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Emotion regulation is a process by which human beings control emotional behaviors. From neuroscientific evidence, this
mechanism is the product of conscious or unconscious processes. In particular, the mechanism generated by a conscious process
needs a priori components to be computed. The behaviors generated by previous experiences are among these components. These
behaviors need to be adapted to fulfill the objectives in a specific situation.The problemwe address is how to endow virtual creatures
with emotion regulation in order to compute an appropriate behavior in a specific emotional situation. This problem is clearly
important and we have not identified ways to solve this problem in the current literature. In our proposal, we show a way to
generate the appropriate behavior in an emotional situation using a learning classifier system (LCS). We illustrate the function of
our proposal in unknown and known situations bymeans of two case studies. Our results demonstrate that it is possible to converge
to the appropriate behavior even in the first case; that is, when the systemdoes not have previous experiences and in situationswhere
some previous information is available our proposal proves to be a very powerful tool.

1. Introduction

The need for virtual creatures with behaviors similar to
human beings has been increasing in recent years in different
areas, for instance, disaster simulation, serious games, and
training, because of the need for increasing interaction
between human beings and virtual environments. The cre-
ation of these virtual creatures is an open problem due to
the complexity involved. It is evident that emotions play a
key role in human behavior; current research uses different
approaches to deal with the problem of computing behavior
for virtual creatures while taking emotions into account.

A human being’s emotion is the psychophysiological
result of the process of perceiving stimuli. A stimulus is a
set of objects, situations, or memories with which the human
being interacts within the environment [1] (see Figure 1).The

emotion is made up of an internal emotional state and an
emotional behavior response to the environment. When it
comes to the development of emotions, there are emotional
theories about how human beings carry out an emotional
assessment of the environment in order to generate emotions
from a stimulus or a set of stimuli within a situation. In
particular, we use the appraisal theory [2], because it presents
a general process for emotions. Also, it is widely cited and
used in research studies making up the state of the art.
Appraisal theory is a psychological theory that considers
emotions as appraisals of the environment. Gross’s approach
(an extension of appraisal theory) considers three appraisals
to compute the emotion process.

(i) The first appraisal gives a certain emotional value to
a perceived stimulus in order to differentiate it from
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Figure 1: Environment. Environment example for virtual creatures, showing a possible environment for virtual creatures where𝑂1, . . . , 𝑂𝑛 are
possible objects perceived, 𝑉1, . . . , 𝑉𝑛 are other virtual creatures perceived, and𝑀1, . . . ,𝑀𝑛 are possible memories recovered from previous
situations.

the rest of the stimuli perceived in the environment.
A stimulus can have different appraisals depending on
the perceived situation.

(ii) The second appraisal helps to understand the individ-
ual involvement in the situation. At this step, the sum
of stimuli perceived in the environment generates
the emotional state. This emotional state generates an
emotional behavior (fear, anger, joy, etc.) in response
to the perceived stimulus. Humans generate multiple
appraisals for a specific situation, due to the diversity
of appraisals that each perceived stimulus has in that
situation.

(iii) The third appraisal helps to choose what to do in
response to the specific situation. In contrast to the
previous appraisals, this appraisal computes multiple
responses to a specific situation perceived in the
environment.Thus, in this case, a process is needed to
choose the most appropriate response to the current
situation (a decision-making process).

However, in order to compute behavior for virtual creatures
it is not enough to take emotions into account. For instance,
there are situations where emotions must be regulated in
order to reach an objective. In this case, the third appraisal
must consider the emotion regulation needed to reach an
objective. In other words, if the computed emotion does not
contribute to reaching the objective, the emotion regulation
process helps to modify the emotional behavior in order to
reach the objective [3].

An emotion regulation mechanism is a bridge between
emotion and cognition in the neurosciences. In human
beings, it helps to achieve objectives through a cognitive
change [1, 4, 5]. Appropriate behavior is defined in this paper
as the behavior that best serves a virtual creature’s objective
to achieve the maximum possible reward in a given situation.
Emotion regulation is achieved by modifying the virtual
creature’s body and facial expressions and/or by modifying
the cognitive meaning of the objects within the setting in
order to direct the behavior [4]. For instance, if the leader
of a project in a company is angry with a key worker, his
emotions might suggest to him firing the worker. However,
the leader must regulate his emotions to keep him from firing
the key resource, thus ensuring the successful completion

of the project; otherwise, the project will not be completed
satisfactorily. This example shows the importance of the
emotion regulation process.

Emotion regulation can be the result of conscious or
unconscious processes. Unconscious emotion regulation is
carried out by changing the stimulus perceived in the envi-
ronment. By changing the perceived emotional stimulus,
the emotion generation process restarts and the internal
emotional state changes, thus generating a different response
behavior to the situation.The conscious emotional regulation
process, on the other hand, is carried out using emotional reg-
ulation techniques [4].These techniques can be classified into
two groups: emotional regulation achieved by changing the
meaning of the perceived stimulus and emotional regulation
achieved by suppressing the response behavior. These two
techniques require a prior mechanism for their functioning.
This prior mechanism is responsible for identifying what
behavior would be appropriate to meet a specific objective,
as in the previous example where the project leader needs to
control his behavior to avoid aborting a project. The appro-
priate behavior is generated from previous experiences when
they are available [3], the conclusion being that learning is the
priormechanism required to determine appropriate behavior
for a given situation in the environment. Thus, information
for emotional regulation is given by the fundamental process
of memory.

In this article, we propose a mechanism for the automatic
generation of appropriate behavior in a situation that requires
emotion regulation. The structure of this article is as follows:
Section 2 presents some work done in the field of cognitive
architectures dealing with emotions and the search for appro-
priate behaviors. Section 3 presents the theoretical evidence
of emotion regulation as well as neuroscientific evidence
related to the search for appropriate behavior within the
brain. Section 4 presents our proposal for a virtual creature
finding an appropriate behavior for a specific situation. Sec-
tion 5 presents a case study that showcases the functionality
of the proposal. Finally, conclusions and a discussion of the
results are presented.

2. Related Work

There are a number of studies that propose emotional models
[7–10], among other cognitive processes that are inspired by



Computational Intelligence and Neuroscience 3

biological evidence. Some of the most important proposals
for this work deal with cognitive architectures that include
multiple cognitive processes working together to compute
a human-like behavior to be exhibited by virtual creatures.
These cognitive architectures for virtual creatures are inspired
mainly by psychological theories and/or neuroscientific evi-
dence.

Some of the existing cognitive architectures that consider
emotion in the computation of behavior are presented below.
The selection is based on the theory of emotion assessment.
We look at the implementation of all steps of the appraisal
theory. In particular, we want to see the possibility of
regulating emotion consciously in these processes.

2.1. SOAR. State Operator and Result, “SOAR” [7], is a
cognitive architecture for artificial intelligence. It is used for
the development of intelligent agents that solve problems
ranging from simple to complex open problems. The design
of SOAR is based on the assumption that all deliberative
behavior-oriented goals can be formulated as the selection of
operators and their application to the state.

Thus, if an agent has a particular goal in a specific
situation, this goal can be achieved by different actions and
in multiple ways. The state is a representation of the current
situation. The possible actions in such specific situations are
the possible operations for that state.

SOAR has not fully implemented the emotional process.
However, it proposes implementing the generation of several
hypotheses based on appraisal theory. This architecture uses
the three steps of appraisal theory; however, it does not
implement these steps and reduces deployment to a simple
tool for improving the virtual creature’s learning through
a greater reward function when it selects a good action
in a specific scene. SOAR does not contemplate different
meanings of the perceived stimulus.

Given the absence of a full emotional evaluation process,
the agent may not compute an appropriate emotional behav-
ior if it does not consider multiple cognitive meanings of the
same stimulus within the environment, or an emotional state
of the virtual creature within their case studies.

2.2. iCub. Integrated Cognitive Universal Body, “iCub” [9],
is a cognitive architecture designed for virtual creatures and
humanoid robots. This architecture seeks to copy cogni-
tive processes in humans and incorporate them into the
humanoid robots. The approach is based on psychological
and neuroscientific evidence. The architecture is imple-
mented in the iCub Humanoid robot, which has the appear-
ance of a 2.5-year-old child, and the objective is to provide
it with the basic skills that a boy of that age possesses. The
architecture is not yet complete; it is only a preliminary
architecture.

Through three components, iCub generates an affective
state. This affective state is equal to the emotional state
in appraisal theory. These components are curiosity (dom-
inated by external stimuli), experimentation (dominated
by internal stimuli), and social commitment (based on a
good balance between external and internal stimuli). These

three components generate the affective state in conjunction
with a process of selection of action that generates a small
homeostatic process that regulates the iCub robot’s behavior.
iCub generates simple basic emotions such as joy, fear, anger,
and sadness. It also generates behavior that is similar to a
little child’s. The emotional process is simple and focuses
on the interaction with the environment, ignoring conscious
emotional processes.

Emotions in iCub are regulated by the change of stimuli
in the setting. That is, it does not have a process of conscious
emotion regulation.

2.3. Kismet. Kismet [10–12], developed by MIT (Mas-
sachusetts Institute of Technology), is capable of expressing
emotions; it was developed in the 1990s. The architecture
developed for this robot began as a working frameworkmade
up of four subsystems:

(i) Motivation system, which consists of handlers and
emotions

(ii) Behavior system, which consists of several types of
behavior

(iii) System of perception and attention, which extracts
the characteristics from the atmosphere

(iv) Motor system, which runs facial expressions.

There are seven emotions expressed in Kismet, based on the
theory of basic emotions [6]. The emotions can be used for
three purposes: first, to influence the behavior of the robot by
giving preference to one behavior over others; second, to have
an impact on the robot’s emotional state, which in turn will
be shown through the motor system; and third, to serve as a
learning mechanism: after the completion of predetermined
satisfactions, the robot can learn the way it accomplished the
task or not. Facial expressions are predefined to produce a
motor response commensurate to the emotions. As in iCub,
Kismet regulates its emotions in response to changes in the
environment. It does not have conscious emotion regulation.

3. Theoretical Evidence

In Section 2 we described some cognitive architectures.
From their descriptions, it is possible to see why they are
unable to compute an appropriate natural behavior in certain
situations. This comes from not taking into account factors
such as conscious emotion regulation that can influence the
achievement of objectives within the environment.

There is biological evidence that shows how human
beings seek an appropriate behavior when they face situations
[3, 13–15]. In order to compute the appropriate behavior,
humans take into account prior knowledge regarding similar
situations and the association of known situations with the
current situation (known or unknown). However, it is also
true that emotions canmake humans’ behavior inappropriate
in specific situations. In those cases, emotion regulation
is needed. Emotion regulation consists of trying to ignore
stimuli that cause emotional overflow or suppressing the
emotional behavior, that is, pretending that we are not feeling
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Table 1: Description of areas. General architecture structures for emotion regulation, inputs, and outputs.

Structure Input Output
AMYGDALA Frame with preprocessed and processed information. Frame with emotional information.
HIPPOCAMPUS Requests. Information retrieved from the emotional memory.
INSULA Sensory information. Affective information oriented towards pain.
VS Sensory information. Affective information oriented towards pleasure.
rACC Frame with processed information and emotional state. Possible actions.
OFC Possible actions and emotional state. The frame of selected action.
DMPFC The frame of action and information from memory. Emotional state and appropriate emotional behavior.
DLPFC Requests. Information retrieved from working memory.
VLPFC Required emotional state. The cognitive-emotional change closest to what is required.
sgACC Emotional behavior and emotional state. General behavior.
Sensory Cortex Environmental information. Sensory information.
Motor Cortex General behavior. Execution frame.

the emotion. But how do human beings do this? And where
in the brain are these processes carried out?

Human beings associate old knowledge with new. This is
done by identifying similar characteristics between known
and unknown situations. This process is carried out within
the brain in areas that retrieve information and high-level
cognitive processes.

Table 1 summarizes neuroscientific evidence showing the
areas involved in emotional regulation. Some of these are the
Dorsomedial Prefrontal Cortex (DMPFC), the Dorsolateral
Prefrontal Cortex (DLPFC), theVentrolateral Prefrontal Cor-
tex (VLPFC), the Orbitofrontal Cortex (OFC), the Amygdala
(AMYGDALA), the Hippocampus (HIPPOCAMPUS), the
Insula (INSULA), theVentral Striatum (VS), the rostral Ante-
rior Cingulate Cortex (rACC), and the subgenual Anterior
Cingulate Cortex (sgACC) [16–21]. As described previously,
our proposal is based on neuroscientific evidence.Thus, these
areas are taken as the basis for the development of our model
of emotion regulation for virtual creatures. Reference [3]
defines a flow of information between these areas based on
neuroscientific evidence and also on the model proposed by
Gross for emotion regulation [22–25].

The elements of our proposed architecture are explained
below, including a few elements to complete the information
flow.

TheDorsomedial Prefrontal Cortex (DMPFC) is associated
with the choice of behavior [15].This area of the brain is active
during the identification of situations. It associates small
parts of the setting with some situation previously stored
in the brain. Thus, it generates a behavior according to the
information stored from previous similar lived situations. It
is even possible to predict social consequences from stored
information [13–15, 26]. Although this area ensures the
generation of consistent behavior, it does not mean that the
proposed behavior is the most appropriate. However, it is a
good beginning for learning in an unknown situation.

In our model, this structure is responsible for choos-
ing an appropriate emotional behavior from the available
options. It is fed with recollections or memories, which
are received from the DLPFC. If the appropriate behavior
requires a different emotional state, it is sent to the VLPFC.

Finally, the computed behavior is sent to the sgACC, where a
deletion process takes place [27, 28], if required.

TheDorsolateral Prefrontal Cortex (DLPFC) is believed to
include participation in theworkingmemory, the preparation
of the response and the selection of the response [19, 29].This
structure is associatedwith the recovery of information and is
one of the structures that allow access to theworkingmemory
within the frontal lobe [29]. It is associated with the selection
of the response, probably due to its proximity to structures
dedicated to executive planning.

We use this structure to access the working memory
in order to generate a set of plans. The decision-making
cognitive function will select one plan from this set in a given
situation.

The Ventrolateral Prefrontal Cortex (VLPFC) is associated
with the suppression of emotional responses in a changing sit-
uation [16, 17, 19].This area decreases the emotional response
through a cognitive process, which involves changing the
meaning of the scene to reinterpret the situation [17, 18].

In our model, this structure reassesses the incoming
stimuli, trying to give them another cognitive meaning in
order to achieve a better fluidity of the desired emotional
behavior. It receives the memories provided by the DLPFC
and sends its results to the Amygdala in order to have a
second emotional evaluation. If there is a different emotional
evaluation, it is used to modify the emotional state from the
current situation.

The Orbitofrontal Cortex (OFC) is associated with the
decision-making process: it is responsible, along with the
DLPFC, for seeking and choosing an action [30]. People with
damage in this area lose the capacity to make decisions [30].
The DLPFC is associated in the same manner with memory,
so the OFC feeds on it to make a decision in any specific
situation [19, 30].

We use this area to perform a search and selection of
actions from multiple plans generated in collaboration with
the DLPFC and the rACC.

The Amygdala (AMYGDALA) is believed to collaborate
with other structureswithin the limbic system in assessing the
emotional environment [19, 25, 26, 31]. Its internal cores are
responsible for the assessments. An entry core is responsible
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for generating a first emotional evaluation in conjunction
with the thalamus. A second entry core receives this first eval-
uation and subsequently receives a second evaluation from
the VLPFC. This second core modifies the emotional mean-
ing of the environment if this is needed. A third core receives
the emotional meaning computed in the entry cores and
sends it to the rest of the cerebral areas. A fourth core receives
the emotional state from the entry cores. It is responsible for
maintaining the person’s emotional state and sending it to the
cerebral areas that require it.This behavior is according to our
assumptions and the neuroscientific evidence [31].

The Amygdala in our model is responsible for processing
the stimuli, meaning it has the job of emotional assessment
within our architecture. It serves to generate an emotional
state in collaboration with the motivation to the perceived
situation.

The Insula (INSULA) has a strong involvement in pain
processing [32–35], in addiction studies [36], appetite studies
[37], and multimodal sensory integration [33]. Within the
work of emotions, its participation is observed both in the
generation of the negative affective values of the stimuli and
in the generation of emotional behaviors, such as disgust
and fear [38, 39]. Within our model, it collaborates on the
construction of the emotional state in conjunction with the
AMY and the VS, providing affective information.

The Ventral Striatum (VS) is involved in motor responses
directly related to stimuli perceived with rewards [40]. It is
part of the dopaminergic system of the brain, in conjunction
with other structures [41]. It is activated during the processing
of the reward in both sent signals and the output [40].
Within our model, it collaborates on building the emotional
state in conjunction with AMY and INS, providing affective
information.

The Hippocampus (HIPPOCAMPUS) is associated with
the processes of memory. This structure works as an index
for past experiences and the emotion felt at the moment
they occurred. If there is no previous experience, the Hip-
pocampus is responsible for storing the new experience and
its appraisal-emotion is provided by other structures such as
the Amygdala [31]. The Hippocampus is associated with the
memory of emotions. Damage to this structure can produce
memory loss, lack of expressiveness, and even inability to
generate emotions [42].

Within the architecture, this structure provides the emo-
tional memory of the perceived environment and is respon-
sible for storing new emotional experiences and retrieving
existing ones.

The rostral Anterior Cingulate Cortex (rACC) is activated
during the exhibition of any emotional response to our
behavior. It has no activity during the cognitive processes
of the PFC. However, it is believed to be associated with
the emotional process. This structure might regulate the
emotional behavior on the basis of information provided by
the PFC [28].

This structure, in collaboration with the OFC, seeks
an appropriate reaction to the situation the environment
presents.

The subgenual Anterior Cingulate Cortex (sgACC) is asso-
ciated with emotional behavior. People with depressive or

bipolar disorders present more activity in this area than the
rest of the population does [27, 28].

In our proposal, this area controls emotional behavior
by trying to ignore the current emotion. This objective
of controlling emotional behavior depends on the internal
emotional state.

The Sensory Cortex is the component responsible for
encoding perceived environmental stimuli. It refers to the
visual, tactile, gustatory, olfactory, and auditory sensory
cortex.

The Motor Cortex is in charge of executive planning,
which generates a frame of execution for the body’s reaction
to the perceived stimuli.

4. Proposal

As established in the introduction, the objective of this article
is to endow a virtual creature with a mechanism to compute
the appropriate behavior for a specific situation.Our proposal
is based on biological requirements previously expressed and
ensures that the best reward behavior is computed for the
specific situation.

In order to attain our objective, we use neuroscientific evi-
dence regarding emotional regulation. Our proposed model
is presented in Figure 2. In this model we can see the neural
structures, found at this moment, involved in the process
of emotion regulation. In Table 2 we can see the type of
information sent by each internal component of the proposed
model. We focus on the module we believe is responsible
for finding the appropriate behavior (see Involve module in
Figure 2). First, we want to describe the functions involved in
the proposed model of emotion regulation in order to obtain
a global view.

Sensory Information. This is the first step, responsible for
producing the input signals of the environment to the correct
functions of the subsequent steps in the proposed model.

Emotional Response. This makes an emotional evaluation of
the perceived environment. This step can be executed more
than once. It has a direct connection to stimulus perception
and to the cognitive region of the brain. We can see this
process as a first unconscious response and as a second
conscious response (i.e., we assume that the first was already
executed) to the environment. As described previously, in this
study we deal with the conscious emotional response.

Action Selection. In this step an action is selected to be
executed in the environment, and it is determined whether
an emotional regulation or a change in behavior is needed in
order to improve the reward for the specific situation. This
step is based on similar previous experiences of the current
situation. That is exactly why this process is closely related to
the working memory.

Appropriate Behavior. In this step, an appropriate behavior is
selected for the current situation. To make this selection, a
comparison ismade between the reward of the action selected
and the reward of behaviors selected in similar previous
situations. If the process cannot find an appropriate behavior,
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Table 2: Informal description of input and output of a proposed model.

Label Meaning Description
SI Sensory input Sensory values from the environment
AS Affective signal Affective values computed by the system
ES Emotional signal Emotional values associated with emotions
PA Possible action Possible action to run in the environment
EMS Emotional mental state Current emotional state of the virtual creature
AB Appropriate behavior Appropriate emotional behavior to be computed
SS Stimulus signal Sign of stimuli perceived in the environment
SEV Stored emotional value Emotional values stored from past experiences
NSEV New stored emotional value New emotional value to be stored for a stimulus
NM New meaning New emotional meaning of the situation
RB Regulated behavior Regulated behavior to be expressed

Sensory information

Emotional memory

Meaning of modules
Black boxes

Sensory Cortex INSULA
OFC

rACC

DMPFC
RB

AB

AB

SSEMSPA

ES
NM

AS

AS

SI

SEV

SI

SI
ES

NSEV

sgACC

DLPFC

VLPFC

Motor CortexAMYGDALA

VSHIPPOCAMPUS

Involve module

Emotional response Action selection Appropriate behavior Cognitive regulation Behavior response

Figure 2: Emotion Regulation Model. A proposed model based on neural evidence and psychological theories (SI = sensory input, AS =
affective signal, ES = emotional signal, PA = possible action, EMS = emotional mental state, AB = appropriate behavior, SS = stimulus signal,
SEV = stored emotional value, NSEV = new stored emotional value, NM = new meaning, and RB = regulated behavior).

an option can be selected randomly. However, this is done
only if the punishment is not very high. This analysis is
achieved in the previous step.

Cognitive Regulation. In this step, the system has determined
to change the behavior. Thus, different meanings are sought
for perceived stimuli in order to try to provoke a change
in the emotional response and, consequently, a change in
the behavior in the environment. In parallel the suppression
mechanism is activated together with the control of physio-
logical behavior, to obtain the appropriate behavior.

EmotionalMemory.This serves as a place to store and recover
the emotional evaluation of the perceived stimulus.

Behavior Response (This Is the Final Step). A physiological
behavior response is computed according to the emotional
behavior given by the proposed model.

Aswe can see in the previous descriptions, after activating
the emotional regulation mechanism it is necessary to obtain
an appropriate behavior.This behavior is computed only if the
actual behavior is not appropriate to obtain the specific goal
in the environment.

Table 3: Variables used in our proposal and their meaning.

Variable Meaning
𝑆 Stimuli set
𝑆𝜇 Stimulus 𝜇
𝑆𝑀 Stimulus meaning
𝐸1, 𝐸2, . . . , 𝐸6 Six basic emotions described by Ekman 1994 [6]
𝐵𝑧 Behavior 𝑧
𝜇, 𝑥, 𝑛, 𝑧 Integers used as indices

4.1. Formal Description of the Evidence. In this work, we
propose an adaptive mechanism allowing the appropriate
behavior to be computed for autonomous virtual creatures
facing a specific situation. In our case (Figure 1), virtual crea-
tures have sensors allowing them to perceive their environ-
ment continually and amemorymechanismwhere they store
their experiences. Using these sensors, we want to formally
describe the functions necessary for obtaining an appropriate
behavior. We do not describe all of functions, because not all
of them are necessary to compute the proposed mechanism.
In Table 3 we describe the variables used for our proposal.
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Figure 3: An example of internal emotional action from a virtual creature. Showing possible emotional behaviors from the environment
where 𝐵1, . . . , 𝐵𝑛 are possible emotion behaviors and 𝑅1, . . . , 𝑅𝑛 are the possible responses from the environment.

Sensory Information gives the set of stimuli 𝑆 for the
subsequent functions in the proposedmodel.This set is made
up of objects and virtual creatures in the environment.

Emotional response gives the initial behavior 𝐵1, nec-
essary for the computation of actions. Let 𝑆𝜇 and 𝑆𝑀 =
{𝑆𝑀𝜇1 , 𝑆𝑀𝜇2 , . . . , 𝑆𝑀𝜇𝛼} be a stimulus and its meaning, respec-
tively. Each entry of 𝑆𝑀 is another vector of six elements
𝐸 = {𝐸1, 𝐸2, . . . , 𝐸6}, where 𝐸𝑥 has a real value 0.0 ≤
𝐸𝑥 ≤ 1.0 representing the evaluation of each of the six basic
emotions described by Ekman [6]. Let 𝑆𝜇𝑟 = 𝑆𝑀𝜇𝛽 be themost
relevant evaluation of 𝑆𝜇 (Figure 3).Thus, the initial behavior
is computed by 𝐵1 = ∑

𝑛
𝜇=1 𝑆𝜇𝑟.

Action selection determines whether the initial behavior
𝐵1 is good for the actual objective in the situation. In the event
it is not, it will be necessary to compute another behavior.

Appropriate behavior tries to generate an appropriate
behavior taking into account the initial behavior 𝐵1 and
the actual situation ST (Figure 4). That is, we know that
the computed behavior 𝐵1 is not suitable to reach the final
objective; however, we obtain useful information as the
starting point to compute the appropriate behavior.

5. Implementation of the Appropriate
Behavior Function

In order to compute the appropriate behavior function, we
choose to work with a learning classifier system (LCS),
because this sort of tool allows for the exhaustive search, with
the possibility of stopping the search in order to explore local
solutions while working to find global solutions.The learning
classifier system or LCS was proposed initially by Holland
[43, 44].This LCS combines genetic algorithms andmachine-
learning techniques. In this article, we use the LCS called
GXCS [45] (Figure 5). This LCS was developed by searching
its applications specifically to solve problems in the area of
virtual agents. However, it can be applied in different areas.
TheGXCS goes beyond the representation of binary rules and
makes it possible to use any kind of data. In our case, it allows
us to use the most natural and appropriate data to represent
the environment.

The GXCS provides a way to assign a behavior to a virtual
creature based on the characteristics of the current setting.
That is, the GXCS uses the similarity between the current

setting and previous experiences (settings) to compute the
virtual creature’s optimal behavior for the current setting.
In order to use this GXCS, whose behavior is explained in
[45], first we need to define the vector rule used for this
purpose.The basic emotions proposed by Ekman [6] and the
identification of a situation are embedded in the vector. That
is, our vector rule has 7 entries, six for the basic emotion given
by 𝐸1, 𝐸2, . . . , 𝐸6 and the last used to identify the situation
corresponding to that emotional evaluation. Each of the
entries has real values bounded by 0 and 1 (Figure 6).

The internal behavior of the six components of our GXCS
for this study (see Figure 5) is described extensively below.

Sensors form an interface, fed by the previous action
selection function, in which the aforementioned rule of 7
inputs is predefined {𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5, 𝐸6, ST} (Figure 6).

Classification database represents the knowledge base of
the system. It consists of a population of n rules of the type
condition : action, where the condition is provided by the
sensors and the action is produced by the genetic algorithm.

Genetic algorithm is responsible for generating new
actions based on the best evaluated rules existing within
the knowledge base. If no rule exists, actions are randomly
formulated.

Distribution of credits is the function in charge of eval-
uating the condition : action rules existing within the classi-
fication database. This function requires feedback from the
environment, which helps determine the impact of the rule
used in the current situation.

Message list is the set of condition : action rules retrieved
from the classification database associated with the input rule
provided by the sensors. See Figure 7.

Actuators are the output interface composed of effectors,
responsible for expressing the action determined by the
chosen rule of the message list. The actions consist of 6 exits
{𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5, 𝐸6} associated again with Ekman’s basic
emotions [6]. Each of the exits has real values bounded by
0 and 1.

This implementation also uses unsupervised reinforce-
ment learning. On the basis of the environment, a certain
expected behavior of the virtual creature is defined; if the
behavior that the virtual creature exhibits comes close to the
environmentally predefined behavior, the rule formulator of
this behavior receives a high reward. The way to provide
such a reward is simple: first define an emotion (joy, fear,
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Enviroment

Best action

?

R3

R0

Rn

2R
R1

B1

B0

Bn

B2B3

Virtual 
creature

Figure 4: Selection of the rule that best satisfies the conditions of the environment. Showing possible emotional behaviors in response to the
environment where 𝐵𝑛 are possible emotional behaviors and 𝑅𝑛 are the possible responses from the environment.

Environment Action selection Sensors

Black boxes Direct
NondirectInvolve module

Distribution
of credits

Genetic
algorithm

Message list Actuators

Cognitive regulation

Reappraisal

Suppression

GXCS

Meaning of modules Connection type

Appropriate behavior
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database

Figure 5: General process of GXCS. Showing a general process of GXCS with inputs and outputs.

0.99 0.35 0.60 0.50 0.22 0.10 1.0

STE6E5E4E3E2E1

Figure 6: A sample of a rule’s structure for LCS. Showing a
syntax rule where 𝐸1, 𝐸2, . . . , 𝐸6 are emotions and ST is the current
situation.

sadness, disgust, or anger) on the basis of the environment,
and then the virtual creature should seek to express that
emotion. If it does, the intensity of the emotionwill determine
the recombination obtained, which will be provided to the
GXCS in order to evaluate the generating rule; otherwise,
the rule will be punished by being assigned values of 0. For
example, let us say the expected behavior is predicted in the
environment by the array {0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, the
first 6 fields being expected emotional intensities and the last
one, an identifier of the situation. On the other hand, the
virtual creature expresses a behavior given by the array {0.2,
0.4, 0.6, 1.0, 0.8, 0.0}, where all fields are emotional intensities.
The generating rule will be evaluated with 0.6 of reward, since
it is approaching the emotional value specifically descaled in
the emotion of field three. Initially, the rules are generated
randomly and they feed the GXCS.The rules are graded from
0.0 to 1.0, where 0.0 is a very poor response and 1.0 is a
high emotional intensity. The GXCS offers the possibility to

experiment or take the best option. This means that we can
choose to use one existent rule or use this information to
generate a new rule hoping it will be better suited to the
environment’s stimuli.The number of generated rules is given
by the number of components of the action vector (Figure 8).
We maintain the experimentation until we achieve a rating
of 0.8 or higher on any rule within a new situation. A rule
is associated with a behavior, and a highly evaluated rule
is considered an appropriate behavior. This type of rule is
functional and it is stored. The nonfunctional rules or rules
with a low evaluation are also stored, because they may be
useful in a similar situation in the future.

5.1. Case Study: Unfamiliar Situations. In unfamiliar situa-
tions, the GXCS at first does not have a specific number
of rules to converge on a specific emotional valuation. The
objective, within this case study, is to get the virtual creature
to converge on a certain response behavior. We do this by
defining a specific behavior in the environment and providing
reward values, as explained above. The case study uses
three different emotions in each simulation; that means that
the virtual creature converges on three different emotional
behaviors in a single situation. The GXCS is not stopped,
so there are evaluated rules belonging to other emotional
responses. The simulation runs 20 times to determine which
number of rules converges on the appropriate behavior and
its intensity.
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5.1.1. Results. In this experiment, where the virtual creature
does not have previous experiences, the results are shown
in the graph of search behavior (Figure 9). In this case, the
number of rules generated by the classifier ranges between 5
and 145. In 20 tries, the average was 50 rules. In all cases, the
behavior that was sought was a specific emotion (as defined
in the graph) with a rating of 0.8 or higher. In all the events a
rule was generated containing the emotional value within the
first 20 rules.

5.2. Case Study: Familiar Situations. In a familiar situation,
the initial set of rules allows the GXCS to look for appropriate
behaviors to respond to an unknown situation in the envi-
ronment. The continuous environment evaluation enables
the system to converge, if possible, towards an appropriate
behavior. The GXCS associates the unknown situation with
situations that are already partially known; that means there
are a fewdifferences in the situation and the emotionalmental
state of the creature (condition of GXCS) is slightly changed.
The classifier relates the rules of the previous situations in
order to propose an approximately appropriate behavior.This
experiment consists of five simulations with five different
settings each; each setting changes a little in order to show
the number of rules generated in familiar situations.

5.2.1. Results. The graph (Figure 10) shows the number of
rules that were required to generate the appropriate behavior
for a specific setting. The number of rules generated for

appropriate behavior in each of the experiments varied in the
range of 5–20, with an average of 7 rules over 5 experiments.
The generation time of the new rules is between 1 and
4 seconds for an unknown but similar setting (modified
setting). When the classifier receives a setting similar to one
it has already learned, it proceeds as follows to compute
appropriate behavior: it first calculates the similarity with the
known setting and then calculates the appropriate behavior
using the behavior associated with an initial behavior from
the setting with the closest similarity.

6. Discussion

As we established previously, the objective of this research
is to propose a mechanism whereby a virtual creature can
autonomously calculate appropriate behavior for a specific
situation (Figure 11). Our proposal is to create a mechanism
for the virtual creature to be able to choose an appropriate
behavior in a specific situation. The mechanism is based
on neuroscientific and psychological evidence. From neuro-
science, we obtain some of the cerebral regions involved in
this process, the functions they achieve, and the flow of the
information.

In the proposed model, not all of the brain structures
described in the state of the art concerning emotion regula-
tion are involved [13, 26].This is because there is currently no
consensus on which structures actually contribute. For this
reason, in our proposed model we consider only structures
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Figure 9: Graph of search behavior showing results from the first experiment in three columns. Each column is one emotion; the numbers
are the rules generated in the experiment. The time taken for each experiment was less than one second.
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Figure 10: Graph of association of behavior. Showing a result of the second experiment, with two columns—unknown situations and known
situations—for each experiment using the same LCS. The difference between the unknown and known situation was less than 15 new rules.

for which there is consensus. These structures are described
in Section 4. In other words, on the basis of neuroscientific
evidence we propose that the DMPC is the structure respon-
sible for computing behavior that is appropriate to a specific
situation (see Figure 2). In addition, there is also evidence that
some brain structures are involved in different ways in the
tasks of different cognitive functions. In this study, we focus
on the functions of the brain structures that contribute to the
calculation of a behavior for a situation that requires emotion
regulation.

One might think that the search for appropriate behavior
would only favor the so-called “social cognitive emotion
regulation” [13]. However, there is evidence that, in specific
cases, for example, survival situations where it is necessary
to control emergent behavior (fear) to avoid a predator,
emotion regulation is required in addition to appropriate
behavior. This is why we propose in our model the activation
of the DMPFC structure in both social regulation and self-
regulation [13–15] in order to calculate appropriate behav-
ior. Along the same lines, as mentioned previously in the
introduction, having the appropriate behavior is necessary
for the proper functioning of cognitive emotion regulation

techniques (suppression and reevaluation); a more detailed
description of this is described in [3].

Regarding the implementation and results of the case
studies presented, we can underline first the use of an LCS
named GXCS proposed by M. A. Ramos and F. Ramos [45],
which allowed us to use a structure that summarizes the
six basic emotions defined by Ekman [6] as well as a field
that associates the emotions with a specific situation (which
provokes the emotional state, e.g., desert, sea, and field).
This structure is simplistic and overlooks multiple aspects
of emotion regulation, such as social interaction or risk
situations, but it is a first approach to explore the functionality
of an LCS in learning appropriate behaviors for creatures
subjected to situations requiring emotion regulation.

Second, behaviors simply refer to Ekman’s 6 basic emo-
tions and are the virtual creature’s calculated and displayed
behavior in each experiment. This behavior receives a high
evaluation if it approaches the appropriate behavior for the
situation and a low evaluation in the opposite case.

Third, from the results we must emphasize that, in
the unfamiliar case study, the system does not know the
appropriate behavior and only has the creature’s internal state
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Figure 11: Alfred sample. This picture shows how the model of emotional regulation works. Part (a) shows the environment with difference
evaluations stored in the memory; part (b) shows Alfred with an expression of fear, which is the first emotion. Applying the LCS to obtain the
appropriate behavior, we have a visible decrease of emotion seen in Alfred in part (c). This result is obtained from the appropriate behavior
given by LCS and multiple evaluations of emotional objects in the setting using an emotion regulation architecture.

and a specific context. In this case, the first rules are randomly
generated to initiate the evaluation of behaviors; each of these
rules is evaluated within the system using the same situation,
thus setting off an iteration using the rules that had better
performance in the specific situation.The iteration runs until
an appropriate behavior is obtained.

In Figure 9 we can see a summary of the results obtained:
the number of rules formulated in each situation. Each
situation is shown by means of 3 columns, which represent
different emotions. We can also observe that there are con-
siderably high numbers of generated rules, reaching 145 rules
evaluated. This was expected since technically the answers
given by the virtual creature are almost random, but in all
situations it was possible to get to the behavior that was
appropriate to the situation presented.

With respect to the family case study, the system already
had a priori rules associated with the same context, but with
different internal emotional states. In this case, the results

obtained are considerably better compared to the results of
the unfamiliar case study, approximately 15 more rules to
identify unknown situations but with similarities. This case
shows the performance of the LCS when it has a priori
knowledge about the situations presented to it.

In spite of the very good results we have obtained, there
is still work to do, primarily the optimizations to improve
the performance of our proposal in both time and quality.
For example, in the implementation, we define explicit values
for the emotions used for seeking an appropriate behavior.
This knowledge can improve efficiency, making the GXCS
discriminate useless elements during the process of seeking
a behavior for a situation. Another possible area of improve-
ment is the evaluation method, which can be improved by
reducing the set of rules evaluated to those that approach
the appropriate behavior. This is possible because we have
sought the value of the rule. Another possible improvement
we are currentlyworking on is the selection of ruleswithin the
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classifier to consider. We want the learning classifier system
to consider the evaluation of a larger number of related rules
in order to reduce the rule generation process, which is quite
costly.

Finally, we have proposed an automatic way of calculating
appropriate behavior in situations requiring emotion regula-
tion. Our proposal is based on neuroscientific evidence. This
proposal is novel, since it is not contemplated by proposals
of the state of the art, which are oriented more towards the
correct operation of the cognitive regulation techniques or
towards the identification of the context and the current
situation.

6.1. Conclusions. Although our proposed model of emotion
regulation cannot be considered complete, it contains the
necessary foundations for the search for appropriate behavior
in a situation that requires emotion regulation.This behavior,
as we have already mentioned, is the fundamental compo-
nent to carry out emotional cognitive regulation. From the
implementation presentedwe can observe that the proposal is
appropriate, because the virtual creature is able to calculate an
appropriate behavior from scratch for a situation that requires
emotion regulation when the creature does not have previous
experiences and in an efficientwaywhen it does have previous
experiences for the situation it is facing. In the same way, we
can conclude that the use of a GXCS classifier to carry out the
learning of the appropriate behavior is viable and favors us in
similar situations by giving us quick answers. On the other
hand, we can also conclude that it is possible to improve the
efficiency of the system by making adjustments, for example,
by improving the generation of GXCS rules to accelerate the
calculation of appropriate behaviors.
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