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ARTICLE

gQSPSim: A SimBiology-Based GUI for Standardized QSP 
Model Development and Application

Iraj Hosseini1 ,†, Justin Feigelman1,†, Anita Gajjala2, Monica Susilo1, Vidya Ramakrishnan1, Saroja Ramanujan1 and Kapil Gadkar1,*

Quantitative systems pharmacology (QSP) models are often implemented using a wide variety of technical workflows and 
methodologies. To facilitate reproducibility, transparency, portability, and reuse for QSP models, we have developed gQSPSim,  
a graphical user interface–based MATLAB application that performs key steps in QSP model development and analyses. The 
capabilities of gQSPSim include (i) model calibration using global and local optimization methods, (ii) development of virtual  
subjects to explore variability and uncertainty in the represented biology, and (iii) simulations of virtual populations for  
different interventions. gQSPSim works with SimBiology-built models using components such as species, doses, variants, 
and rules. All functionalities are equipped with an interactive visualization interface and the ability to generate presentation-
ready figures. In addition, standardized gQSPSim sessions can be shared and saved for future extension and reuse. In this 
work, we demonstrate gQSPSim’s capabilities with a standard target-mediated drug disposition model and a published 
model of anti-proprotein convertase subtilisin/kexin type 9 (PCSK9) treatment of hypercholesterolemia.

Pharmaceutical researchers are increasingly exploring 
modeling approaches such as quantitative systems phar-
macology (QSP) to address current challenges in drug 
development.1 QSP models of varying complexity and 
biological focus have been successfully used in drug devel-
opment applications2–6 in recent years. As QSP continues 
to gain traction, there is an increasing need for standards 
and tools that facilitate the efficient execution, review, and 
dissemination of the developed models and workflows. 
Although conceptual frameworks for QSP workflows have 
been proposed that address key aspects such as uncer-
tainty in complex models, biological variability, and more, 
there still remains a need for standardized tools to execute 

them. For example, Cheng et al.7 recently published a QSP 
toolbox for use with MATLAB-based (MathWorks, Natick, 
MA) models, which provides many of the core functionalities 
of the typical QSP workflow including optimization, virtual 
population development, and the ability to perform and vi-
sualize simulations. This set of scripts provides a valuable 
resource for QSP modelers that can help to standardize 
the modeling workflow. However, the users should be well-
versed in Matlab scripting and have a good understanding 
of the built-in toolbox functions in order to effectively use 
the capabilities for their QSP projects. Additionally, the tool-
box does not provide a graphical interface for performing 
tasks or visualizing results.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  Quantitative systems pharmacology (QSP) models are a 
powerful tool for gaining insight into pharmacological effects 
in a disease setting. However, they are frequently generated 
using a mixture of custom methods in a variety of program-
ming languages, hindering collaboration and reproducibility.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  gQSPSim is designed to provide the means for trans-
parent, reproducible, and portable QSP modeling by  
extending the capabilities of SimBiology.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  gQSPSim is the first interactive graphical user in-
terface that provides the capability for calibration of 

QSP models to aggregated standardized data as well 
as the generation, simulation, interactive visualization, 
and statistical calibration of virtual subjects. All gener-
ated results are stored in Excel files for easy reference 
and modular input to each of core functionalities within 
gQSPSim.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,  
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  gQSPSim will greatly enhance the ability to share and 
reproduce original QSP models and workflows, thereby 
accelerating model development, reuse, and distribution. 
This is expected to facilitate activities across all stages of 
drug research and development.
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To address this technology gap, we developed the 
Genentech QSP Simulator (gQSPSim; Genentech Inc., 
South San Francisco, CA) application, a tool designed to 
facilitate the development, exploration, and distribution of 
QSP models using an interactive graphical environment. 
gQSPSim is based on MATLAB, one of the most commonly 
used platforms for QSP and pharmacokinetic/pharmaco-
dynamic (PK/PD) modelling,8 along with the SimBiology 
toolbox, which offers user-friendly model development and 
simulation capability for biological models. gQSPSim ex-
tends SimBiology capabilities by, among others, enabling 
streamlined calibration of QSP models simultaneously to 
data collected across multiple experimental conditions or 
cohorts, exploration of parameter uncertainty and biological 
variability via generation of virtual populations composed 
of individual virtual subjects, and the generation of robust 
model-based predictions with virtual populations aided 
by interactive visualizations. As such, gQSPSim has been 
designed to support the core QSP workflow, and espe-
cially stages 3–5 (“Representing the Biology,” “Capturing  
Behaviors & Building Confidence,” and “Exploring Knowledge 
Gaps & Variability”) in the six-stage QSP workflow described 
by Gadkar et al.9

gQSPSim uses elements of the SimBiology models, in-
cluding Doses, Variants, Rules, and Reactions, as optional 
inputs to configure task-specific simulation settings. This 
enables customizable, model-based exploration for hypoth-
esis testing, treatment comparisons, visual comparison to 
data, and model qualification tests. gQSPSim is designed 
for reproducibility, transparency (i.e., no additional knowl-
edge or configuration is required to replicate and understand 
shared results), and robustness. To maximize project reuse 
and distribution, projects are encapsulated within cross-plat-
form compatible sessions files that can be easily shared 
between users. Beyond just model sharing, gQSPSim fa-
cilitates workflow sharing by including the functionalities  
inside the session, ensuring that the user of the model exe-
cutes the simulations and functionalities in an identical 
way as the author. All input and result files are stored 
as Microsoft (Redmond, WA) Excel files for easy mod-
ification and interpretation. The entire QSP workflow 
from parameter optimization to novel predictions can 
be performed within gQSPSim using the contents of the 
session file and the SimBiology model. In the following 
sections, we describe the full capabilities of gQSPSim 
and provide two illustrative case studies demonstrating 
these capabilities.

METHODS
Overview of software development
gQSPSim is a graphical user interface based on MATLAB.  
It uses functionalities from MathWorks MATLAB, the SimBiology 
and Statistics and Machine Learning Toolboxes, and the 
GUI Layout Toolbox version 2.3.3 and higher.10 Its use 
requires a MATLAB license with the aforementioned tool-
boxes. The Parallel Computing Toolbox can also be used to 
enable a parallel version of gQSPSim’s core functionalities 
for faster execution on local or remote clusters. Additional 
optimization algorithms are available if the Optimization 
Toolbox and/or Global Optimization Toolbox are installed.

The implementation of the application is based on the 
model-view controller or MVC architecture. The “model” 
contains the analysis or configuration. This can be executed 
from the MATLAB command-line independently from the 
front-end viewer. The model is represented by the back-end 
objects within the “+QSP” MATLAB package folder. The 
“viewer” designates the graphical user interface (GUI), which 
is mostly contained within the “+QSPViewer” package folder. 
Implementation of the viewer is based on the GUI Layout 
Toolbox,10 a programmatic layout manager, from MATLAB 
Central. The “controller,” represented by the viewer’s call-
back functions, responds to inputs by the user by updating 
the model and subsequently the viewer. The controller is also 
contained within the “+QSPViewer” package folder.

gQSPSim has been tested in MATLAB releases R2017b 
and R2018a. The software is not compatible with earlier 
MATLAB releases and currently has not been fully tested 
for releases after MATLAB R2018a. The application requires 
MATLAB and is not supported for distribution via MATLAB 
Compiler.  Both Windows and Mac operating systems are 
supported. It is available to download from MATLAB Central 
and GitHub (https​://www.mathw​orks.com/matla​bcent​ral/
filee​xchan​ge/73631-gqspsim).

GUI application overview
Figure 1 shows the framework for gQSPSim. Model con-
struction is performed separately within SimBiology, and 
the functionalities that use the model are run in gQSPSim. 
Any subsequent changes to the SimBiology model, such as 
changes to species, tasks, doses, and so on, are automati-
cally reflected in the gQSPSim session.

gQSPSim organizes its building blocks and functionalities 
into “session files,” each containing the necessary elements 
for the development of a QSP project. The session file main-
tains the file names, relationships, and mappings for the 
project, but does not store the contents of the data files or 
SimBiology models. Instead, the most recently saved ver-
sions of the SimBiology model and input files will be loaded 
automatically at run time ensuring that the simulation depen-
dencies are current when it is executed. In addition, gQSPSim 
can use multiple SimBiology project files and models simul-
taneously within a single session file. The building blocks and 
functionalities are described below. Table 1 shows a gen-
eral description of gQSPSim components and features, and 
Figure 2 shows a screenshot of gQSPSim GUI.

gQSPSim general settings
The root node in the gQSPSim Session Explorer tree view 
displays the session name and lets the user modify general 
settings including the following:

•	 Defining the session’s root directory and paths for 
custom objective functions and user-defined functions. 
The root directory sets the absolute path for the top-
level folder containing all the building blocks and results 
produced by different functionalities. In the session, 
the location of every file is saved relative to the root 
path. When a session is opened with another com-
puter and/or operating systems, the user only needs 
to change the root path to the correct location.

https://www.mathworks.com/matlabcentral/fileexchange/73631-gqspsim
https://www.mathworks.com/matlabcentral/fileexchange/73631-gqspsim
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•	 Toggling parallel computation and the parallel cluster to 
be utilized (optional).

•	 Toggling periodic autosave and/or autosave before each 
run (optional).

In the Session Explorer, right clicking on top-level nodes al-
lows users to add a new subnode of that type. Right-clicking 
on subnodes also provides options to delete or duplicate the 
item. The duplicated item will have the same properties and 
settings, but there will be no results associated with it. Each 
session has a deleted items node that keeps all deleted items 
until they are permanently deleted. Deleted items can be re-
stored to their original location in the tree.

gQSPSim building blocks and functionalities
gQSPSim fully supports and facilitates the “Six-Stage 
Workflow” for QSP model development described by 
Gadkar et al.9 Following the “Information Gathering” and 

“Model Scoping” steps, a typical workflow would be to 
(i) use SimBiology to construct a model (“Representing 
the Biology”), (ii) use gQSPSim to optimize this model 
for all appropriate experimental conditions (“Capturing 
Behaviors & Building Confidence”), (iii) use gQSPSim to 
explore biological variability and/or model uncertainty 
through the construction of a virtual cohort (“Exploring 
Knowledge Gaps and Variability”), (iv) use gQSPSim to 
recalibrate the generated cohort to best match available 
statistical data through the use of prevalence weights 
using the Virtual Population Generation functionality, and 
(v) use the generated virtual cohort or virtual population 
and the defined tasks to perform simulation studies ad-
dressing questions or scenarios of interest (“Supporting 
Study Design”).

In this section, we introduce the basic building blocks de-
fined in gQSPSim (see Table S1 and Figure S1 for a detailed 
description of building blocks and functionalities). Refer 

Figure 1  A schematic workflow of how modelers employ SimBiology and gQSPSim. An expert modeler builds the model diagram, 
variants, dosing objects, and so on in SimBiology. Simultaneously, the modeler can launch a new session in gQSPSim and use 
SimBiology models to create tasks with the settings specified in the Methods section. The modeler can also add parameter files, 
datasets, acceptance criteria, target statistics, and virtual subjects as building blocks to perform a variety of functionalities including 
simulation, Optimization, Virtual Cohort Generation, and Virtual Population Generation. Because the session file only stores the folder 
path to model files and datasets and does not store their content, the modeler can change models and files outside of gQSPSim, 
save the files, and seamlessly run the previously defined functionalities. All of the functionalities are supported by features such as 
interactive visualization and export of results as presentation-ready figures and Excel files. The session file can be saved for future 
use. There is an option to autosave the session files and also to use parallel processing to speed up the execution of functionalities. 
GUI, graphical user interface.
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to Gadkar et al.9 for a more detailed explanation of QSP-
related concepts.

•	 Task: A simulated experiment with user-defined selec-
tion of variants, doses, species, rules, reactions, and 
simulation settings. Each task can be thought of as 
an equivalent of a real-world experimental condition/
study with specific treatments (dosing level/regimen). 
Figure S2 shows the Edit view for this building block.

•	 Parameters: A list of model parameters used for either 
Optimization or Virtual Cohort Generation, specifying 
upper and lower bounds for exploration, and initial esti-
mates for each parameter.

•	 DataSet: A preclinical or clinical dataset to be used for 
visual predictive checks and/or numerical optimization.

•	 Acceptance Criteria: A set of upper and lower bound lim-
its of observed measurements used to define acceptable 
virtual subjects for inclusion into a virtual cohort.

•	 Target Statistics: A preclinical or clinical dataset contain-
ing statistics of observed measurements to be used for 
Virtual Population Generation.

•	 Virtual Subject(s): A collection of one or more virtual sub-
jects (also referred to as virtual patients). Each virtual 
subject is a vector of parameters and/or initial conditions 
of species. The collection of virtual subjects captures 
observed data variability. Virtual subjects can be either 
weighted or unweighted. Unweighted virtual subjects are 
referred to as virtual cohorts, whereas weighted virtual 
subjects are called virtual populations because they are 
typically prevalence weighted to resemble a real-world 
population. The virtual subjects in a cohort or population 
can have an optional “Group” identifier to indicate a sub-
set of subjects of a particular phenotype. The user can 
choose to simulate a selection of these groups from the 
virtual subjects file.

Gadkar et al.9 provides more detailed definitions of the 
terms virtual subject, reference virtual subject, virtual cohort, 
virtual population, prevalence weighting, and acceptance 
criteria. Datasets, acceptance criteria, target statistics, pa-
rameters, and virtual subjects are all stored as Excel files with 
a defined column format (see Table S1 for details).

Table 1  gQSPSim components and features

Items Description

General

SimBiology Project A SimBiology .sbproj file containing the models of interest

gQSPSim GUI Graphical user interface for gQSPSim, providing methods for development and utilization of SimBiology models

Session File A MATLAB .qsp.mat file containing settings, building blocks, and functionalities created for one or more SimBiology 
projects

Building blocks Tasks, parameters, datasets, acceptance criteria, target statistics, and virtual subjects

Functionalities Simulation, Optimization, Virtual Cohort Generation, and Virtual Population Generation

Menus

File •	 New: Create new session file
•	 Open: Open a saved session file
•	 Open recent: Open a recently opened file
•	 Close: Close a session file
•	 Save: Save the session file
•	 Save as: Save the session file with a new name
•	 Exit: Exit the QSP app

QSP •	 Add new item: add new items in the building blocks and functionalities
•	 Delete selected item
•	 Restore deleted item

Features and functionalities

  •	 Simulation and creation of virtual subjects, cohorts, and populations
•	 Timestamps and annotations for each workflow component
•	 Interactive visualization of results
•	 Extended plot settings (Figure S7)
•	 Exporting plots as figures and data as Excel files
•	 No need for session updates when changes are made to the content of external files (.sbproj or Excel files) if files 

names and relationships do not change
•	 Autosave feature for periodic saving or before events
•	 Parallel processing to speed up execution
•	 Easy to share across OS platforms

Views

Summary Highlights the name, description, results path, and a high-level overview of the dataset, tasks, parameters, species-
data mapping, initial conditions, and so forth, defined in each building block or functionality

Edit Allows the user to specify/change the different inputs mentioned in the summary view specific to each building block 
or functionality

Visualization Visualization of functionality outputs including simulated time profiles for selected species and diagnostic plots for 
Virtual Cohorts Generation

GUI, graphical user interface; OS, operating system; QSP, quantitative systems pharmacology.
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The building blocks are used to enable the different func-
tionalities used in QSP model development workflows as 
described (see Table S2 for a detailed description):

•	 Simulation: Runs simulations for a set of task-virtual 
population pairs; each task is run for the specified virtual 
population. The choice of virtual population may also 
be the model default parameter values (see Figure S3  
for the Edit view). The simulation results are saved as 
a .mat file in the specified results directory.

•	 Optimization: Runs parameter estimation using either 
scatter search,11 particle swarm,12 or a local search 
method (depending on the available optimization tool-
boxes). A dataset and a parameter file are required for 
this functionality (Figure S4). Optimization produces a 
single virtual subject which is saved as an Excel file in 
the optimization results folder and automatically added 
to the available virtual subject(s).

•	 Cohort Generation: Generates a virtual cohort using one 
of two methods: (i) dispersed random sampling (with 
user-specified distribution) or (ii) likelihood-free Markov 
Chain Monte Carlo method.13 The user needs to specify 
a parameter file and an acceptance criteria (Figure S5). 
The results are saved as an Excel file in the specified 

results folder and the outcome is automatically added to 
the virtual subject(s).

•	 Virtual Population Generation: Estimates the optimal prev-
alence weights for each virtual subject within the specified 
virtual cohort using the provided target statistics (Figure 
S6). The results are saved under the virtual subject(s).

RESULTS

Case study 1: A target-mediated drug disposition 
(TMDD) model to evaluate antibody PK and target 
profiles
Antibody-based drug development often involves esti-
mating target neutralization as a function of dose level, 
regimen, and antibody affinity to determine the require-
ments for desired target engagement. In this case study, we 
consider a two-compartment model with target-mediated 
drug disposition in the central compartment.14 This model 
was selected because of its broad use and familiarity to the 
modeling community. A schematic of this model is shown 
in figure 1 of Hosseini et al.15

In the following, we demonstrate how to use gQSPSim 
to (i) perform optimization to obtain reference parameter 

Figure 2  gQSPSim: Session explorer and visualization view for the simulation functionality. In gQSPSim there are two major sections: 
(i) Session Explorer, which is a tree structure on the left that shows the open session files as the root nodes and under each session 
it includes building blocks, functionalities; and deleted items and (ii) the views on the right, where by default all the nodes land on 
the summary view but the user can switch to the edit (Figures S3–S6) or visualization view (above). The visualization view provides 
interactive plotting where the user can select what simulation and species to plot. Then the user selects data columns and group 
of data to be overlaid on the plots. The user can change colors, markers, and line styles and has access to extended plot settings  
(Figure S7) to modify different figure properties.
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values to fit the mean of clinical data, (ii) develop a virtual 
cohort to capture the variability observed in the clinical pa-
tients, (iii) generate a virtual population that closely matches 
the clinical population statistics, and (iv) run model-based 
predictions for novel scenarios using the virtual population. 
Detailed instructions for reproducing this case study are 
provided in Supplementary Instructions S1.

The clinical dataset available for this case study in-
cludes time-course measurements for free antibody PK 
concentrations, free target concentrations, and total target 
concentrations available for two dose groups at 0.3 and 
3.0 mg/kg (Table S3). These data are linked to gQSPSim by 
creating a dataset building block and specifying the input 
file. To perform an optimization of the model parameters, the 
user defines a subset of parameters to be explored along 
with a specified range and initial estimate for each model 
parameter stored in an Excel file. Within the Optimization 
functionality, the user configures the settings and selects the 
objective function calculated using the user-specified map-
pings between individual tasks and experimental groups 
within the selected dataset. Figure 3a–c shows the optimi-
zation results for the free drug (PK), free target, and total 
target for the reference virtual subject matching the mean 
values of the measured data. Optimization using either par-
ticle swarm or scatter search gave identical performances. 
The final estimate of each parameter and the initial values 
are shown in Table S4. A comparison of simulations using 
the optimized parameters and the initial parameter values 
highlights the significant improvement in the model fits 
(Figure S8).

The Virtual Cohort Generation functionality in gQSPSim 
produces alternate parameterizations of the model so that 
the model outputs collectively span the inter-patient range 
of the clinical measurements. The range from the clinical 
data is included in an Excel file and linked to an acceptance 
criteria object in gQSPSim. Figure 3d–f shows the corre-
sponding plots for the virtual cohort subjects at the dose 
levels specified previously. The solid line represents the me-
dian, and the shaded region represents 95% of the virtual 
cohort (the 2.5th and 97.5th percentiles of the virtual cohort). 
The ‘*’ symbols represent the acceptance criteria, that is, 
the lower and upper bounds of the clinical data. Here, we 
observe that all the virtual cohort subjects are within the ac-
ceptance criteria and together capture the variability of the 
clinical data. The Virtual Cohort Generation is run until either 
the desired minimum number of virtual subjects are gener-
ated or a user-defined maximum number of simulations are 
performed.

The diagnostic plots generated within Cohort Generation 
provide insight into the robustness of the cohort gener-
ated. In particular, one can see whether the virtual subjects 
span the range of the observed data; if not, one may wish 
to adjust the range of parameter values used for Virtual 
Cohort Generation. Figure S9 displays the simulated time 
profiles for each valid virtual subject in the cohort com-
pared with the acceptance criteria. Figure S10 shows the 
distribution of the parameters for the valid virtual subjects 
in the cohort along with the prespecified ranges for each 
parameter. From this view, it is evident whether valid virtual 
subjects tend to be biased toward particular parameter 

values and whether the ranges should be extended to im-
prove the chance of generating new valid virtual subjects. 
One may also visualize the simulated outputs for invalid 
virtual subjects (i.e., where the acceptance criteria were 
not satisfied) to inform subsequent iterations of Virtual 
Cohort Generation if required (Figure S11; invalid patients 
shown in gray).

The Virtual Cohort Generation functionality also includes 
the flexibility to generate virtual cohorts for groups that have 
different initial conditions for some measurements. In the 
example shown in Figure S12, the target levels are differ-
ent between the two dose groups (560 and 1120 ng/mL for 
groups 1 and 2, respectively). This information can be in-
cluded in the Virtual Cohort Generation step as described in 
Supplementary Instructions S1.

Although the virtual cohort spans the range of the clini-
cal data, it does not necessarily capture the statistics of the 
dataset. For this, virtual subjects within the virtual cohort must 
be assigned prevalence weights to create a virtual popula-
tion (see Stage 5 “Exploring Knowledge Gaps & Variability” 
of Gadkar et al.9). gQSPSim provides the Virtual Population 
Generation functionality for this purpose. The target statistics 
file contains the mean or mean and standard deviations for 
each time point, species, and group combination. The preva-
lence weighting is performed such that the difference between 
the model output statistics and the target statistics is mini-
mized (see Klinke16 for a description of prevalence weighting). 
This optimization is performed by constructing and solving a 
quadratic objective function with linear constraints.

Figure 3g–i shows the weighted average free antibody, 
free target, and total target concentrations for the virtual 
population along with the means from the data. Through vi-
sual comparison, it is evident that this procedure achieves 
good agreement with the provided target statistics. 
Following the prevalence weighting, the virtual population 
can then be used to make prospective predictions using 
the Simulation functionality. As a demonstration of this ca-
pability, four different dosing scenarios are simulated using 
the virtual population: 0.3  mg/kg single dose, 3  mg/kg  
single dose, 1 mg/kg every 2 weeks, and 10 mg/kg every 
2 weeks. These scenarios are created using the task build-
ing block. As seen in Figure 4a–c, when compared with 
the lower doses, the 10 mg/kg dose binds the target for a 
relatively long time and achieves nearly complete neutral-
ization for the first ~30  days. The shaded regions contain 
the 95% of the virtual population (taking into account the 
prevalence weights), and the line represents the weighted 
median. Note that the simulation functionality allows the 
flexibility to simulate tasks with a variety of choices for vir-
tual subjects including the model default parameter values 
as a single virtual subject, user-defined virtual subjects with 
or without prevalence weights, and virtual subjects pro-
duced by Optimization, Virtual Cohort Generation, or Virtual 
Population Generation. In addition, the virtual cohorts/ 
populations may contain group information, which can be 
used to classify them based on observed measurements, 
such as when groups in the dataset have different baseline 
levels for a specific measurement. For example, Figure S13  
shows a simulation for a virtual cohort containing two groups 
with different baseline free target levels.
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The case study exemplifies how scientists can use gQSP-
Sim to perform the technical workflow associated with QSP 
modeling approaches, such as generation of a cohort or 
population that agrees with measured PK/pharmacodynam-
ics, evaluation of different phenotypes within the population, 
and predictions for novel contexts. The results produced by 
the various functionalities can be explored through the inter-
active plots and easily exported for additional analyses and 
dissemination.

Case study 2: A mechanistic systems model of anti-
proprotein convertase subtilisin/kexin type 9 (PCSK9) 
to evaluate clinical dosing regimens
The calibration and validation of QSP models often require 
clinical data from multiple studies as well as published 

literature. It is often challenging, especially in more com-
plex models, to report the specific details of the calibration 
and validation process. With the gQSPSim app, all steps of 
QSP model development, including calibration, virtual pop-
ulation development, and simulation, are made transparent 
and reproducible, greatly facilitating model distribution. The 
goal of this case study is to reproduce the Virtual Population 
Generation and validation steps contained in a published 
QSP model, showcasing how the app could be used in the 
development of a clinically impactful QSP model. We de-
cided to use the anti-PCSK9 model17 because this model 
has been shown to be fully reproducible on the basis of its 
published details and supplementary materials.18

The model describes the mechanism of action of an-
ti-PCSK9 in lowering low density lipoprotein (LDL) 

Figure 3  Case study 1: Results for target-mediated drug disposition model Optimization, Virtual Cohort, and Virtual Population 
Generation. The results show (a–c) the output of Optimization, (d–f) Virtual Cohort, and (g–i) Virtual Population Generation for 
three species: free drug, free target, and total target concentrations. (a–c) Two Optimization algorithms were used: particle swarm 
optimization and scatter search methods. Note that the results for the two Optimization methods gave identical performances. (d–f) 
For the Virtual Cohort Generation, we used the random sampling method. The solid line represents the weighted median and the 
shaded region represents the 2.5th and 97.5th percentiles of the virtual cohort. The symbols represent the lower and upper bounds 
of the observed data, suggesting that the virtual cohort captures the range of observed data fairly well. (g–i) The virtual population 
was generated by prevalence weighting of the virtual cohort shown previously. The solid line represents the weighted mean, and the 
symbols represent the observed mean data. PSO, particle swarm optimization; SSO, scatter search.
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cholesterol. LDL receptors on hepatocytes are responsible 
for the removal of LDL particles from circulation. However, 
circulating PCSK9 proteins can bind to these LDL recep-
tors, targeting them for degradation and decreasing the 
number of receptors available for LDL uptake. Treatment 
with anti-PCSK9 monoclonal antibodies reduces binding 
of PCSK9 to LDL receptor and consequently improves LDL 
particle uptake by hepatocytes. The QSP model includes 
these mechanisms to evaluate anti-PCSK9 therapy. Details 
on the model structure can be found in Gadkar et al.,17 and 
instructions for reproducing the case study are given in 
Supplementary Instructions S2.

In gQSPSim, we constructed a Simulation that outputs 
the concentrations of total anti-PCSK9, LDL, and total 
PCSK9 using the .sbproj file from Gadkar et al.17 Simulating 
100 virtual subjects within physiological ranges of parameter 
values showed that LDL and PCSK9 concentrations typically 
reached steady state by day 300 (Figure S14). Therefore, 
in all subsequent simulations, the model was run to steady 
state for 300  days before any subsequent perturbations 
using the steady-state feature in the task building block.

The model was calibrated using phase I clinical data 
where a single dose of anti-PCSK9 was administered 
at six dose levels ranging from 10 to 800  mg (Table S5). 
The calibration included three measurements: LDL, total 
anti-PCSK9 (free drug  +  drug-target complex), and total 
PCSK9 (target + drug-target complex). The following three 
steps were performed in this case study: optimization to ob-
tain a reference virtual subject, generation of a virtual cohort, 
and generation of a virtual population. To generate the refer-
ence virtual subject in gQSPSim, we used the Optimization 
functionality with the scatter search algorithm. Simulations 
performed with the optimized parameter values captured 
the dynamics of LDL, total anti-PCSK9, and PCSK9 at all 
dose levels (Figure 5). The same clinical data (Table S5) 
were then used to define the acceptance criteria for the 
three measurements at all six dose levels for Virtual Cohort 
Generation. The resulting virtual cohort successfully spans 
the range of the observed data as shown in Figure S15. 
Finally, the virtual population was generated from the virtual 
cohort by fitting the baseline LDL and PCSK9 means and 
standard deviations to the clinical data (Figure 6). The virtual 
population generated using the aforementioned workflow is 

comparable to that of the original publication (see figure 2 in 
Gadkar et al.17).

A separate clinical trial data with weekly dose of anti- 
PCSK9 with and without statin treatment (see Table S6 for 
dosing information) were  used to validate the virtual pop-
ulation. Simulation of the four treatment groups within the 
clinical trial using the virtual population captured the ob-
served clinical data on LDL reduction (Figure S16A–D, 
corresponding to figure 3 in Gadkar et al.17).

Finally, the validated virtual population was used to sim-
ulate potential different dosing levels and schedules to 
determine the scenario with the least amount of LDL fluctu-
ation for a future phase II study. The following four scenarios 
were simulated: 400  mg every 4 weeks, 800  mg every 8 
weeks, 400 mg every 8 weeks, and 200 mg every 8 weeks. 
Based on the simulation results (Figure S16E–F), 400  mg 
every 4 weeks and 800 mg every 8 weeks are the two scenar-
ios that show the least fluctuation, as was shown in figure 4  
of Gadkar et al.17 Note that we used the generated virtual 
population in this case study for the phase II predictions, 
whereas in the original article,17 the virtual population used 
for the phase II prediction was further modified to capture a 
change in the inclusion criteria of the study.

Using the published anti-PCSK9 model, we illustrated 
how the app can be a valuable tool for QSP model devel-
opment, utilization, and novel prediction to support clinical 
development of a molecule. Moreover, the entire QSP work-
flow from model calibration to prediction was stored in a 
single session file in gQSPSim, rendering the reproduction 
of model predictions an efficient process for other scientists 
in academia and industry.

DISCUSSION

QSP models are seeing increased utilization and impact 
in pharmaceutical research and development across ther-
apeutic areas. Although proposals and recommendations 
for standardized workflows exist for model development, 
qualification criteria, and reporting,19 there is a lack of 
accessible and user-friendly tools and algorithms to ex-
ecute the QSP workflow. Furthermore, there are several 
issues with QSP models, including (i) lack of quantitative 
information in the model and/or the publication, (ii) fail-
ing to provide the associated model files or programming 

Figure 4  Case study 1: Target-mediated drug disposition model simulation results for alternative dosing regimens. The results show 
(a) free drug, (b) free target, and (c) total target concentrations of four different dosing regimens using the generated virtual population. 
In each plot, the solid line represents the weighted mean and the shaded region represents the 2.5th and 97.5th percentiles.
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codes along with the article in which the model is pub-
lished, (iii) lack of proper documentation of the workflow, 
and (iv) inconsistencies between model behavior and what 
is presented in the article. We have attempted to address 
these issues by developing gQSPSim to be used in QSP 
model development and applications. Besides adding 
new functionality to SimBiology, gQSPSim also provides 
a standardized platform for the creation of extensible, 
customizable QSP workflows for adoption in the QSP 
community. We envision that the combination of gQSPSim 
and SimBiology will provide the means necessary to facil-
itate scientists to develop robust QSP models impacting 
all stages of drug development.

A common theme of QSP model development is the 
need to integrate data from disparate sources that are then 
employed for calibration, testing, and the exploration of bio-
logical variability. However, these data may be obtained from 

a wide array of in vitro, in vivo, ex vivo, and clinical sources 
and typically lack a cohesive structure. gQSPSim reme-
dies this by providing a standard format for including these 
datasets for integration into the QSP workflow. One may use 
gQSPSim to fully leverage available data. For example, in 
the calibration process, in vitro data are often used to de-
termine the initial guesses for model parameters, whereas 
the preclinical and clinical data are used for subsequent 
parameter fitting. Data obtained from different literature 
sources can have a high degree of variability. This informa-
tion can be used within gQSPSim by creating a user-defined 
objective function that weights each dataset appropriately. 
Furthermore, the observed variability in the data is used to 
determine the acceptance criteria in gQSPSim for Virtual 
Cohort Generation ensuring the simulations of the virtual 
subjects span a similar range as the clinical data, provid-
ing a robust framework for the efficient exploration of model 

Figure 5  Case study 2: Reference virtual subject for anti-PCSK9 model optimized using scatter search. The results show model 
calibration to single dose clinical data at six dose levels (10, 40, 150, 300, 600, 800 mg) and three measurements: total anti-PCSK9  
(a, d, g), LDL (b, e, h), and total PCSK9 concentrations (c, f, i). Each plot contains data and reference virtual subject simulation for two 
dose levels as shown in the legends. PCSK9, proprotein convertase subtilisin/kexin type 9.
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parameters consistent with the data. In addition, the statisti-
cal information obtained from clinical measurements can be 
formatted as target statistics to be used in Virtual Population 
Generation functionality to calculate prevalence weights for 
virtual subjects and ensure model output statistics match 
the observed statistics.

Calibration and generation of reference virtual subjects 
is a key step in QSP modeling (see Stage 4 “Capturing 
Behaviors & Building Confidence” of Gadkar et al.9). 
However, this is often a challenge as models are commonly 
overparameterized. Overcoming this challenge requires 
sophisticated methods such as global stochastic optimi-
zation. Alternatively, for QSP models that may have a fairly 
rich dataset for calibration and limited number of unknown 
parameters, gradient-based optimization methods may be 
more efficient in terms of computation time and accuracy. 
In gQSPSim, we have implemented two of the most com-
monly used global optimization methods—scatter search 

and particle swarm optimization—in addition, we have a 
gradient-based method that uses nlinfit from the Statistics 
and Machine Learning Toolbox in MATLAB. In principle, 
gQSPSim may be used with any optimization algorithm in-
cluded in the Optimization Toolbox or Global Optimization 
Toolbox, and future versions will expand the available 
selection.

gQSPSim addresses a significant need for QSP model 
development and application, which is to explore under-
lying biological uncertainty and to capture the impact of 
data variability in making model-based decisions. Through 
the generation of virtual cohorts and weighted virtual pop-
ulations that systematically explore uncertainty, the app 
adds confidence to subsequent QSP model-based predic-
tions, especially for dose-response predictions in clinical 
trials, identifying diagnostic markers for patient subtypes, 
deciding clinical study design, and optimizing patient  
inclusion criteria.

Figure 6  Case study 2: Virtual population generated for anti-PCSK9 model. The range of observed clinical data for (a, d, g) total anti-
PCSK9, (b, e, h) LDL concentration and (c, f, i) total PCSK9 is well captured by the virtual population generated using the workflow 
in gQSPSim. The shaded region represents 2.5–97.5% percentiles of the virtual subjects, and the thicker line represents the median. 
PCSK9, proprotein convertase subtilisin/kexin type 9.
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Although gQSPSim is sufficient for many QSP workflows, 
it is presently limited in some ways. It is based on MATLAB 
and SimBiology and will require any QSP modelers using 
other environments to adopt this workflow. It currently only 
supports a small range of interactive plotting functions such 
as line plots and diagnostic distribution plots. However, the 
simulation data can be easily loaded into MATLAB for ma-
nipulations in a scripting environment, and future versions 
of gQSPSim will provide interfaces for incorporating us-
er-defined functions to be performed on simulation outputs. 
Furthermore, gQSPSim is only compatible with ordinary 
differential equation-based models built in SimBiology and 
does not currently support stochastic models. Future ver-
sions will enable more advanced features such as code 
plugins, sensitivity analyses, advanced plotting capabilities, 
activity logging, and more.

The software source code is freely available to the QSP 
community to use. Users who would like to contribute to 
the development of gQSPSim are invited to contact the cor-
responding author. Open sharing of the tools and software 
enables easy adoption for both academic and industry pur-
poses. With these features, we hope gQSPSim and its future 
versions will become the standard platform for QSP model 
development and sharing within the broader QSP modeling 
community.
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