and ecolicore2triple three duplicates of the EColiCore2 network

as strains in the community model. The third community model, iML1515double, contains

two copies of the recently published genome-scale network iML1515 [46]. A detailed descrip-

tion of the construction of the community models, the assignment/computation of ΔrG00, the

used standard exchange reactions and other constraints can be found in S2 Text. In short, as

the main source of ΔrG00, we employed the Python-based eQuilibrator API, which uses the

component contribution method [47]. Reactions, for which no ΔrG00 could be found or calcu-

lated (93 reactions (18%) in EColiCore2 and 646 (24%) in iML1515), were blocked in the

model (rate fixed to zero) to avoid the calculation of thermodynamically infeasible solutions

when leaving these ΔrG00 unconstrained. Glucose was used as substrate and its uptake rate was

fixed to 1 mmol/(gDW�h) (this is only made for technical reasons; it does not change the

results since all solutions are scalable). No other flux bounds were set and since growth was

not considered this allows use of identical biomass fractions for all involved strain (50% in

two-strain communities and 33% in three-strain communities). The three community models

were built with CommModelPy and can be found as SBML files in the mentioned GitHub

repositories.

With the reduced set of active reactions (due to some missing ΔrG00) and with a demanded

minimal product yield of 10−6 (to prevent potential numeric problems), there were 161 pro-

ducible target metabolites in the EColiCore2-related community models and 254 in

iML1515double. For each of the producible target metabolites, we considered in each of the

three community models 8 different scenarios resulting from four different yield thresholds

(40%, 60%, 80% and 98% of the maximal yield of the target metabolite) and two different

bounds for the maximal number of (extra) exchange reactions (an infinite or a maximal num-

ber of 9 extra exchanges). Hence, 24 scenarios are considered in total. To exclude solutions

with just marginal MDF improvements, we demanded a minimal community MDF advantage

of 0.2 kJ/mol and a positive OptMDF value was demanded for the community (not for an asso-

ciated single-strain) solution in order to get thermodynamically feasible results.

For all 24 scenarios, ASTHERISC could find a wide range of target metabolites where a

community was able to provide a pathway with a higher OptMDF than a single strain (for a

complete listing of all results see the report files in the ASTHERISC package’s repository). The

percentage of producible metabolites for which an advantage could be found in the commu-

nity ranged from 15.75% up to 40.55% (Table 1). In most cases, as expected, limiting the maxi-

mal extra exchanges to 9 reduces the number of found improvements compared to the case

with unlimited exchanges. Since the computation was stopped for several metabolites due to

MILP timeouts (especially in the genome-scale community model), the percentages given for

the different scenarios should be seen as lower bound of possible improvement percentages.

The OptMDF advantages of community solutions compared to single-strain solutions ran-

ged from 0.22 kJ/mol (just over the demanded minimal MDF advantage of 0.2 kJ/mol) up to

Table 1. Percentage (and absolute number) of all producible target metabolites for which ASTHERISC found a higher optimal MDF in a multi-strain community

compared to a single-strain model. Note that only those communities were considered, where the MDF was at least 0.2 kJ/mol higher than in the single-strain model.

Model (number of allowed extra exchanges) Demanded minimum product yield (% of maximum yield)
40% 60% 80% 98%

ecolicore2double (9) 22.36% (36) 21.74% (35) 21.12% (34) 21.12% (34)

ecolicore2double (infinite) 23.6% (38) 35.4% (57) 27.95% (45) 31.06% (50)

ecolicore2triple (9) 21.12% (34) 19.88% (32) 17.39% (28) 19.25% (31)

ecolicore2triple (infinite) 19.25% (31) 31.06% (50) 27.33% (44) 29.81% (48)

iML1515double (9) 17.72% (45) 15.75% (40) 21.26% (54) 25.59% (65)

iML1515double (infinite) 18.5% (47) 20.08% (51) 25.59% (65) 40.55% (103)

https://doi.org/10.1371/journal.pcbi.1009093.t001
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7.26 kJ/mol, while the mean MDF advantages range from 0.64 kJ/mol to 2.0 kJ/mol for ecoli-
core2double and ecolicore2triple and from 0.91 kJ/mol to 1.94 kJ/mol for iML1515double
(Table 2). Interestingly, the highest MDF improvements occur when high product yields are

demanded. This indicates that low-yield pathways in the single strain might have high MDFs

which are more difficult to improve by a community solution. We also found some solutions

in which the MDF of the single strain is negative and in the community positive, hence, where

product synthesis becomes thermodynamically feasible at all in the community (similar as in

the toy model scenario in Fig 2). This was the case for 7 metabolites in all runs with a yield

threshold of 98% with ecolicore2double and ecolicore2triple, and for 3 metabolites in all runs

with iML1515double.
Next, we analyzed how many metabolite exchanges were used in the found community

solutions (Table 3). For the scenario with a limited number of (extra) exchanges, it should be

noted that a maximum of 9 active exchange reactions in a community with two strains corre-

spond to an exchange of maximal 4 metabolites between the two strains: 4 exchange reactions

from strain 1 for export/import of metabolites and 4 reactions of strain 2 for import/export of

the same 4 metabolites plus the export of the target product by one of the two strains. The

number of used metabolite exchanges per target metabolite solution ranged from 1 (in those

cases, default metabolite exchanges were typically used between the strains which are not

counted as extra exchanges) up to 51.

Some metabolites occur with high frequency as exchange metabolites in the found solu-

tions. For example, glycerol3-phosphate, (glyc3p), fructose-6-phosphate (f6p) and oxaloacetate

(oaa) are top-ranked exchange metabolites in ecolicore2double and ecolicore2triple while dihy-

droxyacetone (dha), L-aspartate (asp__L) and acetaldehyde (acald) are often contained in solu-

tions for iML1515double. Most of the top-ranked exchange metabolites are involved in the

glycolysis or in pathways directly connected to glycolysis indicating central thermodynamic

bottlenecks relevant for the production of many target metabolites.

Table 2. Statistics about OptMDF advantages (in kJ/mol) with communities for each of the 24 scenarios. The

given numbers stand for the minimal/mean/maximal OptMDF advantage.

Model (number of allowed extra exchanges) Demanded minimum product yield (% of maximum yield)
40% 60% 80% 98%

ecolicore2double (9) 0.32/0.94/2.76 0.2/0.64/3.13 0.29/0.67/3.24 0.27/2.0/5.49

ecolicore2double (infinite) 0.32/1.29/3.42 0.26/1.02/5.07 0.22/1.04/5.07 0.23/1.77/6.28

ecolicore2triple (9) 0.32/0.83/2.76 0.22/0.63/3.03 0.29/0.7/3.24 0.5/1.85/5.49

ecolicore2triple (infinite) 0.29/1.42/3.42 0.26/1.09/4.71 0.22/0.93/4.71 0.23/1.81/6.28

iML1515double (9) 0.26/0.92/2.95 0.33/1.0/2.79 0.23/0.93/2.66 0.22/1.58/5.55

iML1515double (infinite) 0.26/0.97/3.04 0.26/0.91/2.79 0.3/0.91/2.64 0.22/1.94/6.04

https://doi.org/10.1371/journal.pcbi.1009093.t002

Table 3. Statistics about the number of used extra exchanges in solutions with a community OptMDF advantage for each of the 24 scenarios analyzed. The given

numbers stand for the minimal/mean/maximal number of used extra exchanges.

Model (number of allowed extra exchanges) Demanded minimum product yield (% of maximum yield)
40% 60% 80% 98%

ecolicore2double (9) 3/5.39/8 4/6.34/7 4/6.41/9 3/6.03/9

ecolicore2double (infinite) 3/16.66/29 7/15.88/31 6/13.76/29 8/15.88/41

ecolicore2triple (9) 3/4.47/7 3/5.88/7 4/5.89/7 3/5.29/9

ecolicore2triple (infinite) 3/18.13/38 3/14.8/36 5/13.36/34 4/16.83/51

iML1515double (9) 1/5.18/7 3/5.05/9 1/5.11/9 2/5.14/9

iML1515double (infinite) 3/15.28/33 3/14.16/27 3/14.11/37 3/14.34/28

https://doi.org/10.1371/journal.pcbi.1009093.t003
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Coinciding with the dominant extra exchange reactions, a few discrete MDF values are

often dominating for each scenario. In particular, if target metabolites are closely located in

the metabolic network, then their corresponding community solutions have often the same

associated OptMDF value as they share the same metabolic bottleneck for their production.

Some of these dominant MDF values occurred in all analyzed models. This might indicate that

a small set of central bottleneck reactions is thermodynamically constraining a large set of pos-

sible solutions.

Community solution example

To discuss one representative solution as an example, we selected the production of 3-Deoxy-

D-manno-octulosonate 8-phosphate (kdo8p) in ecolicore2double with a demanded minimal

product yield of 98% of the maximum yield (0.74775 mol kdo8p per mol glucose) and with an

allowed maximum of 9 extra exchanges. The last step of kdo8p synthesis is catalyzed by the

kdo8p synthase (KDOPS), which has been evaluated as a potential antibiotics target [48]. In

the following, the two designed strains within the ecolicore2double community model will be

denoted by “ecoli1” and “ecoli2”, respectively. The report delivered by ASTHERISC for kdo8p

can be found in S4 Text.

With the given constraints, an OptMDF of 2.27 kJ/mol can be reached for the production of

kdo8p from glucose with a single strain. In the community solution found by ASTHERISC, the

MDF value can be increased by 26% up to 2.87 kJ/mol reaching a yield of 0.73311 mol/mol,

which is just 0.04% higher than the demanded minimal yield. While the single-strain solution

uses 42 reactions (thereof 14 standard exchange reactions for glucose, water, etc.), the community

requires 66 reactions, thereof 22 exchange reactions, 28 internal reactions in ecoli1 and 16 reac-

tions in ecoli2. 17 of the 22 exchange reactions are standard exchanges and four extra exchange

reactions are used for metabolite exchanges between ecoli1 and ecoli2 (Fig 6): two for the

exchange of dihydroxyacetone (dha) from ecoli1 to ecoli2, two for the exchange of 6-Phospho-D-

gluconate (6pgc) from ecoli2 to ecoli1 and one for the secretion of kdo8p to the environment.

To understand why this community solution leads to an MDF advantage, it is helpful to

look at the three thermodynamic bottleneck reactions for kdo8p synthesis in the MDF-optimal

single-strain solution (Fig 6). These three connected reactions (shown in red in Fig 6), which

all occur in the upper glycolysis, are (1) the fructose-bisphosphate aldolase reaction (FBA;

ΔrG00 = 22.4 kJ/mol) producing glyceraldehyde 3-phosphate (g3p) and dihydroxyacetone

phosphate (dhap) from D-fructose 1,6-bisphosphate (fdp), (2) the triose-phosphate isomerase

reaction (TPI; ΔrG00 = 5.6 kJ/mol) converting dhap to g3p, and (3) the glyceraldehyde-3-phos-

phate dehydrogenase reaction (GAPD; ΔrG00 = 4.6 kJ/mol) where g3p is converted to 3-phos-

pho-D-glycerol phosphate (13dpg). As already pointed out in [30] and [31], these three

reactions form a distributed thermodynamic bottleneck as they all have unfavorable thermo-

dynamics to operate in forward direction (positive ΔrG00) and conflicting needs regarding the

g3p concentration since the FBA and TPI reactions thermodynamically benefit from a lower

and the GAPD reaction from a higher g3p concentration. There is also a fourth associated bot-

tleneck reaction, the symporter-assisted uptake of phosphate into the cytosol (PIt2rpp) with a

ΔrG00 of 0 kJ/mol, which delivers the phosphate needed in the GAPD reaction. For the sake of

simplicity, it was not included in Fig 6. The optimal adjustment of metabolite concentrations

in the single strain allows a maximum MDF value of 2.27 kJ/mol and changing the concentra-

tion, e.g. of g3p, will inevitably lead to an increase of the ΔrG0 of at least one reaction and thus

to a decrease of the MDF.

In the community solution, the bottleneck is resolved as follows (Fig 6): In order to produce

kdo8p through the reaction KDOPS (kdo8p synthase), both phosphoenolpyruvate (pep) and

PLOS COMPUTATIONAL BIOLOGY Designing microbial communities to maximize the thermodynamic driving force

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009093 June 15, 2021 16 / 25

https://doi.org/10.1371/journal.pcbi.1009093


Fig 6. Excerpt of selected central reactions of the MDF-optimal single-species and community solution for kdo8p synthesis. Black arrows indicate

active reactions, dashed arrows indicate a sequence of active reactions, and the blue triangles indicate increased or decreased metabolite concentrations of

a strain in the community relative to the other strain. The shown ΔrG0 and ΔrG00 values have all unit kJ/mol. The ΔrG0 values are taken from the specific

MDF-optimal solution delivered by ASTHERISC. The red ΔrG0 values indicate thermodynamic bottlenecks, i.e., reactions whose ΔrG0 is fixed under the

optimal MDF (and corresponds to the negative value of the OptMDF) All black ΔrG0 values are variable under the given OptMDF. All reaction and

metabolite identifiers are based on the definitions in the BiGG database [49].

https://doi.org/10.1371/journal.pcbi.1009093.g006
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D-arabinose 5-phosphate (ara5p) are needed as substrate. In the single strain solution, pep is

produced using the glycolysis, thus requiring the bottleneck reactions FBA, TPI and GAPD.

ara5p is produced through reactions which do not pose a bottleneck, using a pathway via

6-phospho-D-gluconate (6pgc). In the community solution, the bottleneck triangle of the

FBA, TPI and GAPD reactions is resolved by separating the occurrence of the g3p-using

GAPD reaction into ecoli1 and the g3p-producing FBA and TPI reactions into ecoli2, thus

omitting the conflicting needs of g3p. This is achieved in the following way: (1) ecoli1 concen-

trates on pep synthesis, thereby omitting parts of the upper glycolysis by using the fructose

6-phosphate aldolase reaction (F6PA), which has f6p as a substrate and dihydroxyacetone

(dha) and g3p as products. g3p is further processed using GAPD, and dha is secreted and

taken up by ecoli2 for further processing (see below). With a higher concentration of f6p, a

higher and thermodynamically more favorable concentration (compared to the single-strain

solution) of g3p is achieved in ecoli1, so that the ΔrG0 value of the GAPD reaction can be low-

ered (and thus the MDF be increased) in the community solution. Furthermore, a higher f6p

concentration also requires an increased D-glucose 6-phosphate (g6p) concentration since f6p

is produced from it using the glucose-6-phosphate isomerase reaction (PGI). (2) ecoli2 con-

centrates on the production of 6pgc from dha. In a first step, the reverse F6PA reaction is used

to produce f6p from dha and g3p. While dha is provided from ecoli1, the required g3p is recy-

cled from a portion of the produced f6p via the g3p-producing reactions FBA and TPI. Due to

the very negative ΔrG00 of the reverse F6PA reaction, low concentrations of dha and g3p can be

used in ecoli2 resulting in a more negative ΔrG0 of the FBA and TPI reactions. The second half

of f6p is used to synthesize 6pgc via the (reverse) PGI, G6PDH2r and PGL reactions. In order

to make all these reactions work with low ΔrG0 (resulting in high MDF), the concentrations of

dha, f6p, g6p and, as mentioned before, of g3p are reduced compared to ecoli1. The three reac-

tions on the pathway from f6p to 6pgc still reach sufficient thermodynamic driving force

because of the very negative ΔrG00 of these reactions. (3) The 6pgc produced by ecoli2 is then

secreted and taken up by ecoli1and further processed via two pathways to synthesize pep and

D-arabinose 5-phosphate (ara5p), the two precursors of kdo8p. pep is produced via g3p and

pyruvate (pyr) using Entner-Doudoroff pathway reactions, including the 6-phosphogluconate

dehydratase reaction (EDD) with a very low ΔrG00 of -42.8, which allows the concentrations of

the affected metabolites to be more variable in order to obtain a high MDF. Note that, in

ecoli1, some additional amount of pep is produced via glycolytic reactions from g3p using, for

example, the GAPD reaction (Fig 6). The other precursor ara5p is synthesized via the two reac-

tions GND and A5PISO. Finally, ara5p and pep are used by KDOPS to produce kdo8p, which

is then secreted into the environment. It has to be mentioned that more reactions are involved

in the single-strain as well as in the multi-strain solution to obtain a stoichiometrically bal-

anced flux (not displayed in Fig 6). These reactions are required, for example, to balance cofac-

tors (ATP, NAD(P)H) produced or consumed along the sketched pathways, however, they are

not critical for the respective MDF.

Overall, the community solution follows the basic principle of the toy model (Fig 2):

through a suitable partitioning (and partially complementation) of the pathway from glucose

to the target product kdo8p in the two strains, critical metabolite concentrations (in this exam-

ple, dha, f6p, g3p and gp6 as indicated in Fig 6) can be maintained with different levels in

ecoli1 (high concentrations) and ecoli2 (low concentrations), thereby reaching more negative

ΔrG0 for the bottleneck reactions and thus a higher overall MDF. This can also be seen by the

feasible concentrations ranges of the critical metabolites in ecoli1 and ecoli2 which maintain

the OptMDF of 2.87 KJ/mol (Table 4). These metabolites, which occur in the bottleneck reac-

tions of the single-strain solution, have no overlapping concentration ranges between ecoli1

and ecoli2 showing that the given community solution indeed cannot be reached in a single
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strain. Interestingly, the community solution has in turn new thermodynamic bottlenecks,

again involving the reactions FBA, TPI and GAPD. Those might be further resolved by using a

community with more than two strains. However, the corresponding kdo8p solution with eco-
licore2triple does not provide a higher OptMDF in the community, indicating that more than

three species might be needed in order to achieve a further MDF advantage.

Run time

For all calculations we used a high-performance computer cluster comprising, for each of its

nodes, 192 GB working memory and two processors each including eight cores with a stan-

dard clock rate of 2.1 GHz. Each of the mentioned 24 scenarios was running on its own node.

The resulting run times for the scenarios (cumulated for all producible target metabolites) ran-

ged from 1.63 days (ecolicore2double with a minimal yield factor of 98% and 9 maximal extra

exchanges) up to 4.54 days (iML1515double with a minimal yield factor of 80% and 9 maximal

extra exchanges).

Discussion

In this study we presented ASTHERISC, a new algorithm for designing multi-strain microbial

communities that maximize the thermodynamic driving force of product synthesis with a

given production host. The key methodological approach behind ASTHERISC is to compart-

mentalize certain segments of the product pathway via different strains and to allow an

exchange of intermediates between these strains such that the overall product synthesis path-

way through the involved strains may reach a higher thermodynamic driving force than in the

single strain. While the set of active reactions in the different strains can overlap, using more

than one strain adds degrees of freedom with respect to the achievable MDF because the

metabolite concentrations may differ between the strains. In this way, thermodynamic bottle-

necks, which may arise when operation of one reaction requires a metabolite with high

and operation of another reaction the same metabolite with a low concentration, can be

circumvented.

In recent years, microbial consortia and their potential for biotechnological production

processes have attracted much attention. However, although several single-species (multi-

strain) communities with essential metabolic dependencies between the strains have been con-

structed and analyzed, there are still only few methods available for an automated design of

communities with superior properties [5], with FLYCOP [50] and DOLMN [17] as two partic-

ular examples. Here, ASTHERISC adds a new class of such algorithms which is driven by a

thermodynamic principle. The recently presented DOLMN approach [17], which searches for

an optimal partitioning of a species’ metabolism when limiting the number of reactions per

strain, shares some similarities with ASTHERISC. However, to the best of our knowledge, a

design of microbial communities with the goal to optimize the thermodynamic feasibility of

production of a target metabolite has not been addressed before.

Table 4. Concentration ranges of critical metabolites in the ecolicore2double community solution for kdo8p synthesis with optimal MDF. The concentration ranges

do not overlap between the two strains.

ecoli1 ecoli2

Minimum [mmol/l] Maximum [mmol/l] Minimum [mmol/l] Maximum [mmol/l]

dha_c 0.59826 0.59905 0.058969 0.059048

f6p_c 0.37078 0.37128 0.001 0.0010027

g3p_c 0.32482 0.32525 0.090047 0.090286

g6p_c 19.973 20 0.0019629 0.053238

https://doi.org/10.1371/journal.pcbi.1009093.t004
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The application of our algorithm to a metabolic core and a genome-scale model of E. coli
revealed that there is indeed a significant number of metabolic products where a multi-strain

community of E. coli may provide higher thermodynamic driving forces. These communities

may be an effective way to enhance or even enable the synthesis of certain metabolic products.

ASTHERISC, together with the developed software packages, provides an automatable way to

identify such beneficial communities consisting of multiple strains of one species. However,

while the found solutions demonstrate that higher thermodynamic driving forces may be gen-

erated with specifically designed communities, significant effort will be needed for their practi-

cal realization. First of all, designing those strains will require the deactivation of certain

metabolic reactions (e.g. through gene knockouts) according to the found community solu-

tion. Finding suitable knockout strategies that leave only the relevant pathway segments active

in the respective strains can be computed by dedicated strain design algorithms, e.g. based on

minimal cut sets [51]. Implementing the respective gene knockout strategies may lead to

unstable strains or even prevent growth. While the (stoichiometric) feasibility of growth may

be demanded when computing the respective intervention strategies, it might be more practi-

cal to use two-stage processes, where the strains can first grow before a pure production phase

is initiated (e.g. via dynamic metabolic switches [52,53]). This also circumvents possible limita-

tions in the MDF of the production pathway when growth and production are coupled (in our

calculations we focused on optimal pathway partitioning for pure product synthesis and did

not consider feasibility of growth).

Next, transport of exchange metabolites between the strains must be faciitated (e.g. via over-

expression of dedicated transport systems). Transport systems are only available/known for a

subset of metabolites and solutions involving only few exchanges may thus be preferred. How-

ever, many of the found community solutions for different products use similar sets of exchange

metabolites. Hence, once suitable transporter mechanisms have been discovered or implemented

for these metabolites, a larger number of strain designs may become feasible. As another aspect

for metabolite transport, it was assumed for all exchange reactions that a concentration gradient

must exist between the cellular and the external compartment, however, transport costs, e.g.

energy consumption to actively transport a metabolite over the membrane, were not explicitly

considered (except for transporters already included in the base model). These overhead costs

may have adverse effects on product yields and also abolish the MDF advantage of a community

solution. To test the sensitivity of the latter when introducing energy costs for metabolite trans-

port, we reran all calculations in a variant of the ecolicore2doublemodel, where each introduced

(extra) metabolite exchange consumes 1/3 ATP per transported metabolite molecule. Although

there are few specific changes in the set of metabolites where an MDF advantage can be found,

we did not find larger changes in the overall percentage of metabolites with MDF advantage in a

community. In fact, export of the (end) product does then also require ATP in the single-strain

solution, which may lead to a change in the structure of the active network possibly favoring a

solution in the community. The associated scripts and result files can be found in the already

mentioned GitHub repositories of CommModelPy and the ASTHERISC package.

Another issue for realization of a calculated community design is the long-term stability of

the community, which may require genetic methods and general principles as developed in

[54] and, more recently, [9]. Finally, reaching the computed maximal thermodynamic driving

forces for the communities also demands that the metabolite concentrations are within the

respective ranges required for the optimal MDF and it is not per se clear whether this will be

the case or can be adjusted by suitable selection mechanisms. It thus remains to be shown that

the computed communities may constitute an economically relevant enhancement. However,

it should be noted that many of the discussed difficulties are relevant for the implementation

of any (computed) synthetic community.
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The ASTHERISC runs in the example calculations of this study were stable. Potential numeri-

cal problems arising due to precision tolerances of the MILP are partially directly prevented or

detected and handled by our implementation. For example, “fake community solutions” delivered

by the solver, where effectively only one strain is used, are detected and disregarded. It should also

be noted that the set computational time limits may affect the results. This can be seen in the

reduced MDF advantage percentages with ecolicore2triple compared to ecolicore2double (Table 1),

where the MDF advantage in ecolicore2triple should be at least as high as in ecolicore2double as

the former should implicitly contain all two-strain solutions. This effect arose due to MILP time

limits which were more likely to be reached in the larger model. Nevertheless, the runs of the

ecolicore2triple community model clearly showed that a larger number of strains may increase the

overall community advantage. Finally, the calculations with the iML1515doublemodel demon-

strated that our implementation of the ASTHERISC algorithm can be applied to genome-scale

models with a reasonable runtime. Indeed, comparing the found solutions for ecolicore2double
and iML1515double indicates that, for some metabolites, other MDF-optimizing pathways may

be found in a genome-scale model, although they may involve more uncommon pathways (with

possibly lower capacity) than in the solutions found in the core model.

The results obtained with ASTHERISC also depend on the used settings (e.g. demanded

minimum MDF advantage and minimum product yield) and the calculations involve partially

uncertain parameters or assumptions (e.g. the metabolite concentration ranges or the ΔrG00

calculated with the eQuilibrator method [47]). However, the calculations can be easily repeated

with alternative values if these are considered to be more relevant or evident. Furthermore, the

developed CommModelPy and ASTHERISC packages are programmatically independent

from the used models and can thus be readily applied for the generation and study of other sin-

gle-species. Although not yet tested, ASTHERISC could also be used with multi-species com-

munities, for example, to test which product synthesis pathway (with associated metabolite

exchanges) in a multi-species community leads to the highest MDF and whether this MDF is

superior over a potentially existing single-species pathway. Finally, we also anticipate useful

applications of the ASTHERISC method for finding suitable compartmentalization strategies

maximizing thermodynamic driving forces in cell-free production systems.

Community design by ASTHERISC exploits the fact that having multiple strains allows

adjustment of different metabolite concentrations in the different strains. While ASTHERISC

uses this degree of freedom for maximizing the thermodynamic driving force, future work

could seek to directly maximize the product synthesis rate in the community by finding a path-

way partitioning (again with specific metabolite concentrations in each strain) such that,

under consideration of kinetic rate laws, the overall product flux is optimized. Ideally, if a

kinetic model of the (central) metabolism would be available one could directly search for

such an optimal solution. For example, if we would have a simple kinetic model of the toy net-

work in Fig 2, it would most likely suggest to split the pathway in the same way as was done via

the thermodynamic principles to maximize the pathway flux. However, a kinetic approach

would also allow the consideration of saturation effects, allosteric regulations (e.g. feedback

inhibition of the first reaction by intermediate or end metabolites of the pathway) or of

resource (enzyme) allocation constraints. Since predictive kinetic models are often not avail-

able, it needs to be investigated whether other approaches requiring less information (e.g.

based on kcat or Km values [55,56]) may already suggest useful solutions.

Supporting information

S1 Text. Proof showing that division of labor cannot increase the product synthesis

flux compared to a single-strain solution for arbitrary pathways and kinetics (under
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assumption of constant metabolite concentrations in the strains).
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S2 Text. Detailed description of configuration of the single-strain models and the derived

multi-strain community models of E. coli.
(PDF)

S3 Text. The ASTHERISC package text report generated for the toy model.
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S4 Text. The ASTHERISC package text report generated for the discussed community

solution example for kdo8p synthesis with ecolicore2double.
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5. Garcı́a-Jiménez B, Torres-Bacete J, Nogales J. Metabolic modelling approaches for describing and

engineering microbial communities. Computational and Structural Biotechnology Journal. 2021;

19:226–46. https://doi.org/10.1016/j.csbj.2020.12.003 PMID: 33425254
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