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The linear framework uses finite, directed graphs with labelled edges to
model biomolecular systems. Graph vertices represent biochemical species
or molecular states, edges represent reactions or transitions and labels
represent rates. The graph yields a linear dynamics for molecular concen-
trations or state probabilities, with the graph Laplacian as the operator,
and the labels encode the nonlinear interactions between system and
environment. The labels can be specified by vertices of other graphs or by
conservation laws or, when the environment consists of thermodynamic
reservoirs, they may be constants. In the latter case, the graphs correspond
to infinitesimal generators of Markov processes. The key advantage of the
framework has been that steady states are determined as rational algebraic
functions of the labels by the Matrix-Tree theorems of graph theory. When
the system is at thermodynamic equilibrium, this prescription recovers equi-
librium statistical mechanics but it continues to hold for non-equilibrium
steady states. The framework goes beyond other graph-based approaches
in treating the graph as a mathematical object, for which general theorems
can be formulated that accommodate biomolecular complexity. It has been
particularly effective at analysing enzyme-catalysed modification systems
and input–output responses.
1. Introduction
The linear framework is a graph-based approach to biochemical reaction net-
works [1–3] that arose from studying post-translational modification systems
at steady state [4,5]; for reviews, see [6,7]. When it can be deployed, the frame-
work enables a nonlinear biochemical reaction network based on mass-action
kinetics to be decomposed into a coupled set of graphs, each of which has a
linear dynamics, from which the name ‘linear framework’ is derived. The
linear operator is given by the Laplacian matrix of the graph. The main value
of the framework has been in giving mathematical access to the steady states
of a network as rational algebraic functions of the parameters. This rational
algebraic approach has been particularly useful in analysing enzyme-catalysed
biochemical networks, such as post-translational modification systems, [4,8–11],
and also input–output responses, which arise in several domains, including bio-
chemistry, gene regulation and pharmacology, [7,12–18].

The language of graphs allows essential biological requirements to be speci-
fied while leaving other details implicit in the structure of the graph. The
framework thereby offers a way to derive general theorems that can rise
above the overwhelming molecular complexity that confronts us in modern
biology [4,13,16,19]. An example is the rational parametrization theorem for
multisite post-translational modification systems, described in §3, which
shows that the steady state of such a system is rationally determined just by
the enzymes, independently of the number of sites of modification. Despite
such successes, the range of applicability of the framework to biochemical
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reaction networks remains unclear. We will return to this
question in the Discussion once we have seen the framework
in action.

The case of a single graph coupled to reservoirs of chemi-
cal potential corresponds to a continuous-time, finite-state
Markov process for which the linear Laplacian dynamics is
the master equation [2]. The linear framework thereby
offers a graph-based approach to Markov processes. This
Markovian interpretation allows thermodynamic concepts
like entropy to be specified within the framework, which
reduces to equilibrium statistical mechanics for systems at
thermodynamic equilibrium. However, importantly, it
also provides a setting in which non-equilibrium statistical
mechanics is exactly solvable in rational algebraic form (§4).
Despite important progress in non-equilibrium physics,
the subject remains much less developed than its equilibrium
counterpart. The role of energy expenditure in informa-
tion processing has been particularly elusive and the
linear framework offers ways to approach this problem
[7,12–14,20–22]. Among the insights to have emerged are
that of the ‘Hopfield barrier’ for an information processing
task and the identification of the widely used Hill
function as the Hopfield barrier for the sharpness of an
input–output response [14] (§5).

The mechanisms discussed here provide some of the
underpinnings for the study of biological decision-making
and time keeping, the subjects of the theme issue in which
this paper appears. Post-translational modification systems
are found in most biological processes. The pioneering
study by Goldbeter and Koshland of a cycle of modification
and demodification (§3) provided one of the earliest
examples of a molecular switch that can participate in
decision-making [23]. The methods described here show
how the characteristics of such switches can be understood
in terms of the properties of the constituent enzymes (§3).
As for input–output responses, they are often convenient
ways to summarize the function of mechanisms for which
some degree of sharpness is required. Sharpness is often a
necessary requirement for the dynamical bistability that
may underlie a decision or for the instability that gives rise
to a limit cycle oscillation. Hill functions are frequently
used to introduce such sharpness in mathematical
models (e.g. [24,25]). However, the Hill functions have
always lacked rigorous justification, having been originally
introduced only as a convenient mathematical family for fit-
ting data [26]. Our results give them, for the first time, a
biophysical justification and clarify the conditions under
which they can arise biologically (§5).

The sections that follow describe these developments in
more detail, drawing in part on recent unpublished work.
We follow here the perspective set out in [27], that mathemat-
ical models in biology are not descriptions of reality but,
rather, accurate descriptions of our (pathetic) assumptions.
Hopefully, the assumptions are reasonable in the light of cur-
rent biological knowledge and of the questions being asked.
Having made those assumptions transparent, we try to
show how the resulting conclusions are useful for under-
standing biology. We will also point out some of the open
questions and unexplored directions that arise.

The results described here are distributed across papers
on a variety of topics, with many of the details buried in sup-
plementary material. We are most grateful to John Tyson and
Tim Holt for the opportunity to bring this material together.
We hope that what follows will be useful in introducing read-
ers to the capabilities of the linear framework and to some of
the open questions that arise from this approach.
2. Laplacian dynamics and the Matrix-Tree
theorems

We introduce the framework here and outline some of the
basic results that provide the foundation for the applications
described in subsequent sections. The framework is based on
finite, simple, directed graphs with labelled edges. (A simple
graph has no more than one directed edge from one vertex to
another and has no self loops.) An example graph is shown in
figure 1a. Let G denote a linear framework graph. The ver-
tices of G correspond to molecular entities or states and are
usually indexed 1,…, N, where N is the number of vertices.
The edges correspond to reactions or transitions and are
denoted i→ j. The labels correspond to rates, with dimen-
sions of (time)−1, and are denoted ℓ(i→ j ). The labels are
particularly significant: they can be algebraic expressions
which encode the potentially time-dependent interactions
between the system described by the graph and its surround-
ing environment. It is the labels which thereby incorporate
the nonlinearity that is usually present. In this section, how-
ever, the labels will be treated as abstract parameters, as in
k1,…, k9 in figure 1a. We will explain how labels are
interpreted in §3.

A linear framework graph gives rise to a dynamics which
is most simply explained as one-dimensional chemistry: each
edge is treated as a chemical reaction under mass-action kin-
etics with the edge label as the rate constant. Since each edge
has only one source vertex, the dynamics must be linear and
is therefore described by a matrix equation,

duðtÞ
dt

¼ LðGÞ � uðtÞ: ð2:1Þ

Here, LðGÞ is the so-called Laplacian matrix of G, of size N ×N,
and u(t) is the time-dependent N × 1 column vector of vertex
‘concentrations’. These may be actual concentrations if the
vertices represent molecular entities or they may be probabil-
ities if the vertices represent molecular states; we will take
advantage of both interpretations below. The 4 × 4 Laplacian
matrix of the example graph in figure 1a is shown in figure 1b.
Since the chemistry simply moves matter around the graph,
without creating or destroying it, there is an obvious conser-
vation law,

u1ðtÞ þ � � � þ uNðtÞ ¼ utot: ð2:2Þ
Equation (2.2) corresponds in matrix terms to the column
sums of LðGÞ being zero (figure 1b), or 1T � LðGÞ ¼ 0, where
1 denotes the all-ones column vector and AT denotes the
transpose of matrix A. LðGÞ is a singular matrix and has 0
as an eigenvalue. (We try to keep the notation as light as
possible, leaving it to the context to disambiguate the mean-
ing where necessary. If we need to, we will use brackets, as in
utot(G), or a subscript, as in i→ G j, to specify which graph is
being discussed.) Synthesis and degradation of matter can be
accommodated within the graph [1] and some of the conse-
quences are explored in [3].

Laplacian matrices for various kinds of graphs have been
widely studied, often with different orientations, signs and
scalings [28]. They can be seen from one perspective as
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Figure 1. Linear framework graph, Laplacian matrix and spanning trees. (a) A strongly connected linear framework graph on four vertices, indexed by 1,…, 4, with
symbolic edge labels, k1,…, k9. (b) The Laplacian matrix corresponding to the graph in (a). (c) Example spanning forests of the graph in (a), demarcated by
magenta edges, whose source and target vertices belong to the forest, with root sets (cyan) {4}, {1, 4}, {1, 3, 4} and {1, 2, 3, 4}, reading from left to right.
(d ) All eight spanning trees (magenta edges) rooted at vertex 1 (cyan) for the graph in (a), with the corresponding monomial from the MTT in equation
(2.4) given below.
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discrete approximations to the Laplace–Beltrami operator on
a Riemannian manifold [29], so that equation (2.1) resembles
a discrete-space diffusion equation. Another interpretation is
that equation (2.1) is the master equation of a continuous-
time, finite-state Markov process. In this case, the linearity
is to be expected, rather than being the consequence of
what looks like a rather trivial chemistry. We will explore
this stochastic interpretation of equation (2.1) and its thermo-
dynamic implications in §4, after we have looked into the
labels in §3.

The framework was introduced to study timescale separ-
ation, in which the system under study is assumed to have
reached a steady state and one wants to simplify its behav-
iour accordingly [1]. This is an old technique in physics and
it enters biology in the work of Michaelis & Menten [30].
Since equation (2.1) is linear, it is seemingly easy to solve ana-
lytically but this is not straightforward to do in terms of the
edge labels, for instance by using eigenvalues. Instead, we
can exploit graph theory in the form of the Matrix-Tree Theo-
rems. First, note that a steady state of equation (2.1), u*, must
be in the kernel of the Laplacian, u� [ kerLðGÞ. If G is
strongly connected then it is not hard to show that this
kernel is one dimensional [1],

dim kerLðGÞ ¼ 1: ð2:3Þ
Recall that a graph is strongly connected if, given any ordered
pair of distinct vertices, (i, j ), there is a path of directed edges
from i to j,

i ¼ i1 ! i2 ! � � � ! ik�1 ! ik ¼ j:

The example in figure 1a is strongly connected but ceases to
be if the edges 1→ 2 and 1→ 3 are removed. Strong connec-
tivity depends only on the structure of the graph, which is
to say its vertices and edges alone; it is independent of the
edge labels. The non-strongly connected case is well under-
stood [2] but we will not need it here.
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Despite its simplicity, equation (2.3) is the nub of what
follows here. To set up an initial condition, there are as
many degrees of freedom for distributing matter among
the vertices of the graph as there are vertices. However, the
one-dimensional chemistry of the Laplacian dynamics
(equation (2.1)) ensures that, when the graph is strongly con-
nected, there is only a single degree of freedom left in the
steady state (equation (2.3)). The steady state forgets the
initial conditions but remembers the graph. The essential sub-
sequent step is to determine the steady state in terms of the
edge labels, which is where the Matrix-Tree Theorems come
into play.

The Matrix-Tree Theorems reveal a remarkable property
of Laplacian matrices: their minors—the determinants of
the square submatrices obtained by removing equal-sized
subsets of rows and columns—can be expressed in terms of
spanning forests of G. A spanning forest, F, is a subgraph of
G which contains all vertices in G (spanning), has no cycles
when edge directions are ignored (forest) and for which
each vertex has at most one outgoing edge (which orients
the forest). Examples are shown in figure 1c. A spanning
forest depends only on the structure of a graph. The vertices
of F with no outgoing edges are called roots. If a forest has
only one root, it is a tree, so that forests are disjoint unions
of trees! Let ν(G) = {1,…, N} denote the vertex set of G. If
; = U # nðGÞ, let FUðGÞ be the set of spanning forests of G
that are rooted at U. If G is strongly connected, then it is
easy to see that FUðGÞ = ;. The classical First-Minors MTT
goes back to Gustav Kirchhoff [31], although the version for
labelled directed graphs first appears in Bill Tutte’s PhD
thesis [32]; for a statement and proof, see [2]. The All-
Minors MTT first appeared in the Czech mathematical litera-
ture [33] but independent proofs have been given in
English (e.g. [34]). These sources give the full statements.
We will focus here on using the First-Minors MTT (hereafter,
MTT) but the All-Minors MTT comes into its own for some of
the new directions mentioned in the Discussion.

Because the first minors give the cofactors of LðGÞ, and
hence its adjugate matrix, it is not difficult to see that the
MTT leads to a canonical basis element rðGÞ [ kerLðGÞ,
which is simply a right eigenvector for the zero eigenvalue.
If H is any graph, let λ(H ) denote the product of the labels
over all the edges in H: λ(H ) =∏j→k∈Hℓ( j→ k). The MTT
implies that

riðGÞ ¼
X

T[FfigðGÞ
lðTÞ: ð2:4Þ

The spanning forests in equation (2.4) have only one root and
are therefore spanning trees. In words, equation (2.4) says that,
to obtain a basis element in kerLðGÞ, we take the product of
the labels over the edges of each spanning tree rooted at i
and add these products up over all such trees. This can be
done by enumerating all the trees rooted at a vertex, as in
figure 1d, which becomes the source of the complexity that
we will discuss later (§4). The force of the MTT lies in the
terms on the right-hand side of equation (2.4) all being posi-
tive. Determinants of sub-matrices typically have both
positive and negative terms but in the case of Laplacian
matrices, there are massive cancellations that result in the
sum of positive monomials in equation (2.4). The MTT starkly
reveals the underlying positive polynomial dependence on
the parameters.
Because of equation (2.3), the steady-state vector, u*(G),
must be a scalar multiple of ρ(G), which can be written
more concisely as u*(G)∝ ρ(G). The proportionality constant
can be dispensed with by division,

u�i ðGÞ
u�j ðGÞ

¼ riðGÞ
rjðGÞ

, ð2:5Þ

for any i, j∈ ν(G), or by normalization to the total,

u�i ðGÞ ¼
riðGÞ

r1ðGÞ þ � � � þ rNðGÞ
� �

utot, ð2:6Þ

which exposes the last remaining degree of freedom at steady
state in the total concentration of material, utot, from equation
(2.2).

The positive polynomial dependence arising from the
MTT leads to steady-state concentrations being rational alge-
braic functions of the parameters that are always positive for
positive parameter values. We see in equation (2.6) the origin
of the rational functions that pervade molecular biology. The
Michaelis–Menten and King–Altman formulae in enzyme
kinetics [35,36], the Monod–Wyman–Changeux and Kosh-
land–Némethy–Filmer formulae in allostery [37,38] and the
Ackers–Johnson–Shea formula in gene regulation [39] can
all be derived from equation (2.6) using appropriate graphs
[1]. The linear framework not only offers a systematic pro-
cedure in place of ad hoc methods, it also reveals the
hidden linearity within biochemical reaction networks. (The
linearity occurs in the dynamical variables and is captured
in equation (2.1); by contrast, the parametric dependence of
the dynamics is highly nonlinear, as equation (2.4) shows.)
To appreciate how this method works in practice, we need
to understand how the edge labels provide an interface
between the graph and its environment that brokers linearity
out of nonlinear biochemistry.
3. Enzyme kinetics and multisite modification
systems

Figure 2a depicts a modification–demodification cycle, some-
times called a Goldbeter–Koshland loop after the pioneering
study that first clarified the switch-like behaviour of this
molecular circuit [23]. The modification is shown as a
phosphorylation to make it familiar but it could be any
small-molecule modification, such as methylation or acety-
lation. (Ubiquitination and other polypeptide modifications
on proteins have a different biochemistry that is not covered
here.) The substrate, S, could be a protein, so that the process
would be one of post-translational modification [40,41], but it
could also be some other modifiable molecule such as a
carbohydrate or a lipid. S is interconverted between its unmo-
dified state, S0, and its modified state, S1, by enzymes; for
phosphorylation, the forward enzyme, E, is a kinase and
the reverse enzyme, F, is a phosphatase. We will explain
here how modification systems like this can be decomposed
into linear framework graphs.

We will start by showing how enzymes give rise to graphs
which describe their mechanisms. In the literature, it is cus-
tomary for the mechanisms of E and F to be described by
the Michaelis–Menten reaction scheme,

Eþ S0 O ES0 ! Eþ S1: ð3:1Þ
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Figure 2. A modification cycle in the linear framework. (a) Schematic of a modification–demodification cycle or Goldbeter–Koshland loop with phosphorylation as
the modification. (b) Hypothetical reaction network for the kinase mechanism in the grammar of equation (3.2). (c) Hypothetical reaction network for the phos-
phatase mechanism with a dead-end complex Y7, also in the grammar of equation (3.2). (d–f ) Linear framework graphs for the kinase, phosphatase and substrate,
respectively (see text). The labels which are simple rates are omitted for clarity; the others, which involve entities from the environment of the graph, are in blue
font. (g) Metagraph for the modification cycle, where the edges show the labelling relationships between the linear framework graphs represented by the vertices
(see text).
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Michaelis and Menten undertook their in vitro studies of
enzyme kinetics by measuring initial rates of reaction, with
essentially no product present [35,42]. They were therefore
entirely justified in treating product release as irreversible
and adopting equation (3.1). However, equation (3.1) has con-
tinued to be used in circumstances, like modification cycles,
where there can be substantial amounts of product. Strongly
irreversible mechanisms like equation (3.1), in which product
is unable to rebind to enzyme, are biophysically unrealistic in
contexts like this [6,9,43], as Michaelis andMenten well under-
stood [30]. The dangers of assuming strong irreversibility have
been repeatedly pointed out [43–45]: it is a limiting assumption
that is highly singular [9] and can lead to serious overestima-
tion of the parametric robustness of different dynamical
behaviours [11,44]. It is sometimes claimed that equation
(3.1) is necessary because it exhibits irreversibility. However,
as a matter of thermodynamics, all biochemical transitions
are reversible, even if the reverse transition has a relatively
much lower rate. Irreversibility is another limiting assumption,
which may be appropriate in some physiological contexts. For
example, protein kinases and phospho-protein phosphatases
appear to operate nearly irreversibly in most cellular contexts.
A thermodynamically acceptable way to model this would be
to use a weakly irreversible mechanism, in which product may
rebind but cannot be converted back to substrate. This can be
readily accommodated within the linear framework.

The framework allows the use of any enzyme mecha-
nism that can be built up out of the following ‘grammar’
of reactions:

Eþ S� ! Yi, Yi ! Yj and Yk ! Eþ S�: ð3:2Þ
Here, S� can be substrate or product and the Y’s are arbitrary
intermediate enzyme–substrate complexes [9,43]. (There is a
mild condition: the linear framework graph for the enzyme
mechanism, which we will introduce below, needs to be
strongly connected. Reaction networks that do not satisfy
this requirement are implausible.) The graph-theoretic
machinery described in §2 allows any such mechanism to
be described by four aggregated parameters at steady state,
as we will see below. This allows us to pay some attention
to the details of enzyme mechanisms, which biochemists
have worked so hard to disentangle [46–48], rather than per-
sisting with the convenient delusion that all enzymes work
the same way as in equation (3.1).

Figure 2b shows a hypothetical reaction network for the
kinase E in the grammar of equation (3.2). In its forward
direction, when it converts S0 to S1, it has two routes for bind-
ing S0. After the catalytic step between the intermediate
complexes Y1 and Y3, it releases its product, S1, also by two
routes. The two routes can be thought of as an approximation
to what actually happens in a kinase, which has to bind two
substrates, S0 and ATP, in some order and release two pro-
ducts, S1 and ADP, in some order. Here, ATP and ADP are
not explicitly represented as substrates and their effects are
assumed to be absorbed into the reaction rates [43].
Enzyme biochemists describe figure 2b as a random-order



royalsocietypublishing.org/journal/rsfs
Interface

Focus
12:20220013

6
bi-bi mechanism [49]. Phosphatases are much simpler single-
substrate hydrolases and a hypothetical mechanism for F in
the grammar of equation (3.2) is shown in figure 2c, in
which we have included a dead-end complex. Both mechan-
isms are fully reversible but they can be made weakly
irreversible by removing the reaction from Y3 to Y1 for E
and from Y6 to Y5 for F.

The approximation in describing the kinase, which is
explained in more detail in [43, §2.1], arises because the gram-
mar in equation (3.2) excludes the possibility of a substrate
binding to an intermediate complex. This exclusion is impor-
tant for what follows. It is an interesting question as to
whether this constraint can be lifted and a more elaborate
grammar developed that would allow multiple-substrate
reactions to be more accurately accommodated.

Figure 2d,e shows the corresponding linear frame-
work graphs GE and GF for E and F, respectively. The vertices
are the states of the respective enzyme, namely the free
enzyme and whatever intermediate complexes are involved.
Vertices have been indexed for convenience by the corre-
sponding enzyme states. The edges correspond to the
biochemical reactions in figure 2b,c. Note that both GE and
GF are strongly connected. The labels encode how the
enzyme states interact with their environment of substrate
and product. In particular, an edge label can be an algebraic
expression involving concentrations, such as ℓ(E→Y2) =
k2[S0]. Here, [X ] denotes the time-dependent concentration
of the biochemical entity X and k2 is the second-order rate
constant for the bimolecular binding reaction. In this way,
the entities that are not represented by vertices, such as S0
and S1, are encoded in the edge labels. It is not difficult to
see that the linear Laplacian dynamics in equation (2.1) for
the graph of any mechanism built up from the grammar in
equation (3.2) is just a rewriting of the nonlinear biochemistry
of the mechanism, as given by mass-action kinetics [4]. The
key requirement here is the uncoupling condition: a biochemi-
cal entity that appears in an edge label cannot also be
represented by a vertex. If this condition is not met, then
equation (2.1) would cease to be linear. Uncoupling implies
a sharp separation between the vertices and the graph’s
environment, for which the labels act as the interface.

Now that we have understood how enzymes can be
described in the linear framework, we can turn our attention
to the more interesting problem of analysing the modification
cycle in figure 2a as a whole. We will show that this cycle can
be decomposed into three linear framework graphs, two of
which are the enzyme graphs that we have already defined.
The missing ingredient is a graph for the substrate, GS

(figure 2f ).
Aword on the terminology that we will use from now on:

we will write ‘parameters’ or ‘rates’ for rate constants like k2
in GE and distinguish them from ‘edge labels’, which may be
algebraic expressions involving both parameters and concen-
trations; ‘aggregated parameters’ are rational algebraic
functions of the parameters.

The graphs GE and GF are easily derived from the reaction
mechanisms in figure 2b,c, respectively, and correspond to a
rewriting of the dynamics; their edge labels involve the
time-dependent concentrations of entities in their environ-
ment. The situation is more subtle for GS. Here, the vertices
are the substrate forms, S0 and S1, and the edges represent
the action of the enzymes. But what should the labels be? It
is hard to imagine labels that can capture the time-dependent
dynamics. However, labels can be found which reproduce the
steady state. The details go back to [4]; they are described in
linear framework terms in [9,43] and summarized in [11].

The edge labels in GS are defined in terms of aggregated
parameters that come from the enzyme mechanisms which
implement the edge in question. It is easier to see how
these aggregated parameters are defined by stepping back
from the particular enzyme examples in figure 2 and working
through the construction more generally. Let us consider an
arbitrary enzyme X that converts between S0 and S1 using
any mechanism based on equation (3.2) with generic
intermediate complexes, Yi. Let GX be the corresponding
enzyme graph, which we assume to be strongly connected.
It follows from equation (2.5) that

½Yi�� ¼
rYi

ðGXÞ
rXðGXÞ

� �
½X��, ð3:3Þ

where we have used [−]* to denote concentrations at steady
state, so that ½X�� ¼ u�XðGXÞ. Recalling the MTT prescription
in equation (2.4), and following the examples in figure 2d,e,
we see that ρ(GX) may involve [S0]* and [S1]*. Specifically,
any spanning tree rooted at Yi will have an edge label invol-
ving either [S0]* or [S1]* but not both, since such labels only
occur on outgoing edges from X. Hence, rYi

ðGXÞ is linear in
[S0]* and [S1]*. By the same token, a spanning tree rooted
at X has no labels involving either [S0]* or [S1]*. Hence,
ρX(GX) is a constant. Accordingly, we can write, at steady
state,

½Yi�� ¼ ðkX0,Yi
½S0�� þ kX1,Yi

½S1��Þ½X��: ð3:4Þ

We call the aggregated parameters, kX0,Yi
and kX1,Yi

, reciprocal
generalized Michaelis–Menten constants (rgMMCs). They tell
us through equation (3.4) how much of each substrate is
locked up in each intermediate complex at steady state. By
equation (2.4), they are given as sums of products of par-
ameters over spanning trees of GX rooted at Yi. These
expressions may be very complicated, reflecting the complex-
ity of X’s reaction mechanism, but it is only the aggregate
rgMMCs from equation (3.4) that are needed for what fol-
lows. The constraints imposed in the grammar of equation
(3.2) are essential for the linearity of equation (3.4), from
which these aggregated parameters emerge.

We can now define total generalized catalytic efficiencies
(tgCEs), cX0,1 and cX1,0, which capture the contribution of the
enzyme, X, at steady state, to the production rate of S1
from S0, which is cX0,1, or of S0 from S1, which is cX1,0. It is
easier to describe how this works by returning to the modifi-
cation cycle in figure 2. For example, for GE in figure 2d,

cE0,1 ¼ ‘ðY3 ! EÞkE0,Y3
þ ‘ðY4 ! EÞkE0,Y4

and

cE1,0 ¼ ‘ðY1 ! EÞkE1,Y1
þ ‘ðY2 ! EÞkE1,Y2

:

The edge labels on the substrate graph, GS, are then given in
terms of these tgCEs and the corresponding steady-state
enzyme concentrations, as shown in figure 2f. Hopefully, it
should now be reasonably clear how this works for any
enzyme reaction mechanism. The key point is that, with
this labelling, the steady state of GS, as given by equation
(2.6), exactly reproduces the steady state of the underlying
biochemical reaction network.

We have now decomposed the modification cycle in
figure 2 into three linear framework graphs, GE, GF and GS.
This graph decomposition is very useful because it allows
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us to undertake variable elimination: we can use the graphs to
iteratively eliminate the steady-state dynamical variables in
terms of the free enzyme concentrations, [E]* and [F ]*. The
latter can then be determined by the enzyme conservation
laws. This elimination procedure works as follows.

First, using the substrate graph, GS, in figure 2f, it follows
from equation (2.5) that

½S1��
½S0�� ¼

rS1ðGSÞ
rS0ðGSÞ ¼

cE0,1½E�� þ cF0,1½F��
cF1,0½F�� þ cE1,0½E��

: ð3:5Þ

Using equation (3.5) together with equation (3.4) in the sub-
strate conservation law at steady state allows [S0]* and [S1]*
to be expressed as rational functions of [E]* and [F ]*, with
Stot as an additional parameter. This procedure introduces
two further aggregated parameters, the total rgMMCs
(trgMMCs), kX0 and kX1 :

kX0 ¼
X

Yi[nðGXÞ
kX0,Yi

and kX1 ¼
X

Yi[nðGXÞ
kX1,Yi

,

which determine how much of the substrate is locked up in
the intermediate complexes at steady state:X

Yi[nðGXÞ
½Yi�� ¼ ðkX0 ½S0�� þ kX1 ½S1��Þ½X��:

We can substitute the expressions for [S0]* and [S1]* into
equation (3.4) to obtain expressions for the [Yi]* as rational
functions of [E]* and [F ]*. We have now eliminated all of
the variables at steady state in favour of [E]* and [F ]*. Finally,
we can substitute the resulting expressions into the conserva-
tion laws for the enzymes, to give a pair of simultaneous
equations for [E]* and [F ]*,

Etot ¼ REð½E��, ½F��Þ
and Ftot ¼ RFð½E��, ½F��Þ:

)
ð3:6Þ

Here, RE(− ,− ) and RF(− ,− ) are both polynomials in their
two arguments and the tgCEs and trgMMCs become the
effective parameters along with Stot. The modification
system in figure 2 has been reduced at steady state to the sol-
ution of a pair of simultaneous polynomial equations for the
enzyme concentrations (equation (3.6)), with all the other
steady-state variables being determined as rational algebraic
functions of the enzyme concentrations.

Where does all this machinery get us? First, at the enzyme
level, it gives us a set of four aggregated parameters for
describing any enzyme mechanism in the grammar in
equation (3.2). There is a tgCE and a trgMMC for both the for-
ward and the reverse direction of the enzyme. These
parameters determine the nature of the reaction mechanism:
when converting S0 to S1, X is strongly irreversible if, and
only if, kX1 ¼ 0 and X is weakly irreversible if, and only if,
kX1 . 0 and cX1,0 ¼ 0. There is no longer any mathematical
reason for persisting with strongly irreversible enzyme mech-
anisms when they are not appropriate.

Second, and as a consequence of the first point, the
Goldbeter–Koshland loop can be analysed without making
unreasonable assumptions about the enzyme mechanisms
[9,43]. The switch that the loop implements, between S0
and S1, cannot be infinitely sharp, as it appears to be when
the enzymes are strongly irreversible [23]. Formulae can be
given for both the sharpness and the dynamic range of the
switch, in terms of the aggregated parameters for arbitrary
enzyme mechanisms based on the grammar in equation
(3.2) [9]. This brings unexpected insights into the phenom-
enon of enzyme bifunctionality, in which, for example, a
single enzyme acts as both a kinase and a phosphatase.
A case in point is the enzyme 6-phosphofructo-2-kinase/
fructose-2,6-bisphosphatase, which regulates the switch
between glycolysis and gluconeogenesis in the mammalian
liver [50]. Why an enzyme should both modify and demodify
a substrate has seemed quite mysterious. The methods
above show how this architecture enables sharp switching
which is also coherent across heterogeneous individual
cells, which seems to be particularly relevant for zonation
in the liver [9].

Third, and most importantly, the example in figure 2
works in much greater generality for any modification
system with multiple sites. Suppose that we have a substrate
with any number of sites of modification. Proteins can have
an extraordinary number of such sites. The tumour-suppres-
sor p53, which is the protein most frequently mutated in
cancers, has over 100 sites of PTM [51]. Even if those sites
were all simple binary modifications, which they are far
from being, this would imply over 1030 possible global pat-
terns of modification, or modforms, on a single molecule of
p53 [40]. Of course, only a tiny fraction of these modforms
can be present at any time but the amount of molecular
state that is potentially available is jaw-dropping. (What on
Earth is it used for [40]?) Suppose that each of the enzymes
responsible for making and unmaking these modifications
follows some mechanism based on the grammar in equation
(3.2). A given enzyme could have several modforms as sub-
strates and could use a different mechanism on each one.
Following the same procedure as described above for the
simple modification cycle in figure 2a, the multisite modifi-
cation system can be decomposed at steady state into a
collection of enzyme graphs and a substrate graph; the
steady-state enzyme concentrations are determined as the sol-
ution to a system of simultaneous polynomial equations
arising from the enzyme conservation laws, as in equation
(3.6); and all the other steady-state dynamical variables are
expressed as rational algebraic functions of the enzyme
concentrations [4]. The mass-action differential equations
describing such a multisite modification system are poly-
nomial and the steady state is therefore the positive part of
a real algebraic variety [52]. The main result can be infor-
mally stated in the language of algebraic geometry as follows.

Rational parametrization theorem (RPT) [4]. The steady-
state variety of such a multisite modification system is birationally
equivalent to the variety determined by the conservation laws for
the enzymes (equation (3.6)).

This result was unexpected. Despite the apparent intract-
ability of multisite modification systems, with the number of
variables scaling exponentially with the number of sites, the
steady-state variety suffers an immense reduction to requir-
ing only the enzyme concentrations to specify it completely,
no matter how many sites are present or the complexity of
the enzymology. The steady states of all the other variables
are given by rational algebraic functions of the steady-state
enzyme concentrations and these functions can be explicitly
constructed from the graphs. This is not a reduction in the
dimension of the variety but, rather, in the dimension of its
ambient space. The steady-state variety of a multisite modifi-
cation system has dimension zero, as does the variety defined
by the enzyme conservation laws: both varieties consist of
isolated points. The salient issue is that the former variety
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lives in a potentially extremely high-dimensional ambient
space while the latter lives in an ambient space whose dimen-
sion is the number of enzymes. It is far more straightforward
to deal with the latter than with the former.

The RPT has several consequences. The enzyme conserva-
tion laws in equation (3.6) capture the essential nonlinearity
of a multisite modification system. These equations can
have multiple solutions, which accounts for the multistability
that has been found in such systems [5,53]. Everything else in
the system is determined as rational functions of these non-
linear solutions. For a system with just two enzymes,
equation (3.6) offers ‘pseudo-nullclines’ for determining
steady states as the intersections of two curves in R2 [5]. By
combining the ambient dimension reduction provided by
the RPT with homotopy continuation methods for solving
polynomial equations, available in software tools like Bertini
[54], it becomes possible to map out the ‘parameter geogra-
phy’ of multistability in multisite modification systems [11].
Several conjectures and problems arise from this, which we
lack the space to discuss further here.

The implications of the RPT seem not to have been widely
appreciated. It is not unusual to see steady-state varieties
of multisite modification systems being algebraically solved
by ad hoc methods or, what is worse, being determined by
numerical simulation, which requires making specific choices
about mechanisms and parameter values rather than
exploiting the generality which the RPT offers. The RPT
demonstrates how the graph-based approach of the linear fra-
mework allows us to rise above some of the molecular
complexity within biology, and our lack of knowledge
about the details of mechanisms, while still drawing useful
conclusions.

The RPT raises several questions that have yet to be
explored. For example, although the statement of the RPT
captures what has been most useful—that the enzymes
alone determine the steady state—it glosses over what hap-
pens to the parameters. These are also greatly reduced,
from the many original parameters required for the multisite
modification system to the few aggregated parameters
required for the enzyme equations. Here too, the latter are
rational algebraic functions of the former. A more complete
statement of the RPT would formalize the relationship
between parametrized families of varieties that are rationally
related in this way. The language to do this may already exist
within algebraic geometry. This may seem an unfamiliar
strategy in today’s systems biology but the benefit of such
formalization is that it can place the result in a broader math-
ematical context and clarify the kinds of theorems that we
may want to look for elsewhere [55–57].

Further questions arise in asking how far the RPT can be
pushed. The possibility was mentioned above of expanding
the grammar in equation (3.2) to accommodate reaction
mechanisms in which multiple substrates participate. More
broadly, does the general form of the RPT, in which a small
subset of variables carries the nonlinearity and rationally
determines all other variables at steady state, apply to bio-
chemical reaction networks beyond those for single-
substrate multisite modification systems?

A potential way to formulate this may be in terms of the
‘metagraph’ determined by the labelling relationship. A pre-
liminary definition could be given as follows. The vertices of
the metagraph are linear framework graphs and there is a
directed edge from graph Gi to graph Gj if the steady states
of Gi enter into the labels of Gj. This is a coarse description
that takes no account of the details of the labelling, which
may need to be specified more carefully, as in [8], but it suf-
fices to pose the problem. The metagraph for the RPT is a star,
with the substrate graph at its centre and the enzyme graphs
leading to it (figure 2g). What happens when the metagraph
is more complicated? It seems plausible that, when the meta-
graph is a tree, a similar result to the RPT might hold, with
the reduced set of variables, akin to the ‘enzymes’ in the
RPT, corresponding to those metagraph vertices with no
incoming edges. When the metagraph is not a tree and has
cycles, the situation seems fundamentally different. In this
case, the iterative construction of rational functions that is
possible in a tree must be replaced by something like the
fixed point of a recursive functional equation. Can there
still be proper subsets of the variables in terms of which all
others are rationally determined? The scope of the metagraph
idea has not yet been explored but it seems likely that it could
accommodate a broad class of enzyme-catalysed biochemical
networks, at least at steady state. If results similar to the RPT
could be found in this setting, it would show that biochemi-
cal reaction networks have a far richer algebraic structure at
steady state than has been apparent up to now.

Mercedes Pérez Millán and Alicia Dickenstein have intro-
duced MESSI (modifications of type enzyme–substrate or
swap with intermediates) systems, which substantially gener-
alize the multisite modification systems described here [58],
albeit without the graph infrastructure. Other approaches
have also been introduced for variable elimination in bio-
chemical reaction networks [59,60]. These developments
may provide the tools for exploring the graph-based ques-
tions raised above. One of the potential advantages of
casting these questions in terms of linear framework graphs
is that they can be more readily related to the underlying
biochemical architectures that are found in the cell
(figure 2) and the aggregated parameters that arise can also
be given biochemical meaning. Metatrees of Goldbeter–
Koshland loops were introduced in [8], where they were
shown to have unique steady states, but they have not yet
been placed in the setting of the RPT.
4. Markov processes and stochastic
thermodynamics

The edge labels in a linear framework graph, G, and specifi-
cally those which involve entities outside G, may be dealt
with in different ways. We have seen one of the more elabor-
ate ways in §3, where the entities correspond to vertices in
some other graph. A simpler possibility is that they just
occupy a buffer, from which they bind and unbind to the
system described by G. If the ligand L is such an entity bind-
ing to the vertices of G, then the edge labels involving L
through binding would carry the concentration [L] of free
ligand. In the absence of synthesis and degradation of L,
there would be a conservation law for total ligand,

Ltot ¼ ½L� þ
X

i[nðGÞ,L[i

uiðGÞ, ð4:1Þ

where L∈ i denotes those vertices of G in which L is
bound. Equation (4.1), when considered at steady state,
would play a similar role to equation (3.6) in determining
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[L]*. If L were also bound to other graphs, there would be
similar contributions to equation (4.1) from those graphs,
and if there were multiple ligands present, a system of
simultaneous equations would emerge that is similar to
equation (3.6).

A simplification of equation (4.1) is to assume that there is
so much ligand present that binding and unbinding to G does
not change its free concentration, so that [L]≈ Ltot. We call
such a buffer a reservoir, by analogy with thermodynamic
reservoirs such as heat baths. In classical thermodynamics,
exchanging heat with a reservoir does not change the reser-
voir’s temperature. When chemistry is incorporated,
exchanging molecular particles with a reservoir does not
change its chemical potential, or, in our context, the concen-
tration. If all the entities interacting with a graph are in
reservoirs, then their concentrations become constants, like
the parameters, which remain unchanged over the timescale
of the graph dynamics.

The advantage of this approximation is that the linear fra-
mework graph then corresponds to a Markov process [2]. By
the latter term, we mean a finite-state, continuous-time, time-
homogeneous Markov process, X(t), specified by a con-
ditional probability distribution, Pr(X(t + h) = j|X(t) = i) for
h≥ 0, which is independent of t. Such a process gives rise
to a graph whose vertices are the states of the Markov process
and for which there is an edge i→ j if, and only if, the infini-
tesimal transition rate from i to j is positive, in which case this
rate becomes the edge label,

‘ði ! jÞ ¼ lim
h!0

PrðXðtþ hÞ ¼ jjXðtÞ ¼ iÞ
h

. 0: ð4:2Þ

Provided the Markov process is sufficiently well behaved for
the infinitesimal rates to exist, linear framework graphs and
Markov processes are equivalent. In effect, the graph specifies
the infinitesimal generator of the corresponding process.
From this perspective, the linear Laplacian dynamics in
equation (2.1), with u(t) now the vector of vertex probabilities
and utot = 1 in equation (2.2), becomes the master equation, or
Kolmogorov forward equation, for the time evolution of
probabilities [2, theorem 4]. We have moved from the deter-
ministic world of concentrations in §3 to the stochastic
world of probabilities with the same mathematics.

The graph rarely makes an appearance in the theory of
Markov processes, perhaps because the latter has been
more concerned with behaviour in the transient regime.
(The developments mentioned in the Discussion may be of
interest in this respect.) It is also not unusual to see master
equations described in a balance of flux form,

dui
dt

¼
X
j=i

ðrði, jÞuj � rðj, iÞuiÞ,

where r(i, j ) is what we would call ℓ( j→ i), again without the
underlying graph or the Laplacian operator being made
explicit. One of the messages of this paper is to point out
how useful it can be to take a graph-theoretic approach,
even to objects like Markov processes that seem very familiar
from a different perspective.

The Markovian interpretation allows us to bring thermo-
dynamics into the picture. For this, we make the standing
assumption that whatever graph, G, we are dealing with is
‘reversible’, so that if i→ G j, then also j→ G i. In the interpret-
ation of the graph, it is important that j→ i represents the
reverse process to i→ j and not merely some other means to
get from j to i [61]. If iN j is any pair of such reversible
edges, then the ratio of their edge labels may be given a
thermodynamic interpretation in terms of the entropy
change during the transition from i to j,

‘ði ! jÞ
‘ðj ! iÞ ¼ exp

DSenv þ ðSsysj � Ssysi Þ
kB

 !
: ð4:3Þ

Here, ΔSenv is the total change in the entropy of the environ-
mental reservoirs during the transition i→ j, Ssysi is the
internal entropy of vertex i and kB is Boltzmann’s constant.
Equation (4.3), which asserts that the label ratio is the expo-
nential of the total entropy change, is known as ‘local
detailed balance’, where ‘local’ signifies that this is an asser-
tion about a pair of reversible edges. Equation (4.3) goes back
to the pioneering work of Terrell Hill [62] and Jürgen Schna-
kenberg [63], who began using graph-based descriptions to
study biophysical systems. It has now been justified in
many different settings [64,65], for example, when the ver-
tices of the Markov process describe the mesoscopic states
of some biomolecular system, such as an enzyme or a mol-
ecular motor, operating within the cellular environment,
with which the system exchanges particles and energy.

Equation (4.3) allows us to interpret the central concept
of thermodynamic equilibrium. In mathematics, the word
‘equilibrium’ is often used as a synonym for ‘steady state’.
This is not so in physics. Thermodynamic equilibrium is
a very special kind of steady state with remarkable pro-
perties. In linear framework terms, a graph is at
thermodynamic equilibrium if there is no entropy change
along any cycle of reversible edges. To formalize this, let
P : i1 N i2 N � � �N ik�1 N ik be any path of reversible edges
in G and let μ(P) denote the product of label ratios along
the path,

mðPÞ ¼ ‘ði1 ! i2Þ
‘ði2 ! i1Þ
� �

� � � ‘ðik�1 ! ikÞ
‘ðik ! ik�1Þ
� �

: ð4:4Þ

If P is a cycle, so that i1 = ik, then it follows from equation (4.3)
that

mðPÞ ¼ exp
DSenv

kB

� �
,

where ΔSenv is the total entropy change in the reservoirs over
one traversal of the cycle. It follows that the graph can be at
thermodynamic equilibrium if, and only if, μ(P) = 1 for all
cycles of reversible edges, P. This is the ‘cycle condition’ for
G. It is sometimes known in the reaction network literature
as Wegscheider’s condition but its thermodynamic signifi-
cance was first appreciated by Gilbert Lewis [66]. It says
that the product of the edge labels going clockwise around
any cycle equals the product going counterclockwise. It is
sufficient to check this condition only on the finitely many
cycles in any basis of cycles (for details of cycle bases,
see [21]).

An equivalent formulation of thermodynamic equili-
brium is that it is a steady state, u*, in which any pair of
reversible edges, iN j, is in flux balance,

u�i ‘ði ! jÞ ¼ u�j ‘ðj ! iÞ, ð4:5Þ

irrespective of any other transitions in which the vertices i
and j are engaged. It is not hard to check that if the cycle con-
dition holds, then any steady state satisfies equation (4.5) and,
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conversely, if equation (4.5) holds in some steady state, then
the cycle condition also holds. Equation (4.5) is ‘detailed bal-
ance’ or ‘microscopic reversibility’. It brings out the
remarkable nature of thermodynamic equilibrium, in which
pairs of reversible transitions become effectively decoupled
from each other.

At thermodynamic equilibrium, the prescription for the
steady state that comes from the MTT in equation (2.4) can
be greatly simplified. Choose any vertex of G as a reference,
which we take to be 1 by convention. Let Pi be any path of
reversible edges from 1 to vertex i and let μi(G) = μ(Pi),
which is well defined no matter which Pi is chosen because
of the cycle condition. It is not hard to show, again exploiting
the cycle condition, that, in vector terms, μ(G) = ρ(G)/ρ1(G),
where ρ(G) is the canonical basis element in kerLðGÞ that
comes from the MTT in equation (2.4). Hence, μ(G) is an
alternative canonical basis element for kerLðGÞ. Using
equation (2.6), we can write

u�i ðGÞ ¼
miðGÞ

m1ðGÞ þ m2ðGÞ þ � � � þ mNðGÞ
: ð4:6Þ

Note that μ1(G) = 1. Using equation (4.3) and a little thermo-
dynamics, the terms μi(G) yield the Boltzmann factors for the
vertices, referred to vertex 1 as the zero for the free energy.
Equation (4.6) is exactly the prescription for the steady state
that comes from equilibrium statistical mechanics, with the
denominator being the partition function for the grand cano-
nical ensemble [67]. It follows from equations (4.4) and (4.6)
that the only parameters needed at thermodynamic equili-
brium are the label ratios, ℓ(i→ j )/ℓ( j→ i), not the
individual labels.

Linear framework graphs often appear unnecessary when
working at thermodynamic equilibrium. This is especially so
for physicists. They consider the free energies of vertices to be
the fundamental parameters at equilibrium, so that graph
edges are irrelevant. What the edges provide, however, are
representations of the underlying molecular mechanisms,
which are often crucial for interpreting the biology. For
example, the widely used hypercube graph structure Cn can
represent the binding and unbinding of ligands to n sites
on a biomolecule [14]. Figure 3a shows the structure that
we denote C2þ1, reflecting two ligands, one of which binds
at 2 sites and the other at 1 site. Hypercube graphs can be
used to model a receptor [68], an allosteric system [19] or a
gene-regulation system [14]. Such graphs enable higher-order
cooperativities (HOCs) to be defined at thermodynamic equili-
brium, in which binding of a ligand at one site can be
modulated by the ligand binding status of multiple other
sites [7,14,19]. Prior to this, cooperativity had been largely
studied as a pairwise effect involving just two binding sites
but there is now compelling evidence that higher-order
effects are biologically important [19]. HOCs provide an
alternative parametrization of the free-energy landscape
and a rigorous language in which to express cooperative
interactions involving multiple ligands and sites [7,19].
(HOCs are associated with edges, not vertices, and the
cycle condition at thermodynamic equilibrium implies that
they are not independent quantities. However, it is straight-
forward to choose independent subsets of HOCs, in terms
of which all other HOCs are rationally expressible [14].) An
interesting question is how HOCs arise at a molecular level.
It has been known since the pioneering work of Monod,
Wyman and Changeux that biomolecular systems with
multiple interchanging conformations can create pairwise
cooperativity through allostery [37,38]. The linear framework
can be used to calculate the HOCs that arise from any
allosteric conformational ensemble—using the technique of
coarse graining described in §5—and to prove that such
ensembles can implement any pattern of HOCs that is
achievable at thermodynamic equilibrium [19].

Despite the algebraic similarity in the formulas for the
steady state in equations (4.6) and (2.6), there is a profound
distinction between μ(G) at equilibrium and ρ(G) away
from equilibrium, whose significance becomes clear from
the examples calculated below in equations (4.7) and (4.8).
At equilibrium, μ(G) shows that it is only necessary to pick
any one path to a given vertex to calculate the steady-state
probability of that vertex (up to normalization by the denomi-
nator in equation (4.6), which is the partition function). Only
the edge label ratios along the path are required. By contrast,
away from equilibrium, ρ(G) shows that every path to the
vertex is needed and the MTT in equation (2.4) provides
the bookkeeping for this calculation. This poses a major diffi-
culty because the enumeration of spanning trees becomes
intractable even for simple graphs. The hypercube graph C2
has four spanning trees rooted at each vertex; C3 has 384
spanning trees; but C4 has 42 467 328 spanning trees [69]! If
the combinatorics were not bad enough, ρ(G) exhibits
global parametric dependency: every edge label and par-
ameter in the graph influences the steady-state probability
of a vertex. This is startling in its singularity. We can imagine
a graph at thermodynamic equilibrium in which the label on
a single edge is modified so that the cycle condition is broken.
The steady-state probabilities abruptly jump from being
locally determined by μ(G) to being globally determined by
ρ(G), and all parameters, even those arbitrarily far from the
edge whose label was changed, now have an effect on the
probabilities. The extraordinary path-dependent complexity
of calculating non-equilibrium steady states has been a for-
midable roadblock to progress.

The simple graph in figure 3b serves to illustrate the pro-
blem. Such a graph, whose structure is the hypercube C2,
could represent an allosteric system with two conformations,
interchanging horizontally, and a single ligand binding site,
with binding and unbinding in the vertical transitions. The
concentration of the ligand, x, appears in the labels for the
binding edges. There is a single minimal cycle. Let f (x) be
the steady-state probability of the ligand being bound, con-
sidered as a function of x; with the notation used in §2,
f ðxÞ ¼ u�3ðGÞ þ u�4ðGÞ. Equivalently, for this simple example,
f (x) is also the average number of bound sites at steady
state. f (x) is an input–output function of the kind that we
will discuss in more detail in §5. This function looks very
different depending on whether the steady state is one of
thermodynamic equilibrium or not. If the graph can reach
thermodynamic equilibrium, the cycle condition that must
be satisfied is

k1k2k3k4 ¼ k5k6k7k8:

With this assumption, we can use equations (4.4) and (4.6) to
show that the equilibrium input–output function is of
Michaelis–Menten type,

feqðxÞ ¼ Ax
Bþ Ax

, ð4:7Þ
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Figure 3. Graphs and position-steepness region. (a) Hypercube graph structure C3, in the form C2þ1, with three sites for binding of two ligands, a blue oval to 2
sites and a magenta square to 1 site. One interpretation could be a model of genetic regulated recruitment with the blue oval as a transcription factor and the
magenta square as RNA Polymerase. Details of the labels and notation used with such models are given in [7]. (b) Linear framework graph to illustrate non-
equilibrium complexity, representing a biomolecule in two conformations (circle, square) with a single site for binding of a ligand (blue disc). Vertices are indexed
1,…, 4, parameters are k1,…, k8 and x is the concentration of ligand. (c) The grey region shows the thermodynamic equilibrium (p, s) region for C4þ1, the
regulated recruitment example from (a). The input is the concentration of a transcription factor which binds to 4 sites and the output is the steady-state probability
of RNA Polymerase bound to the 5th site. The outer curve in darker grey shows the asymptotic boundary of the (p, s) region, for arbitrary parameter values, with the
region being truncated to the left and below. The blue curve is the Hill line, the locus of (p, s) points for the Hill functions, with integer Hill coefficients marked.
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where the aggregated parameters are given by the appropri-
ate ratios of rates,

A ¼ k2
k8

� �
1þ k3

k7

� �
and B ¼ 1þ k5

k1
:

If the cycle condition is not satisfied, we can use equations
(2.4) and (2.6) to calculate the input–output function. There
are four spanning trees rooted at each vertex, which may be
enumerated in a similar way to those in figure 1d. We find
that the non-equilibrium input–output function has degree 2,

fneðxÞ ¼ A�xþ B�x2

C� þD�xþ B�x2
, ð4:8Þ

where the aggregated parameters are given in terms of the
individual rates,

A� ¼ k1k2k3 þ k3k5k6 þ k5k6k8 þ k1k2k7 þ k5k6k7 þ k1k2k4,
B� ¼ k2k3k6 þ k2k6k7,
C� ¼ k1k7k8 þ k1k3k4 þ k1k4k8 þ k5k7k8 þ k3k4k5 þ k4k5k8

and D� ¼ A� þ k2k3k4 þ k6k7k8:

Even for the very simple example in figure 3b, the difference
between equations (4.7) and (4.8) is striking in both rational
structure and parametric complexity.

Physicists have largely dealt with the problem of path-
dependent complexity by astute approximations, in which
most of the spanning trees are ignored. But this tactic may
be particularly problematic in biology in which phenomena
often depend on the collective influence of many small
effects. Mathematically, the complexity cannot be avoided:
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equation (2.6) is an exact formula. It is necessary to somehow
reorganize the complexity.

Recently, two approaches have emerged which have
finally shed some light on this challenging problem. From
the mathematical perspective, Pavel Chebotarev and Rafig
Agaev have previously interpreted the Faddeev–LeVerrier
matrix inversion method for the Laplacian matrix of a
graph [70]. Their method allows steady-state probabilities to
be recursively and symbolically calculated without explicitly
enumerating all the spanning trees. From the physical per-
spective, non-equilibrium steady-state probabilities can be
interpreted as an average of the thermodynamic entropy pro-
duction along paths [21]. The number of distinct path
entropies that are required, and hence the complexity of the
average, depends on the entropy production index of the
graph [21]. If this index is low, calculations can be undertaken
away from thermodynamic equilibrium which were pre-
viously infeasible [21]. These approaches have provided the
first breakthroughs in dealing with path-dependent complex-
ity away from equilibrium.
20013
5. Hopfield barriers, coarse graining and Hill
functions

The remarkable mathematical difference between the alge-
braic structure of steady-state probabilities at equilibrium
(equation (4.6)) and away from equilibrium (equation (2.6))
strongly suggests that it must have significant biological
implications. Surprisingly, these have only slowly emerged.
At one level, the physics has always been obvious: we are
only at thermodynamic equilibrium when we are dead! The
role of energy expenditure in force generation or in pattern
formation has been widely studied [71,72]. What has been
much less clear, however, has been the implications of
energy expenditure for cellular information processing. It
was John Hopfield who provided the first insight into this
in his pioneering work on kinetic proofreading [73]. The cen-
tral idea behind his analysis can be restated and updated as
follows: given any information processing task, there is an upper
bound to how well it can be undertaken by any mechanism that
operates at thermodynamic equilibrium. We call this bound the
Hopfield barrier for that task [14]. The only way to exceed
this barrier is for the underlying mechanism to operate
away from thermodynamic equilibrium.

We have been interested in identifying the Hopfield bar-
riers for various cellular information processing tasks, of
which amplification has become the best understood. The
problem can be formulated for steady-state input–output
responses of biomolecular systems: by how much does the
output change for a given change in an input? Here, the
system is represented by a linear framework graph, G;
the input is the concentration, x, of some interacting ligand;
and the output is any non-negative linear combination of
steady-state probabilities,

f ðxÞ ¼
X

1�i�N

liu�i ðGÞ, li � 0: ð5:1Þ

Such outputs are often measures of the overall state of the
system that are appropriate for the specific biological context,
as in the treatment of figure 3b in §4. Examples include recep-
tors or allosteric systems responding to ligands, where the
output could be the average number of bound sites [19],
and gene-regulation systems responding to transcription fac-
tors, where the output could be the probability of RNA
Polymerase being bound to the gene promoter. The latter
kind of input–output response has been widely used to
study gene regulation [7], where it represents Mark Ptashne’s
concept of regulated recruitment [74]. The hypercube graph
Cn (figure 3a) can model such systems with n being the
total number of binding sites. The internal complexities of
the system are ignored in such a hypercube model and they
are considered to exert their effect through the parameter
values. The biomolecular system is assumed, under a time-
scale separation, to have reached a steady state, with
changes to the inputs taking place quasi-statically, with suffi-
ciently small and slow increments that the system is not being
forced but, rather, relaxes back to steady state after each
change. Inputs have typically been examined singly in iso-
lation, although there is no theoretical barrier to greater
generality. Such steady-state, single-input, single-output
responses have been widely measured and analysed and
linear framework graphs are well suited to describing them
[14,16,19,75].

The extent to which an input–output response is capable
of amplification is usually quantified by some measure of
sharpness. The hyperbolic Michaelis–Menten response,
x/(1 + x), has typically been regarded as the baseline, with
the Hill functions, Hh(x) = xh/(1 + xh), with Hill coefficient,
h > 0, regarded as displaying sharpness, or ultrasensitivity,
which is positive when h > 1 and negative when h < 1. The
Hill coefficient itself is often quoted as a measure of sharp-
ness. The Hill functions can provide surprisingly good
empirical fits to input–output response data, going back to
their introduction by Archibald Hill to fit the data on
oxygen binding to haemoglobin [26]. However, Hill func-
tions, at least those which are not Michaelis–Menten, have
no plausible justification [76,77]; they are merely an
algebraically convenient functional family for fitting data.
That is not the case for the Michaelis–Menten response, for
which the linear framework yields theorems that explain its
remarkably wide occurrence at the molecular level [16]. The
empirical nature of Hill functions has frequently been over-
looked, perhaps because they do their job of fitting so well,
and they are often used in mathematical models when a
sharp response is required without having to justify how
the sharpness arises. It is commonplace to see them in
models of gene-regulation networks, such as those used to
model the transcription–translation circadian clock in meta-
zoa [24]. Given the widespread use of Hill functions in the
literature, the justification that we provide for them here
may be of some interest.

To analyse sharpness, we use two non-dimensional,
intrinsic measures, not just one, which is important for
what follows. The definitions build on those previously
given in [14] and are taken from the new findings described
in [78]. In the generality considered here, input–output func-
tions f (x) are bounded rational functions for x∈ [0, ∞) and
may not be monotonic. As a concrete example, consider the
input–output function for a regulated-recruitment model of
gene regulation, as described above. If the transcription
factor binds at m sites, the corresponding graph structure is
the hypercube Cmþ1, shown in figure 3a for m = 2. The remain-
ing site is bound by RNA Polymerase. The input, x, is the
concentration of the transcription factor and the output is
the steady-state probability of RNA Polymerase being
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bound, which, in figure 3a, is the total probability coming
from equation (4.6) for the vertices with the magenta square.

We will assume that the output value of f is naturally non-
dimensional, as it is for the example just described, or that it
has been otherwise normalized in a way appropriate to its
context. Normalizing the input takes more care because an
intrinsic normalization depends on f. Let M( f ) and m( f ) be
the global maximum and minimum, respectively, of f:
M( f ) = maxx∈[0,∞)f (x) and m( f ) =minx∈[0,∞)f (x). We normalize
the input to x0.5, which is the minimum positive value for
which f (x0.5) is halfway between m( f ) and M( f ):

x0:5 ¼ min
x[ð0,1Þ

x f ðxÞ ¼ MðfÞ þmðfÞ
2

����
�
:

�

This yields the function g(y) = f (yx0.5), where y is non-
dimensional. The input normalization is important for what
follows, although the specific definition of x0.5 does not
seem to qualitatively influence the final results. We then
define the two measures of sharpness to be the ‘steepness’
of f, s( f ), which is the maximum of the absolute value of
the derivative of g, and the ‘position’ of f, p( f ), which is the
y value at which that maximum is attained,

sðfÞ ¼ max
y[½0,1Þ

dg
dy

����
���� and pðfÞ ¼ argmax

y[½0,1Þ

dg
dy

����
����:

We can now plot position–steepness regions, abbreviated to
(p, s) regions, assuming that the underlying graphs are at
thermodynamic equilibrium, so that the cycle condition
holds (§4). Equilibrium parameter values are randomly
chosen in some range, the corresponding (p, s) points calcu-
lated and the resulting point cloud is incrementally grown
until a boundary is reached. The algorithms are elaborated
in [14,15,78]. Part of the equilibrium position–steepness
region for the regulated-recruitment gene-regulation model
described above, based on the hypercube structure C4þ1, is
shown in figure 3c.

Three consistent findings emerge from such plots. First,
the (p, s) region becomes effectively asymptotically bounded
as the parametric range is increased. Some care is needed to
state this precisely because the boundary at zero position,
p = 0, is anomalous: when position becomes very low, steep-
ness can become very high. However, this arises from
degenerate functions, as discussed in [14]. The more interest-
ing behaviour occurs away from this boundary. To specify it,
choose any a > 0, no matter how small. No matter what par-
ameter values are chosen, that part of the (p, s) region within
the quadrant [a, ∞) × [a, ∞) is bounded. Specifically, for all
sufficiently large A > a, the region lies within the finite box
[a, A] × [a, A]. Figure 3c shows the (p, s) region lying within
the finite box [0.4, 1.2] × [0.3, 1.2]. The boundedness then
leads to the second finding. The (p, s) region exhibits a cusp
which lies on the Hill line, the locus of (p, s) points for the
Hill functions (figure 3c). The tip of the cusp is always
below the (p, s) point of the Hill function whose coefficient
is the number of sites at which the input binds and the
cusp approaches closer to this Hill point as the parametric
range increases. So, if the input ligand binds at m sites of
the biomolecular system, the cusp lies below, and asymptoti-
cally approaches, the (p, s) of Hm. Third, if the assumption of
thermodynamic equilibrium is dropped, (p, s) points can be
found which lie above and to the right of the (p, s) of Hm.
The asymptotic boundedness of the (p, s) region allows us
to draw strong conclusions when experimental data fall out-
side this region [15]. We can claim that the underlying model
is unable to account for the data without having to fit any
data. Of particular interest is the possibility that energy
expenditure is required to explain the data. This goes to the
heart of the striking difference between prokaryotic and
eukaryotic gene regulation [7]. The former appears to take
place without any expenditure of energy, while the latter
uses many sources of energy expenditure, including chromo-
some and nucleosome reorganization, post-translational
modification of histones and co-regulators, and DNA methyl-
ation. We believe that this reflects a greatly increased
capability for regulatory information processing in eukaryotic
genomes. The methods described here provide the theoretical
tools for addressing this question [7,13–15].

The three findings described above imply that the Hill
function Hm is the Hopfield barrier for the sharpness of
input–output functions with m binding sites for the input
ligand. This has been confirmed by numerical plotting of
(p, s) regions for several models based on hypercube graphs
with different output functions [14,15], including the regu-
lated recruitment model whose (p, s) region is shown in
figure 3c. However, models could be much more complex
than those represented by hypercube graphs and could incor-
porate many details of the internal mechanisms of the
underlying biomolecular system. It seems impossible, on
the face of it, to make a definitive statement about the (p, s)
regions for all of these models. It turns out, however, that a
much stronger statement is possible of the universality of
the Hill function as a Hopfield barrier. This relies on the tech-
nique of coarse graining, which was introduced in [19] to
analyse allosteric conformational ensembles.

Suppose G is any strongly connected, reversible linear
framework graph, which need not satisfy the cycle condition.
Given any partition of the vertices of G, nðGÞ ¼ G1 < � � �< Gs

with Gw > Gz ¼ ; when w = z, the coarse-grained graph
C(G) is defined as follows. C(G) has vertices 1,…, s corre-
sponding to the subsets of the partition. It has an edge
w→ C(G) z whenever there exists i∈Gw and j∈Gz such that
i→ G j. C(G) thereby inherits reversibility from G. Finally,
C(G) has labels given by

‘ðw !CðGÞ zÞ ¼ Q
X
j[Gz

rjðGÞ
0
@

1
A: ð5:2Þ

Here, the quantity Q is chosen arbitrarily to ensure the
dimension of the label is (time)−1 but it plays no essential
role, as we will see. It is shown in [19] that, with the labelling
given by equation (5.2), C(G) satisfies the cycle condition,
even when G does not, and, furthermore, that the following
coarse-graining equation is satisfied:

u�wðCðGÞÞ ¼
X
i[Gw

u�i ðGÞ: ð5:3Þ

In other words, the steady-state probability of being at w in
C(G) is the same as the steady-state probability of being at
any of the vertices of Gw in G. This is exactly what we
would expect from a coarse graining. Although equation
(5.2) is not intuitive, it is the unique specification that
allows equation (5.3) to hold, with C(G) satisfying the cycle
condition [19].
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It is important to note that the prescription above is not a
coarse graining of the dynamics. There is no reason to expect
that C(G) will approximate the dynamics of G, only that it
reaches the expected steady state under the coarse graining.
Because C(G) satisfies the cycle condition and can therefore
reach thermodynamic equilibrium, the only parameters that
are required at steady state are the label ratios, so that the
quantity Q in equation (5.2) cancels out and plays no role.

Coarse graining appears to be a powerful method for
making general statements about steady-state behaviour,
especially at thermodynamic equilibrium [19], and we
expect that it will be broadly useful. To reveal the universality
of the sharpness Hopfield barrier, we can consider any
strongly connected, reversible graph, G, involving the bind-
ing of some ligand, L, to m sites. The graph may involve
many other features, such as other ligands, allosteric confor-
mations, co-regulators, patterns of post-translational
modifications, scaffold configurations involving locations,
and, in the context of gene regulation, chromatin state,
nucleosomes, DNA methylation states, etc. (e.g. [12]). No
matter how complex the graph, we can always coarse-grain
it by bringing together all those vertices of G which exhibit
the same pattern of binding of L. The resulting coarse-grained
graph, C(G), will have the same structure as the hypercube
Cm. (In fact, C(G) may be a proper subgraph of Cm but we
will ignore this possibility in the interests of keeping the
exposition simple; see [78] for a full discussion.)

For example, the hypercube structure C2þ1 in figure 3a,
with the blue ligand as the input, would be coarse-grained
into the hypercube structure C2 by making the subsets of
the partition contain those vertices with the blue ligand
bound at exactly the same sites. Since there are two binding
sites for the blue ligand, there are four subsets in the par-
tition, each of which contains two vertices, depending on
whether or not the magenta ligand is bound.

Of course, the edge labels of C(G), which arise from
equation (5.2), could potentially be very complicated but,
nevertheless, we know that C(G) satisfies the cycle condition
with this labelling. What happens to an output function on
G? It can be shown that, provided G itself is at thermo-
dynamic equilibrium, any output function on G can be
rewritten as a non-negative linear combination of steady-state
probabilities of C(G),

X
i[nðCðGÞÞ

liu�i ðCðGÞÞ, li � 0, ð5:4Þ

where, crucially, the coefficients λi do not depend on x, as
long as G is at thermodynamic equilibrium [78]. Comparing
with equation (5.1), we see that equation (5.4) defines an
input–output function on C(G), which, as noted above, has
the hypercube structure Cm. It follows that, by varying the
coefficients λi in equation (5.4) as well as the edge labels
imposed on Cm, while ensuring the cycle condition holds,
any input–output function on any graph G can be recovered,
provided G also satisfies the cycle condition. In this way, a
universal (p, s) region can be plotted, which looks similar in
shape to but is larger in size than that shown in figure 3c
[78]. In particular, it is bounded in ½a, 1Þ � ½a, 1Þ for any
a > 0 and has the same kind of cusp that falls on the Hill
line. Although we have not provided the details here, it
should at least be plausible that the following result holds.
Universal Hopfield barrier for sharpness [78]. The Hill
function Hm is the universal Hopfield barrier for the ( p, s) sharp-
ness of any thermodynamic equilibrium input–output function
with m binding sites for the input ligand, no matter how compli-
cated the underlying Markov process.

We see that, despite its empirical origin, the Hill function
has a deep biophysical justification, as the limit of sharpness
that can be achieved at thermodynamic equilibrium. This
finally provides a rigorous basis for its widespread use in
mathematical models. However, that freedom brings with it
a new obligation because we are now in a position to ask
what kinds of HOCs are needed to approach Hm. While
many different patterns of HOCs can do so, one requirement
that seems essential is that HOCs up to the highest possible
order are present, with binding being modulated by all
other available binding sites; see fig. 9 in [19]. Allostery
offers one possible mechanism for implementing such
HOCs and allosteric conformational ensembles are now
widely seen in all cellular contexts [79]. Further experimental
study is needed to understand if this is the principal mechan-
ism that is at work in creating sharp input–output responses.

The universal (p, s) region also provides a surprisingly
strong claim when experimental data fall outside the region.
No equilibriumMarkov-processmodel, nomatter how compli-
cated, can account for such data, thereby offering a powerful
incentive to explore non-equilibrium explanations.

The universal Hopfield barrier for sharpness is not yet
a theorem, since (p, s) regions have so far only been
plotted numerically, but we have no doubt as to its
veracity. It is a tantalizing open problem to formulate the
appropriate mathematical statement, which requires a
better understanding of the shape of the cusp that approaches
Hm asymptotically. The (p, s) region is the image of a map from
a space of rational input–output functions to R2, which encodes
the shape of each function in terms of extrema of its normalized
derivative. The shape of the (p, s) region is telling us that the
components of this map are highly correlated and constrained
in the vicinity of the cusp. We do not yet understand the math-
ematical form of this relationship.

As mentioned above, if the graph does not satisfy the
cycle condition, so that it reaches a non-equilibrium steady
state, then it is not difficult to find (p, s) points that lie outside
the equilibrium region. The situation away from thermodyn-
amic equilibrium is strikingly different from the universality
found at equilibrium: simple families of graphs can be found
whose non-equilibrium (p, s) regions cover the entire positive
quadrant [80]. Plotting non-equilibrium regions for the
hypercube graph structures (figure 3a) remains challenging
because of the path-dependent complexity described in §4
[14]. Little is known about the shape of these regions,
whether or not they also have cusps and, if so, where those
cusps lie with respect to the Hill line. The general problem
of characterizing non-equilibrium (p, s) regions remains
wide open.
6. Discussion
Graphs similar to those used here are found elsewhere in
biology. The usage that is closest to the linear framework
goes back to the non-equilibrium physics of Terrell Hill [62]
and Jürgen Schnakenberg [63]. The Matrix-Tree Theorem,
specifically the First-Minors MTT which underlies equation
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(2.4), has been independently rediscovered multiple times in
different areas of science, by Hill himself [62], by Raoul Bott
when he was working on economics [81], from where it finds
its way into quantum field theory [82], and by Mark Freidlin
and Alexander Wentzell in their work on random dynamical
systems and large deviations [83]; for more of the history, see
[2]. Indeed, biochemists should recognize the MTT as the
King–Altman procedure in enzyme kinetics [36]. These inde-
pendent manifestations are usually disconnected from graph
theory, where the result had already been established (§2).
Many of the statements use their own specialized terms in
place of the spanning trees that are fundamental concepts
of graph theory. We have tried to avoid such parochial ten-
dencies in the linear framework and to deliberately bring
out the connections to areas like graph theory, enzyme kin-
etics, algebraic geometry, Markov processes and non-
equilibrium physics. It is this nexus of overlapping perspec-
tives that gives the framework much of its power and appeal.

The main difference between previous uses of graphs and
the linear framework is that the graph is regarded not merely
as a picture but as a mathematical object in its own right, in
terms of which general theorems can be formulated
[4,13,16,19]. Graphs are particularly flexible in allowing
certain features, such as a type of structure, or a subgraph,
or particular edges or labels, to be specified while leaving
other aspects of the graph to vary arbitrarily. A case in
point is the grammar of enzyme mechanisms in equation
(3.2). This flexibility allows theorems to be proved about pro-
cesses of interest to biology, such as post-translational
modification systems and input–output responses, while
accommodating some of the extraordinary complexity and
diversity that is present at the molecular level. We can sum-
marize the principal insights from the work described here
in the following four points.
— There is a surprising linearity that underlies many bio-
chemical networks, which manifests itself when they
can be uncoupled into linear framework graphs (§3).
This insight also arises from chemical reaction network
theory [1,84] and it hints at a deeper simplicity behind
the biochemical complexity that we confront.

— A rational algebraic structure, derived from the Matrix-
Tree Theorem in equation (2.4), accompanies the linearity
at steady state. The rational algebraic formulae of Michae-
lis–Menten, King–Altman, Monod–Wyman–Changeux,
Koshland–Némethy–Filmer and Ackers–Johnson–Shea,
familiar to many biologists, are all instances of equation
(2.6) applied to some graph (§2). This gives the quantitat-
ive foundation of molecular biology a unity which it has
previously lacked. The rationality has been central to the
analysis of both post-translational modification systems
(§3) and the sharpness of input–output responses (§5).

— There is an equivalence between linear framework
graphs, under reservoir assumptions, and finite-state,
continuous-time Markov processes (§4). The Laplacian
matrix of the graph is the linear operator that defines
the master equation. Up to now, this relationship has
been exploited at steady state but this is no longer a
restriction, as we will mention below. The framework
again gives access through equation (2.4) to the rational
algebraic structure of steady states, which has not been
widely explored within Markov process theory.
— The graph theory also provides an algebraic reformula-
tion of stochastic thermodynamics, not only at
equilibrium, where the conventional physics is recovered
through a new parametrization based on HOCs, but also,
more importantly, away from equilibrium (§4). It thereby
enables the analysis of energy dissipation in cellular
information processing, from which a new interpretation
emerges for that most pervasive, but least justified, of
rational functions, the Hill function, as the Hopfield
barrier for sharpness (§5).

We noted in the Introduction that the range of applicability
of the linear framework remains unclear. As far as Markov
processes are concerned, the framework offers an alternative
approach based on graph theory (§4). As for biochemical
reaction networks, the material in §3 suggests that the
framework can be deployed when the metagraph that
describes how enzymes act on their substrates is acyclic.
We conjectured that a generalized version of the RPT may
be true under such circumstances. This restriction rules out
systems in which enzymatic action occurs along pathways
that feed back, which would yield cyclic metagraphs, but it
remains an interesting question whether a recursive structure
with fixed points can be uncovered here (§3). The framework
is also suited to analysing networks that reach steady states,
as opposed to those with more complex dynamics, such as
limit cycles.

Finally, two recent developments of the linear framework
seemworthmentioning.We had long thought that the rational
algebraic approach based on equation (2.4) was limited to the
steady state and that the transient regime could only be
approached by very different methods. In fact, the linear fra-
mework can be extended to the transient regime, at least
within the Markov process interpretation (§4). We have
shown that the All-Minors MTT (§2) allows first-passage
times to be calculated as rational algebraic functions of the par-
ameters [85]. This development comes at an appropriate time
in biology, where new experimental methods are giving access
to faster dynamics at the molecular scale and raising impor-
tant questions about the range of validity of steady-state
assumptions [86]. Another restriction of the framework,
which also seemed unavoidable, has been to finite graphs.
However, here too, we have shown that a particular class of
semi-infinite ‘cylinder’ graphs can be treated recursively,
again exploiting the All-Minors MTT [87]. This development
is also timely because it applies, in particular, to integrating
models of gene regulation with models of gene expression,
for which the number of transcribed mRNA molecules
becomes part of the system state [7]. These numbers can
now be estimated by single-molecule methods and offer a
more informative measure of gene output than the regulated
recruitment of RNA Polymerase used in the models described
above (figure 3a). In the light of these exciting developments,
many new questions arise for theoretical exploration, which
we hope to report on in subsequent work.
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