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Nonalcoholic fatty liver disease (NAFLD) is the most common type of chronic liver disease
and lacks guaranteed pharmacological therapeutic options. In this study, we applied a
network-based framework for comprehensively identifying candidate flavonoids for the
prevention and/or treatment of NAFLD. Flavonoid-target interaction information was
obtained from combining experimentally validated data and results obtained using a
recently developed machine-learning model, AI-DTI. Flavonoids were then prioritized by
calculating the network proximity between flavonoid targets and NAFLD-associated
proteins. The preventive effects of the candidate flavonoids were evaluated using FFA-
induced hepatic steatosis in HepG2 and AML12 cells. We reconstructed the flavonoid-
target network and found that the number of re-covered compound-target interactions
was significantly higher than the chance level. Proximity scores have successfully
rediscovered flavonoids and their potential mechanisms that are reported to have
therapeutic effects on NAFLD. Finally, we revealed that discovered candidates,
particularly glycitin, significantly attenuated lipid accumulation and moderately inhibited
intracellular reactive oxygen species production. We further confirmed the affinity of glycitin
with the predicted target usingmolecular docking and found that glycitin targets are closely
related to several proteins involved in lipid metabolism, inflammatory responses, and
oxidative stress. The predicted network-level effects were validated at the levels of mRNA.
In summary, our study offers and validates network-based methods for the identification of
candidate flavonoids for NAFLD.

Keywords: flavonoids, non-alcoholic fatty liver disease, network pharmacology, network medicine, machine
learning

1 INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is known to accumulate fat (particularly over 5%) in the
liver tissue of patients who do not ingest excessive quantities of alcohol. It is a representative
metabolic disorder in the liver, which presents a variety of conditions, including simple steatosis,
steatohepatitis, liver fibrosis, and hepatocellular carcinoma (Anstee et al., 2019). Although the exact
pathophysiological mechanism of NAFLD is not fully understood, the most accepted concept is
considered as the “multiple-hits model,” which involves prevalent multiple parallel factors, including
fat accumulation, inflammatory reactions, and oxidative stress (Buzzetti et al., 2016). Recent data
show that 25% of general population has NAFLD, and the rate is much higher in high-income
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countries. (Mitra et al., 2020). Recently, NAFLD has become one
of the most important medical issues worldwide; however, there
has been no effective therapeutic approach. Thus, the
development of anti-NAFLD effect-guaranteed therapeutics is
urgently required.

Natural products, such as flavonoids, have frequently been
investigated in NAFLD models and have shown beneficial
effects in clinical and preclinical studies. A multiethnic
clinical study found that the intake of flavonoids reduces the
risk of NAFLD and assists in normalizing NAFLD status by
attenuating the fatty liver index, serum aspartate
aminotransferase, and alanine aminotransferase (Mazidi
et al., 2019). In addition, narrative reviews suggested that the
pharmacological properties of flavonoids against NAFLD are
primarily exerted by acting on multiple targets involved in
oxidative stress, inflammation, and lipid metabolism (Jadeja
and Devkar, 2013; Qiu et al., 2018). Despite their therapeutic
potential, the majority of flavonoids have not been identified for
their NAFLD treatment potential due to the excessive cost and
labor required to perform biochemical analysis. Therefore, there

is still a pressing need for an alternative strategy to predict
potential flavonoids with in-depth mechanisms for prevention
and treatment of NAFLD.

A network medicine framework, based on the molecular
interactions of comprehensive subcellular networks, has
emerged as a promising platform for identifying rational drug
target and novel indication (Guney et al., 2016; Gysi et al., 2021).
The key finding of the framework is that the closer the targets of a
compound are to disease proteins on a human protein-protein
interaction (PPI) network, the more likely that the compound will
affect the disease phenotype. A recent study also revealed that the
framework can discover the therapeutic effects of polyphenols,
suggesting the possibility of discovering potential natural
products for NAFLD treatment (do Valle et al., 2021).
However, a sufficient amount of compound-target interaction
(CTI) information is an essential prerequisite for exploring the
therapeutic potential of natural products using the developed
framework. Unfortunately, the CTIs of natural products are
currently largely unknown, making it difficult to fully apply
network medicine frameworks to natural products.

FIGURE 1 | Integrated workflow for investigating candidate flavonoids and their potential mechanisms for NAFLD. (A) Data collection. Human PPI network,
compound-target network of flavonoids, NAFLD-associated proteins were collected from various datasets and databases. (B) Prioritizing flavonoids based on network
proximity. Average closest distance (dc ) and its relative distance (Zdc ) were calculated to screen potential flavonoids for NAFLD treatment under the human PPI network.
(C) Experimental validation. The preventive effects of candidate flavonoids against NAFLD were evaluated using FFA-induced in vitro model, molecular docking,
and network analysis.
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One way to complement the limited coverage of the
framework is to leverage machine-learning prediction
methods. Using abundant chemical and biological data,
machine-learning techniques have been successfully applied in
various applications and archives, including CTI prediction (Luo
et al., 2017; Wen et al., 2017; You et al., 2019; Chen et al., 2020;
Huang et al., 2020). In particular, Lee et al. recently developed a
state-of-the-art algorithm, AI-DTI, that predicts activatory and
inhibitory targets based on mol2vec and genetically perturbed
transcriptome (Lee et al., 2021). The model outperformed a
previous model that predicted activatory and inhibitory
targets, supporting the accuracy and reliability of the model.
One of the key features of this model is that only the 2D structure
of a small molecule is required for CTI prediction, highlighting
the practical applicability of CTI prediction to natural products.

Here, we aimed to investigate potential flavonoids that exert
beneficial effects on NAFLD by combining an AI-DTI model and
the network medicine framework (Figure 1). Focusing on
flavonoids, which have been widely studied for NAFLD,
allowed us to comprehensively evaluate the reliability of the
prediction results and lead to identifying more promising
candidates. We assembled experimentally validated and
predicted CTIs from public databases and AI-DTI,
respectively, and then prioritized the potential flavonoids for
prevention and/or treatment of NAFLD by calculating network
proximity between flavonoid targets and NAFLD-associated
proteins. We evaluated whether proximity measurements
could rediscover known beneficial effects and their potential
mechanisms in order to test the validity of the predicted
results. Finally, the potential of the candidate flavonoids was
evaluated using a free fatty acid (FFA)-induced HepG2 and
AML12 cell models. Altogether, we believe that this study
systematically revealed flavonoids that can be used against
NAFLD, along with testable molecular mechanistic hypotheses.

2 MATERIALS AND METHODS

2.1 Flavonoids Selection
Flavonoids were retrieved from the Phenol-Explorer database
(version 3.6) (Rothwell et al., 2013). For the analysis, we only
considered flavonoids that 1) could be mapped to PubChem IDs,
and 2) where 2D structures in SMILES format were available. A
quantitative estimate of drug-likeness (QED) (Bickerton et al.,
2012) was calculated to select candidate flavonoids for bioactivity.
Following this, 59 flavonoids were considered candidates with
favorable pharmacokinetic properties that could be used in
subsequent analyses. QED was calculated using the RDkit
module in Python 3.7.

2.2 Predicting Flavonoid Targets
The potential target profiles of flavonoids were predicted by AI-DTI,
a practically useful algorithm developed for predicting activatory and
inhibitory targets of compounds (Lee et al., 2021). AI-DTI consists of
two models that predict activatory or inhibitory CTIs. When an
input query (drug-target pair) is received, AI-DTI transforms it into
activatory and inhibitory DTI feature vectors, and then infers

activatory and inhibitory interaction using each prediction model.
The input features for the model are constructed by concatenating
the vectors of compounds and targets derived from the mol2vec
method (Jaeger et al., 2018) and a genetically perturbed
transcriptome obtained from CMap (Subramanian et al., 2017).
For activatory CTIs, the feature vector was represented as a
concatenated form of the compound vector calculated by
mol2vec and the representative vectors of activatory targets. For
inhibitory CTIs, the feature vector was constructed as a concatenated
form of the compound vector calculated by mol2vec and
representative vectors of inhibitory targets. Each model is trained
to discriminate between known and unknown CTIs based on a
dataset consisting of the constructed input features and their labels.
The trained model predicts the likelihood score that the compound
would activate or inhibit the protein using the input vector of the
compound and the target of interest. In this study, we used an AI-
DTI model trained on the extended dataset with an optimized
cascaded deep forest model trained on the extended dataset that can
predict a wider target with best performance.

2.3 Network Pharmacological Analysis for
Flavonoids
Network pharmacological analysis was conducted by constructing
a compound-target network for flavonoids and analyzing the
constructed network. A compound–target network is a bipartite
network in which nodes are defined as compounds and targets, and
the edges between compounds and targets are defined as CTIs. The
compound-target network was constructed and visualized using
Cytoscape (version 3.8.2) based on information regarding the
compounds, targets, and their various interactions (Shannon
et al., 2003). Functional annotation and Gene Ontology (GO)
overrepresentation analyses were performed using the online
analytical tool PANTHER (Protein ANalysis THrough
Evolutionary Relationships; http://www.pantherdb.org, v.14.0)
(Mi et al., 2019). PANTHER is widely used as a comprehensive
resource for gene function classification and genome-wide data
analysis. Fisher’s exact tests with the Benjamini-Hochberg false
discovery rate correction were employed to determine the
significance of GO terms in the biological process category of
the Homo sapiens genome.

2.4 Non-Alcoholic Fatty Liver
Disease-Associated Proteins
NAFLD-associated proteins were obtained from the Comparative
Toxicogenomics Database (CTD) and the literature. CTD is a
publicly available database that aims to advance the
understanding of the effects of environmental exposure on
human health, providing manually curated information, such
as disease-gene associations (Davis et al., 2019). Among the
disease-gene associations, we selected associations labeled as
“Marker/Mechanism” and “Therapeutic”. We manually added
14 additional NAFLD-associated proteins from the literatures
(Millar et al., 2006; Tariq et al., 2014; WuW. et al., 2018; Yu et al.,
2018). To identify biological functions at the process level,
proteins were grouped as follows: lipid metabolism (lipid
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metabolic process, GO: 0006629), inflammation (regulation of
inflammatory response, GO: 0050727), oxidative stress (response
to oxidative stress, GO: 0006979), and others. In this study, 85
proteins related to various biological processes were identified as
NAFLD-related proteins (Supplementary Table S1).

2.5 Human Protein-Protein Interaction
Network
The human PPI network is a set of PPIs that occur in human cells.
The PPI network used in this study was obtained from the data
built by do Valle et al. (2021). Briefly, they assembled the human
interactome from 16 databases containing six different types of
PPIs: 1) binary PPIs tested by high-throughput yeast two-hybrid
experiments (Rolland et al., 2014); 2) kinase–substrate
interactions from literature-derived low-throughput and high-
throughput experiments from Kinome NetworkX (Cheng et al.,
2014), Human Protein Resource Database (HPRD) (Keshava
Prasad et al., 2009) and PhosphositePlus (Hornbeck et al.,
2012); 3) carefully literature-curated PPIs identified by affinity
purification followed by mass spectrometry (AP-MS) and from
literature-derived low-throughput experiments from InWeb (Li
et al., 2016), BioGRID (Chatr-Aryamontri et al., 2017), PINA
(Cowley et al., 2012), MINT (Peri et al., 2004), IntAct (Orchard
et al., 2014) and InnateDB (Breuer et al., 2013); 4) high-quality
PPIs from three-dimensional protein structures reported in
Instruct (Meyer et al., 2013), Interactome3D (Mosca et al.,
2013), and INSIDER (Meyer et al., 2018); 5) signaling
networks from literature-derived low-throughput experiments
as annotated in SignaLink2.0 (Fazekas et al., 2013); and 6)
protein complexes from BioPlex2.0 (Huttlin et al., 2017). The
genes were mapped to their Entrez IDs based on the National
Center for Biotechnology Information (NCBI) database and their
official gene symbols. The constructed network included 351,444
PPIs, connecting 17,706 unique proteins.

2.6 Network Proximity Calculation Between
Flavonoid Targets and Non-Alcoholic Fatty
Liver Disease Proteins
The proximity of NAFLD-associated proteins and flavonoids was
assessed using a distance metric proposed by Guney et al. (2016),
considering the shortest path length between the targets of the
compound and the disease protein.

First, the average closest distance dc(S, T) between NAFLD-
associated proteins and flavonoid targets is defined as follows:

dc(S, T) � 1

||T||∑t∈T
mins∈S d(s, t) (1)

S denotes a set of NAFLD-associated proteins,T denotes the set of
flavonoid targets, and d(s, t) denotes the shortest path length
between nodes s and t in the network. A relative distance metric
(Zdc) was then calculated by comparing the dc(S, T) to a reference
distribution describing random expectations. The reference
distribution is constructed by iteratively calculating the
expected distances between two randomly selected groups of

proteins matching the size and degrees of NAFLD–associated
proteins and flavonoid targets in the network. The relative
distance Zdc is defined as follows:

Zdc �
d − μdc(S,T)
σdc(S, T)

(2)

μc(S,T) denotes the mean and σc(S,T) denotes standard deviation of
the reference distribution, respectively. The closest and relative
distances were calculated in python 3.7 using a module shared by
Guney et al.

2.7 Molecular Docking
The molecular docking method was used to study the binding
affinities and conformations of glycitin and its predicted targets.
The web server CB-Dock was used to perform molecular docking
simulations (Liu et al., 2019). The PDB (Protein Data Bank)
formats of proteins and ligand files in SDF formats were derived
from the PDB (http://www.rcsb.org) (Burley et al., 2017) and
PubChem (http://www.ncbi.nlm.gov/pccompond) (Kim et al.,
2021), respectively. These files were uploaded and submitted
to the CB-Dock server. The result table lists the vina scores,
cavity sizes, docking centers, and sizes of the predicted cavities.
Once a ligand in the table is selected, the structure in the
interactive 3D graphics is visualized. For cross-validation, the
COACH-D server (https://yanglab.nankai.edu.cn/COACH-D/)
(Wu Q. et al., 2018) was also applied to predict putative
ligand binding sites and binding energies. Ligplot software was
used for 2D visualization of the interactions between proteins and
a ligand.

2.8 Experimental Methods
2.8.1 Cell Culture
HepG2 cell line (Korean Cell Line Bank, Seoul, Republic of
Korea) and RAW264.7 cell line were cultured in Dulbecco’s
Modified Eagle’s Medium (WelGENE Inc., Seoul, Republic of
Korea) with 10% fetal bovine serum (WelGENE Inc.) and 1%
antibiotic-antimycotic solution (WelGENE Inc.). Cells were
maintained in a humidified incubator at 37°C in 5% CO2.
AML12 cell line (ATCC, VA. United States) was maintained
in DMEM/F12 (GIBCO/Thermo Fisher, NY, United States)
supplemented with 10% FBS, 10 μg/ml insulin, 5 μg/ml
transferrin, 7 ng/ml selenium, 40 ng/ml dexamethasone and
1% of antibiotic-antimycotic solution (GIBCO or WelGENE).
Cells were maintained in a humidified incubator at 37°C in
5% CO2.

2.8.2 Cell Viability Assay
HepG2 cells (7 × 103 cells/well) were seeded in 96-well
microplates and incubated for 12 h. Cells were treated with 2,
20, or 200 μM of glycitin, choerospondin, glycitein, and daidzin
(MedChemExpress, NJ, United States) for 24 h. Cell viability was
measured using the commercially available reagent Cell Counting
Kit-8 (EZ-Cytox, DoGen, Republic of Korea) according to the
manufacturer’s instructions. Absorbance was measured using a
UV spectrophotometer at 450 nm (Molecular Devices, CA,
United States).
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2.8.3 Oil Red O Staining Assay
Based on the cell viability results, HepG2 cells and AML12 cells (2
× 105 cells/well) seeded in 6-well plates were treated with 200 μM
of FFAmixture (ratio of 2: 1, oleic acid: palmitic acid, dissolved in
1% bovine serum albumin) for 24 h after pretreatment with
20 μM of four single compounds (glycitin, choerospondin,
glycitein, and daidzin). The cells were then fixed with 10%
formaldehyde for 30 min at room temperature. After washing
with phosphate-buffered saline, cells were stained with Oil Red O
working solution (3 mg/ml in 60% isopropanol) for 10 min. Lipid
accumulation was detected using optical microscopy. Moreover,
intracellular lipid content was quantified by disrupting the cells
with 100% isopropanol. Absorbance was measured using a UV
spectrophotometer at 492 nm (Molecular Devices).

2.8.4 Triglyceride Detection Assay
Under the same cell culture conditions as the Oil Red O staining
assay, intracellular TG levels were measured using an enzymatic
detection kit (Asan Pharmaceuticals, Seoul, Republic of Korea).
Total protein concentration was measured using a bicinchoninic
acid protein assay kit (BCA1 and B9643, Sigma-Aldrich, MO,
United States). The absorbance was measured using a UV
spectrophotometer at 562 nm (Molecular Devices).

2.8.5 Reactive Oxygen Species Detection Assay
Under the same cell culture conditions as the Oil Red O staining
assay, intracellular ROS levels were measured using a 2′, 7′-
dichlorofluorescein diacetate (H2DCFDA) fluorescent probe.
Briefly, cells were incubated with 10 μM DCFH-DA for 30 min
at 37°C in the dark. Intracellular ROS production was measured
using an Axiophot microscope (Carl Zeiss, Jena, Germany).

2.8.6 Nitric Oxide Detection Assay
RAW264.7 cells (2 × 104 cells/well) seeded in 96-well plates were
treated with 100 ng/ml of lipopolysaccharide (LPS) for 24 h after
pretreatment with 20 μM of four single compounds (glycitin,
choerospondin, glycitein, and daidzin). The supernatants were
incubated with equal amount of Griess reagent (1% sulfanilamide/
0.1% N-(1-naphthyl)-ethylenediamine dihydrochloride/2.5%
H3PO4). After incubation for 15min at 37°C, absorbance was
measured using a UV spectrophotometer at 405 nm (Molecular
Devices).

2.8.7 Tumor Necrosis Factor-α Detection Assay
Under the same cell culture conditions as the NO detection assay,
the proinflammatory cytokine TNF-α level of supernatants was
measured using a commercially available enzyme immunoassay
(EIA) kit for TNF-α (BD Biosciences, San jose, CA,
United States). The absorbance was measured using a UV
spectrophotometer at 450 nm (Molecular Devices).

2.8.8 Quantitative Real-Time PCR
Under the same cell culture conditions as the Oil Red O staining
assay, total mRNA was extracted using QIAzol reagent (Qiagen,
CA, United States). After synthesis of cDNA using a High-
Capacity cDNA Reverse Transcription Kit (Ambion, Austin,
TX, United States), real-time PCR was performed using SYBR

Green PCR Master Mix (Applied Biosystems; Foster City, CA,
United States). PCR amplification was performed using a Rotor-
Gene Q (Qiagen, Hilden, Germany) with standard protocol. The
quantitative cycle threshold value of each gene was normalized
with that of GAPDH. Information of the primer sequences is
summarized in Supplementary Table S2.

2.9 Statistical Analysis
Statistical analyses were performed using Python (version 3.7)
with SciPy module (version 1.7.1). For the two-sample test,
Shapiro–Wilk test was used to assess whether the data were
normally distributed. A two-tailed Student’s t test was then
applied to compare unpaired two groups with normality.
When the normality was rejected, the Mann-Whitney U test
was applied. For the multiple comparison test, Shapiro–Wilk test
was used to assess whether the data were normally distributed. To
compare unpaired multiple sample groups, one-way analysis of
variance (ANOVA) followed by Dunnett’s test was used for the
dataset with normality. When the normality was rejected,
Kruskal-Wallis ANOVA followed by Dunn’s post hoc test was
applied. All statistical significance was set at p < 0.05.

3 RESULTS

3.1 Flavonoid Selection and Subclass
Analysis
We initially identified 155 flavonoids from Phenol-Explorer. We
selected flavonoids that could be mapped to a valid PubChem ID
and had a QED score ≥0.35 in order to consider validity and
bioavailability, respectively. This threshold represents the average
QED value of FDA-approved drugs, and compounds with QED
values above the threshold are considered to have favorable
pharmacokinetic properties. As a result, 59 flavonoids were
selected and included in our study (Figure 2A and
Supplementary Table S3). To describe their chemical diversity,
we visualized the subclass distribution of flavonoids. The results
showed that the selected flavonoids were distributed across nine
subclasses. Among the subclasses, flavones, flavanones, and
flavonols were the top three subclasses with 20, 11, and 10
compounds, respectively (Figure 2B).

3.2 Construction of Drug-Target Network
for Flavonoids
We first retrieved 168 validated CTIs between 27 flavonoids and
100 protein targets from the DrugBank (version 5.1.8) database
and Therapeutic Target Database (TTD, version 2.0). We
discovered that the percentage of flavonoids with more than
five known targets was only 20% (12/59), requiring additional
CTI information for subsequent analysis (Figure 3B). Therefore,
we utilized our recently developed algorithm, AI-DTI, to predict
activatory and inhibitory targets of selected flavonoids. We
constructed an input vector for all predictable flavonoid and
protein target pairs, and then predicted the likelihood score of the
CTI using a pretrained model. Compound-target pairs were
considered to activate or inhibit if their prediction score was
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>0.82, which exhibited a false discovery rate of 1% in the default
dataset. As a result, we additionally secured 124 activatory CTIs
and 1,130 inhibitory CTIs between 59 selected flavonoids and 73
protein targets (Figure 3A and Supplementary Table S4).

We tested the reliability of the predicted results by comparing
whether the overlapped number of CTIs between the
experimentally validated results and predicted results was
higher than the values in the null distribution. The values of
the null distribution were obtained by randomly selecting the
potential combinations of flavonoids and predictable targets in
AI-DTI and then repeatedly calculating the number of
overlapped CTIs between validated results and selected results.
We found that AI-DTI successfully recovered 11 validated CTIs
that did not appear in the training dataset. The number of
recovered CTIs between the validated results and predicted
results was significantly higher than the chance level (p <
0.001, hypergeometric test), which supports the reliability of
the predicted results of our model for selected flavonoids.

We constructed and visualized a compound-target network
between the selected flavonoids and the target protein using
assembled experimentally validated and predicted CTIs
(Figure 3C). The network consisted of 205 nodes and 1,422
edges, in which nodes denote the selected compounds or protein
targets (59 and 146, respectively), and edges denote activatory,
inhibitory, or other/unknown CTIs (133, 1228, and 61,
respectively). We revealed that the average number of targets
for flavonoids was 23.7, and the majority of the flavonoids had
more than 10 targets, except for three flavonoids (Figure 3B).
These results show that AI-DTI can provide accurate and
sufficient CTI information for subsequent analyses.

3.3 Predicting Candidate Flavonoids for
Non-Alcoholic Fatty Liver Disease Based on
Network Proximity
Next, we attempted to identify candidate flavonoids that exert
beneficial effects on NAFLD by employing a network medicine

framework. We calculated the network proximity between
flavonoid targets and NAFLD-associated 85 proteins using the
closest measure, dc and Zdc, representing the average shortest
path length and its relative distance between each flavonoid target
and the nearest disease protein, respectively (Figure 1B, see
Materials and Methods for details). The measured proximity
and direct interactions between the flavonoids and NAFLD-
associated proteins are summarized in Supplementary Table
S5. For example, daidzein and daidzin, an isoflavone
phytoestrogen found in soy, and its metabolites are produced
by human intestinal microflora. An in vivo study found anti-
steatotic effects of daidzein through direct regulation of hepatic de
novo lipogenesis and insulin signaling, and the indirect control of
adiposity and adipocytokines by altering adipocyte metabolism.
We found that daidzin was more proximal to NAFLD-associated
proteins than any other flavonoid (dc = 1.1, Zdc = −4.86). We
extended our search range to assess whether the top-predicted
flavonoids and their metabolic byproducts have reported
beneficial effects on NAFLD. Our results also revealed that the
majority of flavonoids proximal to NAFLD-associated proteins
have therapeutic effects on NAFLD, indicating that proximity
score successfully rediscovered the known therapeutic effect of
flavonoids on NAFLD (Table 1).

To test the mechanistic interpretability of the framework, we
evaluated whether the mechanisms of flavonoids could be
explained at the network level. We considered three
flavonoids, dihydroquercetin, nobliletin, and butein, which are
highly ranked in proximity measure, and have evidence reported
for its native molecule itself. We visualized networks focusing on
selected flavonoids and their protein targets and biomarkers
whose expression was measured in previous studies
(Figure 4). We then explored whether the association between
the target of flavonoids and the measured biomarker could
explain the results of previous reports.

Dihydroquercetin, also called taxifolin, was reported to
ameliorate high-fat diet feeding plus acute ethanol-binding
induced steatohepatitis by upregulating PPARγ levels and

FIGURE 2 | Selection process for flavonoids evaluated in this study and their chemical distribution. (A) The flowchart of selecting the flavonoids (B) Distribution of
flavonoids across its subclasses.
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suppressing the expression of interleukin (IL)-1β and caspase-1
(Zhan et al., 2021). Our results showed that dihydroquercetin
activates PPARG, which supports the notion that upregulated
PPARγ expression can be caused by the direct effect of
dihydroquercetin. In addition, we infer that the inhibitory

effects of dihydroquercetin on caspase-1 and IL-1β can be
derived from the inhibitory effects of dihydroquercetin on the
androgen acceptor. This hypothesis is supported by a previous
study showing that the androgen receptor is a promising
regulator of caspase-1 activity, which is responsible for the

FIGURE 3 | A compound-target network for selected flavonoids and its property. (A) Statistics of experimentally validated and/or predicted compound-target
interactions (CTIs) for flavonoids. DrugBank and TTD contain experimentally validated DTIs, and AI-DTI is employed to predict the activity-inhibitory target of flavonoids.
(B) Distribution of the number of flavonoid targets. (C) Compound-target network for flavonoids. Circles and diamonds denote protein targets and compounds,
respectively.
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subsequent activation of pro-inflammatory cytokines, including
IL-1β (Duez and Pourcet, 2021). Alternatively, butein exerts its
antiproliferative and proapoptotic effects on NAFLD by
suppressing STAT3 and JNK signaling (Moon et al., 2010;
Rajendran et al., 2011). The constructed network showed that
STAT3 and MAPK8 (JNK1) interacted closely with the butein
target EGFR. Moreover, considering that EGFR is an upstream
regulator of STAT3 and MPAK8 (JNK1), we can infer the
potential mechanisms by which butane affects STAT3 and
MAPK by regulating EGFR. Taken together, we found that
molecular interactions between the flavonoid target and the
measured biomarker provide potential network-level
mechanisms for certain flavonoids.

In contrast, we found that associations between certain
flavonoid targets and NAFLD-associated proteins does not aid
in the interpretation of mechanisms. For example, previous
studies have reported that dihydroquercetin inhibits the
expression of IL-1B, which can lead to a hypothesis that its

effect is exerted by the inhibitory effect of dihydroquercetin on
interacting PTPN1, which interact with IL-1β. However, a
previous report revealed that PTPN1 inhibition rather further
increases the effectiveness of inflammatory cytokines, including
IL-1β (Chen et al., 2015). Furthermore, we could not identify any
direct neighbors between the target of noviletin and previously
measured biomarkers. These results indicate that the molecular
interactions between flavonoid targets and measured biomarkers
should be meticulously interpreted, considering the disease and
model-specific contexts.

3.4 Evaluating Preventive Effects of
Flavonoids Using Free Fatty Acid-Induced
Hepatic Steatosis Model
Based on the results from the proximity distances, we further
evaluated whether unknown flavonoids, whose targets are
proximal to NAFLD-associated proteins, could exhibit

TABLE 1 | Top network-predicted candidate flavonoids for NAFLD with available literature-derived evidence.

dc Zdc PubChem ID Name Sub-class References (PMID)

1.10 −4.86 107971 Daidzin Isoflavonoids 21157426#

1.12 −4.32 187808 Glycitin Isoflavonoids NA
1.17 −3.92 156155 6″-O-Acetyldaidzin Isoflavonoids NA
1.21 −3.73 513197 Isoxanthohumol Flavanones 26976708#

1.21 −3.14 10185 Dihydroquercetin Dihydroflavonols 33325949
1.21 −3.71 92794 Naringenin 7-O-glucoside Flavanones 33234364#

1.21 −3.71 470791 Choerospondin Flavanones NA
1.25 −3.37 72344 Nobiletin Flavones 33096235
1.25 −3.28 155094 6-Prenylnaringenin Flavanones 26976708#

1.25 −3.28 509245 8-Prenylnaringenin Flavanones 26976708#

1.25 −3.23 5281222 Butein Chalcones 22722906

#Previous evidence of its metabolites.

FIGURE 4 | A compound-protein network between selected flavonoids and NAFLD-associated proteins. A network including the interaction between flavonoid
targets and NAFLD-associated proteins was constructed to elucidate the mechanisms of dihydroquercetin, butein, and nobiletin. Black and red arrows indicate
interactions consistent or inconsistent with the inferred mechanism of flavonoids against NAFLD, respectively.
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beneficial effects on NAFLD. We considered the following four
flavonoids: glycitin and choerospondin, which are unreported
and commercially available flavonoids that are proximal to
NAFLD-associated proteins, and glycitein (metabolites of
glycitin), and daidzin (the most proximal flavonoids with
reported evidence). To ensure appropriate dose of four
flavonoids (0–200 μM), the cell viability was evaluated using a
cell counting kit-8 (CCK8) assays. Except highest treated dose at
200 μM, the flavonoid treatments didn’t show cytotoxicity in
HepG2 cells (Supplementary Figure 1A). Therefore, further
investigations for evaluating anti-NAFLD activity were
performed using a single dose (20 μM) of four flavonoids.

To evaluate the beneficial effects of flavonoids against NAFLD,
we adopted an FFA-induced hepatic steatosis cell model, which is
commonly used to generate a cellular model of NAFLD (Müller
and Sturla, 2019). For our experimental purpose, instead of
palmitic acid that induces lipotoxicity, the FFA mixture (ratio
of 2: 1, oleic acid: palmitic acid) was used. The FFAs
predominantly induced NAFLD-like in vitro conditions in
HepG2 cells, as evidenced by increases in Oil Red O
histological observations (approximately 3-folds) and TG
contents (approximately 3.1-folds). These NAFLD-like
conditions were slightly or dramatically prevented by
flavonoids, in particular, pretreatment with glycitin
significantly inhibited the elevations of lipid accumulation and
TG contents (a reduction of 39 and 33%, respectively, p < 0.05 or
p < 0.01, Figures 5A–C). In addition, these anti-NAFLD
properties were re-validated in a normal murine hepatocyte

AML12 cells (Figures 5A,B). Taken together, these results
indicate that the proximity scores are reliable traits for
predicting novel candidates for preventing NAFLD progression.

We further investigated the potential mechanisms focusing on
glycitin, and all the identified targets were predicted using AI-
DTI. Reliability of predicted interactions was firstly evaluated by
analyzing molecular docking potentials. Briefly, the structure of
glycitin was uploaded to CB-dock (Liu et al., 2019) along with 14
predicted targets for which the structure was available in PDB.
For each process, blind docking was carried out to detect suitable
binding sites for glycitin and calculate the vina score, which is an
estimate of the logarithm of the free binding energy. The results
showed that the mean value of vina scores was −8.8 kcal/mol, and
all vina scores between glycitin and the predicted protein target
were less than −5 kcal/mol (Figure 6A). A cross-validation study
was further performed using another docking web server,
COACH-D (Wu Q. et al., 2018). The binding affinity between
glycitin and the expected target ranged from −5.8 to −12.9 kcal/
mol, which is consistent with the above results (Supplementary
Table S6). We visualized the molecular interaction between
glycitin and PDE5A, which had the lowest vina score. Our
results show that glycitin exhibits a strong binding affinity to
the predicted target, which supports the reliability of the
predicted results.

We then conducted an overrepresentation test and network
analysis to identify the potential mechanisms of glycitin at the
level of biological processes and molecular interactions. The
enrichment results based on GO showed that seven and six

FIGURE 5 | Effects of four isoflavones against NAFLD conditions in both HepG2 and AML12 cells. (A) Hepatic lipid accumulations and ROS productions were
determined using Oil Red O staining and DCFH-DA assay, respectively. (B) Intracellular lipid accumulations in HepG2 and AML12 cells and (C) TG contents in HepG2
cells were quantified. Data are expressed as the mean ± SD (n = 3 or 4). ##p < 0.01 compared to the vehicle-treated cells, and pp < 0.05 and ppp < 0.01 compared to the
cells exposed to FFAs.
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targets of glycitin were significantly involved in the regulation of
lipid metabolic processes and inflammatory responses,
respectively (approximately more than 5-folds to chance level,
p < 0.001). This association indicates that the mechanisms of
glycitin involve lipid metabolism and inflammation, which are
key regulators of the pathogenesis and progression of NAFLD
(Buzzetti et al., 2016). We also visualized the molecular
interactions between the target of glycitin and NAFLD-
associated protein. We found that glycitin targets interact with
NAFLD-associated proteins associated with various functions,
including oxidative stress (Figure 6B). The close interaction
between them indicates that the antioxidant capacity of
glycitin may be exerted by regulating the function of these
proteins via the cellular network. These results indicate that
the anti-NAFLD effect of glycitin may be exerted by regulating
the functions of various proteins related to metabolism, oxidative
stress, and inflammation at the biological process and
network level.

For the experimental verification of above predicted molecular
interactions, we explored the mRNA gene expression in each of
lipid metabolism, oxidative stress and inflammation using
quantitative PCR method. Not surprisingly, the altered mRNA

levels of FASN, SREBP-1c, PPAR-γ and α were prevented by
glycitin pre-treatment (p < 0.01 for all lipid metabolism-related
genes, Figure 7C). These results may be contributed by strong
antioxidant capacity of glycitin, as shown in remarkable
improvements against intracellular ROS overproduction arisen
from FFA (p < 0.05, Figures 7A,B). Furthermore, glycitin exerted
more up-regulations in mRNA levels of the NFE2L2, GSTP, and
CAT (p < 0.05 or p < 0.01, respectively; Figure 7C), and their
levels were tended to increase than vehicle-treated cells.

3.5 Evaluating Preventive Effects of
Flavonoids Using
Lipopolysaccharid-Induced Inflammation
Model
According to AI-DTI predictions, we additionally investigated
the anti-inflammatory properties of flavonoids using LPS-
induced inflammatory macrophage model. In RAW264.7
macrophage cell, the LPS significantly increased the levels of
NO, TNF-α and IL-10 (p < 0.01 for all parameters). The increases
in both NO and TNF-α levels were considerably attenuated by
flavonoids (p < 0.01 for all flavonoids in NO, p < 0.01 for daidzin

FIGURE 6 | Molecular docking validation and potential mechanism of glycitin. (A) Molecular docking results between glycitin and its predicted target and its
representative example. (B) Discovered target-NAFLD associated protein network for glycitin. A diamond denotes a flavonoid and circles denote protein targets. The
border and color of the circle denote the predicted target or related process-level function, respectively.
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in TNF-α; Supplementary Figures 1B,C), whereas IL-10 levels
were more augmented by choerospondin and daidzin than LPS-
exposed cells (p < 0.01 for both; Supplementary Figure 1D).

4 DISCUSSION

In this study, we discovered candidate flavonoids that exert
beneficial effects on NAFLD using a comprehensive strategy
that combines AI-DTI and network medicine framework. The
AI-DTI model provided activatory and inhibitory CTIs for all
included flavonoids, and the hypergeometric test supported the
reliability and accuracy of the CTI prediction results. The
measured proximity successfully recovered known flavonoids
that exhibited therapeutic effects on NAFLD, along with
potential mechanisms. Then, we performed in vitro
experiments using HepG2 and AML12 cells of the NAFLD
model, which were triggered by FFA. The results showed that
glycitin significantly attenuated lipid accumulation in hepatocytes
cells, conferring its therapeutic potential against NAFLD. The
potential mechanisms of glycitin were proposed and supported by
molecular docking, overrepresentation analysis, and network
analysis.

We believe that our study can contribute significantly to the
discovery of novel candidates and clinical implications for

NAFLD. To the best of our knowledge, this study is the first
to systematically identify candidates for NAFLD using network
proximity measure. Network-based prediction prioritizes
candidate drugs under the assumption that the emergence of
disease is related to the breakdown of a coordinated function of a
distinct group. This hypothesis is consistent with the
pathogenesis of NAFLD, which involves multifactorial
pathogenic properties. Our findings also suggest that network-
based approach could be a promising strategy for discovering
candidate drugs for NAFLD. In addition, we used AI-DTI to
predict the target of flavonoids, enabling the network-based
prediction model to fully screen for potential flavonoids.
Using the predicted target information, it was possible to
measure the network proximity between all flavonoid targets
and NAFLD-associated proteins. Notably, the proximity of
glycitin, a flavonoid validated in our study, was measured
solely based on predicted target information, which supports
the practical usefulness of the prediction model. Considering
that AI-DTI uses only 2D molecular structures of molecules for
target prediction, our results suggest that combining target
prediction models with network-based prediction can also be
applied to discovering other natural product candidates whose
target information is poorly known. We also reveal the system-
level mechanism of flavonoids in NAFLD through a network-
based strategy. These mechanisms can offer plausible hypotheses

FIGURE 7 | Experimental investigating potential mechanism of glycitin. (A) Intracellular ROS production was determined using DCFH-DA fluorescence assay, and
(B) it was quantified in HepG2 cells. (C) The mRNA expressions of lipid metabolism- and antioxidant-related genes were measured using quantitative real-time PCR
method in HepG2 cells. Data are expressed as the mean ± SD (n = 4). ##p < 0.05 and ##p < 0.01 compared to the vehicle-treated cells, and pp < 0.05 and ppp < 0.01
compared to the cells exposed to FFA.
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for beneficial effects on NAFLD of flavonoids investigated in
previous clinical studies.

Experimental verification is an essential step in evaluating the
accuracy and reliability of in silico approaches for drug discovery.
Herein, we evaluated the pharmacological properties of glycitin, a
soybean isoflavone, in an FFA-induced NAFLD hepatic cell model.
In addition, its metabolite (glycitein) and other isoflavones
(choerospondin and daidzin) were used for comparative
evaluation. Consistent with our prediction, glycitin-exposed
hepatic cells exhibited considerable reduction in lipid and TG
accumulation, which was superior to that of other isoflavones
(Figures 5A–C). In fact, there was a partial anti-obesity effect of
glycitin/daidzinmixture in high-fat diet-fedmice, whose effects were
shown by regulating oxidative stress (Zang et al., 2015). As
corresponded to our predictions, our experimental outcome
showed that glycitin has potent antioxidant property, as
evidenced by ROS scavenging activity and antioxidant-related
genes expression (Figures 7A–C). Indeed, anti-inflammatory
activity of glycitin was demonstrated in mice models of both
pneumonitis and osteoarthritis through inhibiting NF-κB
pathway (Chen et al., 2019; Wang et al., 2020). These potentials
would have led to the anti-NAFLD effects of glycitin viamodulating
lipid metabolic processes (Figure 7C), as we suggested using GSEA
and network analysis.

Our study proposes a practical approach to identify candidate
flavonoids for NAFLD. However, there are several limitations to
this study with the potential for further improvement. First, the
quality of the constructed compound-protein network for
flavonoids is not fully guaranteed. Although we showed the
reliability of our prediction results by using hypergeometric
test and molecular docking, the predicted results may still
contain false-positives. Also, in order to understand the
predicted interaction from structurally-oriented chemistry
perspective, other cheminformatics tools such as docking
simulation should be employed together. Second, we
considered only the native compounds in the dataset as
compound lists for screening therapeutic effects, ignoring the
possibility that the metabolites of the compounds were actual
candidates that could exhibit actual bioactivity. Unlike small
molecules, certain known therapeutic effects of natural
products can be exerted by the native molecules, and by their
metabolic byproducts (Demain, 2014; Koeberle and Werz, 2014;
Rodrigues et al., 2016). An interesting future study would be to
develop a predictive model that considers the natural product
itself, as well as the interaction between the protein target and its

by-products or metabolites. Finally, we selected the Phenol-
Explorer database as the main source of data, more
information from other databases should be considered as a
future step. For example, the TCMID is by far one of the
most comprehensive TCM databases (Xue et al., 2013),
including 46,914 prescriptions, 8,159 herbs and 25,210
ingredients, which can greatly help to investigate more
potential candidates. Despite these limitations, the proposed
framework showed the potential to systematically reveal the
mechanism of action underlying the beneficial effects of
flavonoids on NAFLD, offering a promising strategy for
mechanism-based drug development of natural products.
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