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A B S T R A C T   

Purpose: This study aimed to investigate the prognostic significance of the Family with Sequence Similarity 72 
member (FAM72) gene family in clear cell renal carcinoma (ccRCC) using a bioinformatic approach. 
Patients and methods: To investigate the association between FAM72 and ccRCC, we utilized various databases 
and analysis tools, including TCGA, GEPIA, Metscape, cBioPortal, and MethSurv. We conducted an analysis of 
FAM72 expression levels in ccRCC tissues compared to normal kidney tissues and performed univariate and 
multivariate Cox analysis to determine the relationship between FAM72 expression and patient prognosis. 
Furthermore, we carried out Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) to identify enriched 
biological processes associated with FAM72 expression. Additionally, we analyzed immune cell infiltration and 
the level of methylation in ccRCC patients. Our bioinformatic analysis revealed that FAM72 expression levels 
were significantly higher in ccRCC tissues than in normal kidney tissues. High expression of FAM72 was asso
ciated with poor prognosis in ccRCC patients and was found to be an independent prognostic factor for ccRCC. 
GO and GSEA analyses indicated that FAM72 was enriched in biological processes related to mitosis, cell cycle, 
and DNA metabolism. Moreover, we found a significant correlation between FAM72 and immune cell infiltration 
and the level of methylation in ccRCC patients. 
Conclusion: Our findings suggest that FAM72 could serve as an unfavorable prognostic molecular marker for 
ccRCC. A comprehensive understanding of FAM72 could provide crucial insights into tumor progression and 
prognosis.   

1. Introduction 

Renal cancer is a widespread urologic disease, with more than 
400,000 new cases diagnosed annually [1]. Surgical resection is effec
tive in treating early-stage renal cancer, but approximately 20%–30% of 
cases will relapse and metastasize post-surgery. Currently, metastatic 
renal cell carcinoma (RCC) is treated with tyrosine kinase inhibitors 
(TKIs), mTOR inhibitors, and immune checkpoint inhibitors (ICIs). Clear 
cell renal cell carcinoma (ccRCC), which is characterized by having an 
immunogenic tumor microenvironment (TME) with numerous immune 
cells [2], provides new opportunities for precision targeted therapy and 
immunotherapy as a novel approach for ccRCC treatment. 

FAM72 is a gene family that is specific to neural stem cells. In 
humans, FAM72 is composed of four human-specific paralogs (A-D) that 

are associated with the Slit-Robo Rho GTPase activating protein 2 
(SRGAP2) paralog on chromosome 1 [3]. FAM72 has been shown to 
have potential carcinogenic effects [4] and serves as an independent 
prognostic factor for several cancers, including glioblastoma multiforme 
[5,6], adrenocortical carcinoma [7], and lung adenocarcinoma [8]. 
FAM72A is associated with the occurrence, development, and prognosis 
of non-neural tissue tumors, such as colon cancer, breast cancer, and 
lung cancer, uterine cancer, ovarian cancer [9–11]. FAM72B is signifi
cantly linked to the prognosis and immune status of prostate cancer and 
lung adenocarcinoma [12–14]. FAM72C exhibits good predictive 
capability in the early diagnosis of various non-advanced precancerous 
lesions of inflammatory bowel disease and colorectal cancer [15,16]. 
FAM72D serves as a predictor of clear renal cell carcinoma and multiple 
myeloma and regulates cell proliferation in tumors [17,18]. These 
findings suggest that FAM72 could serve as a predictive biomarker for 
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cancer prognosis. However, the mechanism of FAM72 in tumorigenesis 
and development remains poorly understood, and it has not yet been 
identified as a prognostic factor for ccRCC. 

This study is the first to investigate the function of FAM72 in ccRCC. 
We explored the role of FAM72 in evaluating the prognosis of ccRCC 
patients using survival analysis, univariate and multivariate Cox 
regression analysis, and a nomogram-based prognostic analysis, which 
demonstrated FAM72’s good predictive performance. Gene ontology 
analysis and enrichment analysis provided insights into understanding 
the biological mechanisms of FAM72, while the correlation analysis 
between FAM72 and immune infiltration and methylation provided a 
theoretical basis for exploring the predictive value and potential 
mechanism of FAM72 in ccRCC prognosis. 

2. Material and methods 

2.1. Data source 

The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) 
is a data portal that is part of the Cancer Genome Project, a large-scale 
initiative providing researchers with access to clinical and patholog
ical information on 33 types of cancer. For this study, we acquired 
clinical and pathological data on patients with ccRCC, along with RNA- 
Seq expression data for 539 tumor samples and 72 paracancerous tis
sues, from the TCGA database. Using this data, we analyzed the 
expression of FAM72A-D and investigated the relationship between this 
gene and ccRCC prognosis and immune infiltration. 

2.2. Expression analysis 

To analyze the RNAseq data from the TCGA Kidney Clear Cell Car
cinoma (KIRC) project, which was originally in the level 3 HTSeq-FPKM 
(Fragments Per Kilobase per Million) format, we converted it into TPM 
(Transcripts Per Million reads) format and applied a log2 trans
formation. We conducted statistical analysis using the Wilcoxon rank 
sum test, a non-parametric test suitable for analyzing small sample sizes, 
and visualized the results using the ggplot2 package of the R language 
(version 3.6.3), a widely used tool for producing high-quality graphics in 
scientific research. 

2.3. Receiver operating characteristic curve analysis 

We performed receiver operating characteristic (ROC) analysis to 
evaluate the predictive value of FAM72 expression for clinical outcomes. 
ROC analysis is a statistical method commonly used to assess the diag
nostic accuracy of continuous variables based on their sensitivity and 
specificity. We used the pROC package (version 1.17.0.1) to conduct the 
analysis and the ggplot2 package to visualize the results. 

2.4. Gene correlation analysis 

To investigate the expression correlation between the FAM72A-D 
gene and other genes, we calculated the Pearson correlation coeffi
cient between them using the R language (version 3.6.3). We corrected 
the p-values using the Benjamini-Hochberg (BH) method and used the 
resulting Pearson correlation coefficient values to create a correlation 
heat map. We utilized the ggplot2 package to generate the heat map. 

2.5. Survival analysis 

According to the average expression level of FAM72A-D genes, the 
patients were divided into FAM72 high expression group and FAM72 
low expression group. To investigate the effect of FAM72 expression on 
the clinical prognosis of ccRCC patients, we used the R language survival 
package (version 3.2-10) and the Survminer package (version 0.4.9) to 
perform statistical analysis and run visualization on survival data. Plot 

Abbreviations 

FAM72 Family with sequence similarity 72 member 
NSCs neural stem cells; ccRCC, clear cell renal carcinoma 
TKIs tyrosine kinase inhibitors 
ICIs immune checkpoint inhibitors 
RCC renal cell carcinoma 
TME tumor microenvironment 
SRGAP2 Slit-Robo Rho GTPase activating protein 2 
TCGA The Cancer Genome Atlas 
KIRC Kidney Clear Cell Carcinoma 
TPM transcripts per million reads 
ROC receiver operating characteristic curve 
GBM Glioblastoma multiforme 
KM Kaplan-Meier 
DEG differentially expressed genes 
OS overall survival 
GO Gene Ontology 
ssGSEA single-sample gene set enrichment analysis 
GBM Glioblastoma multiforme 
CNS central nervous system  

Table 1 
TCGA clear cell renal carcinoma patient characteristics.  

Characteristic Levels Overall 
(539) 

Percentage 
(%) 

Gender Female 186 34.5 
Male 353 65.5 

Age ≤60 269 49.9 
>60 270 50.1 

Race Asian 8 1.5 
Black or African 
American 

57 10.7 

White 467 87.8 
T stage T1 278 51.6 

T2 71 13.2 
T3 179 33.2 
T4 11 2 

N stage N0 241 93.8 
N1 16 6.2 

M stage M0 428 84.6 
M1 78 15.4 

Pathologic stage Stage I 272 50.7 
Stage II 59 11 
Stage III 123 22.9 
Stage IV 82 15.3 

Histologic grade G1 14 2.6 
G2 235 44.3 
G3 207 39 
G4 75 14.1 

PFI event Alive 378 70.1 
Dead 161 29.9 

OS event Alive 366 67.9 
Dead 173 32.1 

FAM72A 
expression 

Low 269 49.9 
High 270 50.1 

FAM72B 
expression 

Low 269 49.9 
High 270 50.1 

FAM72C 
expression 

Low 269 49.9 
High 270 50.1 

FAM72D 
expression 

Low 269 49.9 
High 270 50.1  
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Kaplan-Meier (KM) survival curves to compare differences. 

2.6. Univariate and multivariate logit models and nomgram analysis 

To further investigate the impact of FAM72 expression on ccRCC 
patient outcomes, we conducted univariate Cox regression analysis to 
explore the association between FAM72 gene expression levels and pa
tient overall survival (OS). We also performed multivariate analysis to 
determine whether FAM72 was an independent prognostic factor for 
survival in ccRCC patients. We used the Cox regression module of the 
survival package (version 3.2-10) for statistical analysis of survival data, 
with FAM72 considered statistically significant when the p-value was 
less than 0.05. Moreover, we constructed nomograms predicting 1-year, 
3-year, and 5-year survival probabilities by incorporating significant 
factors from the multivariate analysis, using the rms and survival 
packages in R software. To assess the goodness-of-fit of the Cox regres
sion model against actual outcomes, we generated a prognosis calibra
tion chart using the rms package (version 6.2-0) for both statistical 
analysis and visualization. 

2.7. Function enrichment analysis 

We extracted genes with correlation coefficient |r| ≥ 0.5 and p <
0.05 with FAM72A-D expression, and performed functional enrichment 
analysis to find possible biological pathways related to FAM72A-D. R 
language (version 3.6.3) was used for statistical analysis and data 

visualization. We used Metscape (http://Metascape.org) for Gene 
Ontology (GO) enrichment analysis and the ClusterProfiler package 
(version 3.14.3) for KEGG enrichment analysis. 

2.8. Gene set enrichment analysis 

To divide the four FAM72 genes into high and low expression groups, 
we used the method described by Love et al. [19]. We then utilized the 
DESeq2 package in R language software to analyze the differential 
expression of individual genes and identify differentially expressed 
genes (DEGs) between the two groups. We subjected the resulting DEGs 
to enrichment analysis using the clusterProfiler package in R language 
software. For the enrichment analysis, we utilized predefined gene sets 
sourced from the MSigDB database (https://www.gsea-msigdb.org/gs 
ea/msigdb/index.jsp). 

2.9. Immune infiltration analysis 

We estimated the level of immune infiltration in the tissue using 
transcriptome data and an algorithm that infers the fraction of immune 
cells present. For this analysis, we utilized the SVA package (version 
1.34.0), with single-sample gene set enrichment analysis (ssGSEA) - the 
built-in algorithm of the GSVA package - as the immune infiltration al
gorithm. The classification of the 24 types of immune cells was based on 
the study by Bindea et al. [20]. Additionally, we investigated the cor
relation between FAM72 gene expression and immune checkpoint 

Fig. 1. Expression levels of FAM72A-D in ccRCC from TCGA data. (A–E) The expression levels of FAM72A-D in ccRCC and normal tissue. (F) Receiver operating 
characteristic analysis (ROC) of FAM72A-D in ccRCC. (G) Correlation among FAM72A-D members. (*P < 0.05, **P < 0.01, ***P < 0.001). 
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Fig. 2. The prognostic value of FAM72A-D expression in ccRCC. (A–D) Survival curves of OS from TCGA data (n = 530).  
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Table 2 
Univariate and multivariate Cox regression model of prognosis for FAM72A-D in patients with clear cell renal carcinoma.  

Characteristics Total(N) HR(95% CI) P value 

FAM72A 
Univariate analysis 

Gender (Male vs. Female) 539 0.930 (0.682-1.268) 0.648 
Age (>60 vs.≤60) 539 1.765 (1.298-2.398) <0.001**** 
Race (Other vs. White) 532 1.222 (0.678-2.201) 0.505 
T stage (T2/T3/T4 vs. T1) 539 2.917 (2.095-4.061) <0.001**** 
N stage (N1 vs. N0) 257 3.453 (1.832-6.508) <0.001**** 
M stage (M1 vs. M0) 506 4.389 (3.212-5.999) <0.001**** 
Pathologic stage (Stage II&III&IV vs. I) 536 3.299 (2.342-4.648) <0.001**** 
FAM72A (High vs. Low) 539 1.343 (0.995-1.812) 0.054 

Multivariate analysis 
Age (>60 vs.≤60) 539 1.949 (1.271-2.990) 0.002*** 
T stage (T2/T3/T4 vs. T1) 539 0.671 (0.188-2.401) 0.54 
N stage (N1 vs. N0) 257 2.208 (1.089-4.477) 0.028* 
M stage (M1 vs. M0) 506 3.243 (2.002-5.254) <0.001**** 
Pathologic stage (Stage II&III&IV vs. I) 536 2.573 (0.670-9.881) 0.169 
FAM72A (High vs. Low) 539 1.518 (0.989-2.331) 0.056 
FAM72B 

Univariate analysis 
Gender (Male vs. Female) 539 0.930 (0.682-1.268) 0.648 
Age (>60 vs.≤60) 539 1.765 (1.298-2.398) <0.001**** 
Race (Other vs. White) 532 1.222 (0.678-2.201) 0.505 
T stage (T2/T3/T4 vs. T1) 539 2.917 (2.095-4.061) <0.001**** 
N stage (N1 vs. N0) 257 3.453 (1.832-6.508) <0.001**** 
M stage (M1 vs. M0) 506 4.389 (3.212-5.999) <0.001**** 
Pathologic stage (Stage II&III&IV vs. I) 536 3.299 (2.342-4.648) <0.001**** 
FAM72B (High vs. Low) 539 1.724 (1.269-2.342) <0.001**** 

Multivariate analysis 
Age (>60 vs.≤60) 539 1.901 (1.242-2.909) 0.003*** 
T stage (T2/T3/T4 vs. T1) 539 0.585 (0.168-2.046) 0.402 
N stage (N1 vs. N0) 257 1.810 (0.894-3.666) 0.099 
M stage (M1 vs. M0) 506 3.078 (1.896-4.998) <0.001**** 
Pathologic stage (Stage II&III&IV vs. I) 536 2.977 (0.797-11.113) 0.105 
FAM72B (High vs. Low) 539 1.764 (1.132-2.749) 0.012* 
FAM72C 

Univariate analysis 
Gender (Male vs. Female) 539 0.930 (0.682-1.268) 0.648 
Age (>60 vs.≤60) 539 1.765 (1.298-2.398) <0.001**** 
Race (Other vs. White) 532 1.222 (0.678-2.201) 0.505 
T stage (T2/T3/T4 vs. T1) 539 2.917 (2.095-4.061) <0.001**** 
N stage (N1 vs. N0) 257 3.453 (1.832-6.508) <0.001**** 
M stage (M1 vs. M0) 506 4.389 (3.212-5.999) <0.001**** 
Pathologic stage (Stage II&III&IV vs. I) 536 3.299 (2.342-4.648) <0.001**** 
FAM72C (High vs. Low) 539 1.601 (1.181-2.170) 0.002*** 

Multivariate analysis 
Age (>60 vs.≤60) 539 1.915 (1.250-2.934) 0.003*** 
T stage (T2/T3/T4 vs. T1) 539 0.574 (0.163-2.024) 0.388 
N stage (N1 vs. N0) 257 2.083 (1.032-4.205) 0.041* 
M stage (M1 vs. M0) 506 3.282 (2.021-5.329) <0.001**** 
Pathologic stage (Stage II&III&IV vs. I) 536 3.056 (0.809-11.540) 0.099 
FAM72C (High vs. Low) 539 1.196 (0.790-1.812) 0.397 
FAM72D 

Univariate analysis 
Gender (Male vs. Female) 539 0.930 (0.682-1.268) 0.648 
Age (>60 vs.≤60) 539 1.765 (1.298-2.398) <0.001**** 
Race (Other vs. White) 532 1.222 (0.678-2.201) 0.505 
T stage (T2/T3/T4 vs. T1) 539 2.917 (2.095-4.061) <0.001**** 
N stage (N1 vs. N0) 257 3.453 (1.832-6.508) <0.001**** 
M stage (M1 vs. M0) 506 4.389 (3.212-5.999) <0.001**** 
Pathologic stage (Stage II&III&IV vs. I) 536 3.299 (2.342-4.648) <0.001**** 
FAM72D (High vs. Low) 539 1.627 (1.200-2.205) 0.002*** 

Multivariate analysis 
Age (>60 vs.≤60) 539 1.953 (1.275-2.992) 0.002*** 
T stage (T2/T3/T4 vs. T1) 539 0.657 (0.187-2.306) 0.512 
N stage (N1 vs. N0) 257 2.071 (1.035-4.144) 0.04* 
M stage (M1 vs. M0) 506 3.257 (2.016-5.264) <0.001**** 
Pathologic stage (Stage II&III&IV vs. I) 536 2.715 （0.722-10.217) 0.14 
FAM72D (High vs. Low) 539 1.500 (0.988-2.279) 0.057  
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molecules PDCD1 (PD-1), CD274 (PD-L1), CTLA4, and CD80 (LAG-3) 
using the Spearman correlation coefficient method. We conducted sta
tistical analysis and data visualization using the ggplot2 package in the R 
language. 

2.10. FAM72 methylation analysis 

Previous studies have suggested a potential correlation between 
FAM72 expression and methylation, with evidence indicating that the 
methylation status of the FAM72 promoter may influence gene expres
sion in tumor tissues such as Glioblastoma multiforme (GBM), breast 
cancer, and liver cancer [6]. To investigate the relationship between 
FAM72 gene expression and methylation, we conducted an analysis 
using the MethSurv platform (https://biit.cs.ut.ee/MethSurv/). This 
platform enables methylation analysis of tumor samples in the TCGA 
database and allows for survival analysis of individual CpG methylation 
sites [21]. 

3. Results 

3.1. Clinical features 

We acquired gene expression and clinical data from a cohort of 539 
ccRCC patients in the TCGA database, which included information on 
age, sex, race, tumor stage, and other relevant clinical features as shown 
in Table 1. 

3.2. Expression of FAM72 in ccRCC tissues 

We found a significant positive correlation between the expression 
levels of FAM72A-D and various clinical features of ccRCC, including 
tumor volume, depth of invasion, and extent of involvement of adjacent 
tissues (Fig. 1A–E). Moreover, we observed a significant increase in the 
expression of all four FAM72 genes in tumor tissues compared to normal 
tissues, with corresponding AUC values of 0.881 (CI: 837–0.926), 0.859 
(CI: 0.809-0.908), 0.872 (CI: 0.828-0.916), and 0.855 (CI: 0.811-0.899) 
(Fig. 1F). Additionally, we identified a significant positive correlation 
between FAM72A-D gene expression levels, with FAM72A and FAM72B 
showing the highest correlation coefficient (r = 0.83) (Fig. 1G). 

3.3. Relationship between FAM72 and OS 

Patients with high expression of FAM72A-D exhibited a significantly 
lower overall survival rate than those with low expression (p < 0.001), 
according to Fig. 2A–D. The hazard ratios (HR) of all four FAM72 genes 
are more than 1, which suggests that they might act as ccRCC risk fac
tors. To learn more about the predictive significance of FAM72 expres
sion levels, we employed univariate Cox regression analysis. The 
findings revealed that higher expression levels of FAM72B, C, and D 
were substantially linked with lower overall survival (p < 0.001, p =
0.002, and p = 0.002, respectively) while FAM72A showed marginal 
significance (p = 0.054) (Table 2). In a multivariate analysis utilizing 
Cox regression models, FAM72B, age, and distant metastasis (M stage) 
were independently associated with overall survival in ccRCC patients. 

Fig. 3. Nomogram for predicting the probability of 1-, 3- and 5-year OS of ccRCC patients. (A–D) A nomogram that integrates FAM72A-D and other prognostic 
factors in ccRCC from TCGA data. 
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Fig. 4. Calibration curve for predicting the probability of 1-, 3- and 5-year OS for ccRCC patients. (A–D) The calibration curve of the nomogram in ccRCC from 
TCGA data. 
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Our study shows that the overall survival rates of ccRCC patients with 
high expression of FAM72 are significantly lower. 

3.4. Analysis of prognostic model based on FAM72 and clinical case 
factors 

We created a nomogram (Fig. 3A–D) that combines the expression 
levels of FAM72A-D with separate clinical risk factors such age and 
pathological stage. The nomogram makes it possible to calculate total 
points, greater scores denote a worse prognosis. The constancy of the 45◦

line across several circumstances in the calibration diagram showed a 
high agreement between the anticipated probability and the actual 
probability. According to the concordance values (C-index) for 
FAM72A-D, which were 0.587, 0.6, 0.597, and 0.602, respectively, the 
model does a respectable job of accurately forecasting actual results 
(Fig. 4A–D). 

3.5. Functional enrichment analysis of FAM72-related genes 

The overall number of genes we examined included 438 for FAM72A, 
413 for FAM72B, 185 for FAM72C, and 254 for FAM72D. Using GO 
analysis, we discovered that these genes are predominantly involved in 
mitotic cell cycle processes, DNA metabolic process organization, 
microtubule cytoskeleton, and other associated processes (Fig. 5A–D). 

Since the FAM72 gene is highly expressed during mitosis in renal clear 
cell carcinoma cells, we further analyzed the relationship between the 
FAM72 gene and a group of genes involved in cell division, such as genes 
related to chromosome segregation CDCA8, AURKA, BUB1, NUF2, and 
SGO1, AURKB, NEK2, centromere formation-related genes CENPA, 
CENPF, spindle formation-related genes KIF14, KIF20A, KIF23, DNA 
damage and repair-related gene EXO1 [39–42]. The results showed that 
these genes had a strong expression correlation with members of the 
FAM72 gene family (Fig. 5E). Further, KEGG pathway analysis revealed 
that genes associated with the FAM72 gene family were considerably 
enriched in a number of signaling pathways, including the cell cycle, 
oocyte meiosis, progesterone-mediated oocyte maturation, the Fanconi 
anemia pathway, and homologous recombination (Fig. 6A–D). 

3.6. FAM72-related signaling pathways based on GSEA 

We conducted logFC-based gene set enrichment analysis (GSEA) on 
more than 50,000 differentially expressed genes after single-gene dif
ferential expression analysis. According to our research, the cell cycle 
checkpoints and pathways for cytokine-cytokine receptor interaction 
were considerably enriched in the genes of FAM72A that were differ
ently expressed. Differentially expressed FAM72B genes were linked to 
extracellular matrix structure and leishmaniasis. On the other hand, 
FAM72C’s differentially expressed genes were predominately involved 

Fig. 5. Functional enrichment of FAM72A-D in ccRCC. (A–D) Gene ontology (GO) enrichment analysis of FAM72A-D and its co-expression genes in Metascape. The 
GO enriched terms are colored by p-value, where terms containing more genes tend to have more significant p-value. (E) Correlation between FAM72 and mitosis- 
related genes. 
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in ion channel transport and SLC-mediated transmembrane transport 
pathways. Finally, differentially expressed FAM72D genes were mostly 
implicated in cell cycle checkpoints and an anti-inflammatory response 
that facilitates Leishmania parasite infection (Fig. 7A–D). Recent studie 
suggests that FOXM1 can control the transcriptional level of FAM72A 
gene expression, which in turn can influence cell cycle progression and 
apoptotic signal transduction [43]. We also examined the relationship 
between FOXM1 and the FMA72A-D gene. The findings revealed that 
FOXM1 was poorly connected with the expression of FAM72C (r = 0.55) 
and FAM72D (r = 0.42) and moderately correlated with the expression 
of FAM72A (r = 0.55) and FAM72B (r = 0.59) (Fig. 7E). 

3.7. Correlation between FAM72 expression and immune infiltration 

The FAM72 gene family significantly positively correlated with 11 
different immune cell types, including T helper cells, T central memory 
(Tcm), T helper 1 (Th1) cells, T effector memory (Tem), Th2 cells, T 
cells, activated DCs (aDC), T follicular Helper cells (TFH), CD8 T cells, 
regulatory T cells (TReg), and cytotoxic cells, according to our immune 
infiltration analysis (Fig. 8A–D). The expression of immunological 
checkpoint molecules such as PDCD1 (PD-1), CD274 (PD-L1), CTLA4 
(cytotoxic T lymphocyte antigen-4), and CD80 (lymphocyte activation 
gene 3, LAG-3) showed a substantial positive connection with the 
expression of the FAM72 gene (Fig. 9A–H). 

3.8. Correlation between FAM72 gene expression and methylation 

We found that the methylation level of FAM72 was significantly low, 
as shown in Fig. 10, and that increased gene expression may be con
nected with this low methylation level (Fig. 10A–C). We examined the 
relationship between the methylation of each CpG island and patient 
survival rates in order to learn more about the effect of FAM72 
methylation on ccRCC patient prognosis. Our results showed that 
hypomethylation at various locations of the FAM72 gene was signifi
cantly linked with worse prognosis, with the exception of cg04968835 
(p = 0.4) and cg07344025 (p = 0.15) (Fig. 10D). 

4. Discussion 

The second most common malignant tumor of the urinary system, 
after bladder cancer, is renal cell carcinoma. Kidney clear cell carcinoma 
is the most prevalent renal cell carcinoma and is hence frequently 
referred to as RCC. The main form of treatment for localized RCC is still 
surgical excision because conventional radiation and chemotherapy are 
ineffective against RCC. However, after surgical excision, up to 40% of 
localized kidney malignancies may subsequently form metastatic tu
mors. Due to its resistance to chemotherapy and radiotherapy as well as 
the absence of efficient therapeutic alternatives, metastatic RCC has a 
very bad prognosis [22]. The median survival time of RCC patients is 
still shorter than expected despite the widespread use of numerous 
targeted medications in their care. Therefore, it is crucial to find 

Fig. 6. The top 5 pathways were differentially enriched according to the level of DEGs in FAM72A-D related ccRCC. (A–D) The enrichment plot was obtained from 
the gene set enrichment analysis (GSEA). 

H. Gou et al.                                                                                                                                                                                                                                     



Biochemistry and Biophysics Reports 35 (2023) 101506

10

treatment targets for RCC as well as markers for early identification 
[23]. 

According to our findings, FAM72 may be a useful predictive 
biomarker for ccRCC, with higher levels of FAM72 expression in patients 
generally being associated with worse prognoses, most likely as a result 
of hypomethylation at their CpG islands. Using the comprehensive 
human clinical cancer research database cBioPortal, which contains the 
Cancer Genome Atlas (TCGA), Rahane et al. [5] carried out a thorough 
investigation of FAM72 (A-D) expression and somatic mutation data in 
31 tumors, including glioblastoma multiforme (GBM). They obtained 
information on human gene mutations from TCGA using a computerized 
clinical data analysis approach, and discovered that the transcription of 
the mitotic cell cycle gene FAM72 was associated with the expression of 
the proliferation marker MKI67. It was discovered that neural stem cells 
(NSCs) may turn into cancer stem cells, giving rise to brain tumor cells 
responsible for brain tumors such as GBM, if the gene transcriptional 
control unit, which is the intergenic region of two subgene units SRGAP2 
and FAM72, is out of control. Ho et al. [6] also covered the monitoring of 
the |-SRGAP2-FAM72-| master gene, its function in GBM, and the pro
spective application of FAM72 for the diagnosis of other cancers beyond 
the central nervous system (CNS). These earlier discoveries imply that 
FAM72 might serve as an oncogene. Our research strengthened the ev
idence for the overexpression of the FAM72 gene in ccRCC, confirming 
its potential contribution to the disease’s development and laying the 
groundwork for the use of the FAM72 gene family in the diagnosis and 

treatment of the disease. 
Our GO analysis showed that genes associated with FAM72 are pri

marily involved in cell cycle processes, such as cell mitosis, meiosis, 
DNA synthesis, centrosome assembly, and particularly cell cycle 
checkpoints in the G2/M phase, which are essential for controlling cell 
proliferation. Retinoblastoma genes in cancers, the PID PLK1 signaling 
pathway, and the PID AURORA B signaling pathway were further 
enriched terms (Fig. 5). However, additional research is required to 
validate these results. Genes connected to FAM72 expression were 
significantly enriched in the cell cycle, homologous recombination, and 
other pathways strongly related to tumor initiation and progression, 
according to KEGG and GSEA analysis. According to Wang et al., 
FAM72A may control cell growth by modifying the metabolism of 
cellular reactive oxygen species, especially in tumors caused by the 
Epstein-Barr virus [24]. This suggests that FAM72A and members of its 
family may also encourage tumor growth and a bad prognosis through 
related mechanisms. 

T-cell immune infiltration in tumors has been linked to a better 
prognosis and a better response to cancer treatments [25,26]. In addi
tion to attracting other immune cells to the tumor location, T cells are 
essential for identifying and killing tumor cells [27]. Increased T-cell 
infiltration in tumors has been associated with better survival and 
treatment response in a number of human or animal studies in mela
noma [28], osteosarcoma, and small cell lung cancer [29]. Our results 
suggest that the expression of FAM72A-D can reflect the degree of 

Fig. 7. The functional pathways of FAM72A-D in ccRCC. (A–D) Several pathways were enriched in FAM72A-D related ccRCC. (E) Chord chart of correlation test 
between FOXM1 and FAM72A-D. 
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Fig. 8. FAM72A-D was positively correlated with the infiltration of most immune cells. (A–D) The association between the expression level of FAM72A-D and the 
immune infiltration in the tumor microenvironment. 
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immune infiltration in ccRCC and offer insight into immunotherapy for 
ccRCC. Immune infiltration includes T cells such as T helper cells, Tcm, 
Tem, Treg, TFH, cytotoxic cells, CD8 T cells, and dendritic cells such as 
aDC. Regulatory T cells (Treg) can compromise immune surveillance in 
healthy people and lessen the anti-tumor immune response in 
tumor-bearing hosts, which is significant to keep in mind [30]. The 
expression of PDCD1 (PD-1), CD274 (PD-L1), CTLA4 and CD80 (LAG-3) 
in ccRCC also showed a favorable connection with FAM72A-D. The 
immune response is modified by their binding because PD-L1 is a ligand 
for PD-1. Recent years have seen a major increase in the attention on the 
PD-1/PD-L1 axis in tumor immunotherapy [31]. PD-L1+
tumor-infiltrating immune cells and high stromal CD8+ TIL density are 
linked to high stromal PD-1+ tumor-infiltrating lymphocyte density, 
which frequently results in a poor prognosis [32]. There is a strong 
correlation between high CTLA4 levels and a poor prognosis in in
dividuals with nasopharyngeal cancer [33] and thymoma [34]. This is 
because CTLA4+ tumor cells might impair DC maturation and activity. 
LAG-3 has been studied in a number of malignancies and has been 
shown to work in concert with the PD-1/PD-L1 axis [35]. High LAG-3 
expression in tumor tissue has been linked in studies to a poor prog
nosis for HCC [36]. Our findings imply that FAM72 may be a promising 
predictive biomarker for the efficacy of immunotherapy. 

A significant epigenetic alteration known as DNA methylation reg
ulates gene expression throughout the onset and spread of cancer. Re
searchers can more fully comprehend the regulatory role of DNA 
methylation and make accurate prognostic predictions for tumor pa
tients by thoroughly analyzing DNA methylation and gene expression 
data [37]. The evaluation of prognostic value can be improved by using 
multi-gene or gene family biomarkers [38]. In this study, we created a 

predictive model based on three FAM72 A/B/D genes that are 
methylation-driven. We discovered that in tumors from ccRCC patients, 
hypomethylation of these genes was substantially related with increased 
expression and a poor prognosis. As a result, the FAM72 gene-based 
epigenetic regulatory pattern of methylation may be used as an addi
tional predictive reference for ccRCC patients. 

Although FAM72 A-D and the prognosis of ccRCC patients have been 
linked by bioinformatic analysis utilizing open-access databases, addi
tional study is required to establish its accuracy assessment and practical 
application. Through cell and animal investigations, we intend to 
explore the mechanism of the FAM72 gene family in ccRCC in our up
coming research, offering fresh insights into its potential application as a 
therapeutic and predictive biomarker. 

Taken together, these results suggest that the high expression of 
FAM72 in ccRCC may be caused by the hypomethylation modification of 
the gene and the action of the transcription factor FOXM1, while FAM72 
can affect immune cell infiltration, expression of immune checkpoint 
molecules and cell cycle promote the progression of clear cell renal cell 
carcinoma. The FAM72 family may be a potential poor prognostic mo
lecular marker in ccRCC, and a comprehensive understanding of it can 
provide important insights into tumor progression and prognosis 
(Fig. 11). 
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Fig. 10. The methylation of FAM72 A/B/D in ccRCC. (A–C) The visualization between the methylation level and the FAM72 A/B/D expression. (D) The Kaplan- 
Meier survival of the promoter methylation of FAM72A. 
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