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Abstract 

Osteoarthritis, as a degenerative disease, is a common problem and results in high socioeconomic costs and rates of 
disability. The most commonly affected joint is the knee and characterized by progressive destruction of articular car‑
tilage, loss of extracellular matrix, and progressive inflammation. Mesenchymal stromal cell (MSC)‑based therapy has 
been explored as a new regenerative treatment for knee osteoarthritis in recent years. However, the detailed functions 
of MSC‑based therapy and related mechanism, especially of cartilage regeneration, have not been explained. Hence, 
this review summarized how to choose, authenticate, and culture different origins of MSCs and derived exosomes. 
Moreover, clinical application and the latest mechanistical findings of MSC‑based therapy in cartilage regeneration 
were also demonstrated.
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Background
Osteoarthritis is a common and disabling condition that 
represents substantial health and socioeconomic costs 
with notable implications for the individuals affected 
and healthcare systems [1, 2]. Global percentage change 
of years lived with disability in counts between 2006 and 
2016 was 31.5% [3]. Knee osteoarthritis (KOA) is the 
most prevalent subtype of osteoarthritis [4] that shows 
symptoms with pain, swell, stiffness, and loss of mobility 
mainly in the aging and obese populations [5]. The patho-
genesis of KOA is complicated, not only associated with 
the “wear and tear,” which is called mechanical stress [6]. 
Microenvironmental and genetic factors interact dur-
ing deterioration that ultimately leads to degeneration 
of articular cartilage, intraarticular inflammation with 
synovitis, and changes in subchondral bone [7, 8]. Extra-
cellular matrix (ECM) produced and secreted by chon-
drocytes and synovial fluid secreted by fibroblast-like 

synoviocytes are the two main important substances to 
maintain the microenvironment [9, 10]. Nonetheless, 
chondrocytes constitute only 2% of cartilage volume 
[11, 12] and may the first be activated by inflammatory 
signals originating from synovium or subchondral bone 
[13], which alter the balance between synthesis and 
degradation of ECM and cause the limited potential for 
self-regeneration of articular cartilage. Recommended 
treatment options range from non-care currently limited 
to pain control and merely improve the regeneration of 
articular cartilage in KOA.

Cell-based therapy and novel approaches using mes-
enchymal stromal cells (MSCs) or exosomes secreted by 
MSCs are presented as alternative cell-based sources to 
chondrocytes, which show potential for cartilage regen-
eration in KOA [14, 15]. The International Society for 
Cell & Gene Therapy refers MSCs as a bulk population 
with notable secretory, immunomodulatory, and hom-
ing properties. The minimal criteria include being plas-
tic adherent, expressing specific surface markers, and 
capable of in  vitro differentiation into adipocyte, chon-
drocyte, and osteoblast lineages [16]. MSCs and secreted 
exosomes (Exos) maintain therapeutical potentials for 
cartilage regeneration, including balancing metabolic 
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activity of cartilage and the chondrogenic differentia-
tion, which has been reported in animal studies and gain-
ing positive outcomes in the clinic [17–19]. However, a 
common standard for cell selection and preparation for 
studies and applications of MSCs is not yet available. 
Moreover, the mechanism of MSCs and MSC-Exos for 
KOA is not demonstrated clearly yet. This paper briefly 
describes situations associated with currently used meth-
ods for cell selection and preparation, followed by a 
review of the existing literature on MSC-based cell ther-
apy for cartilage regeneration in KOA.

MSCs and MSCs‑exosomes: cell selection 
and preparation
Cell selection
Stromal cells having multipotent differentiation poten-
tials with regenerative capacity can be generally classi-
fied into two groups: embryonic stromal cells and adult 
stromal cells [20]. Embryonic stromal cells contain cells 
from the term placenta, amniotic fluid, and umbili-
cal cord. Adult stromal cells have been identified within 
most of the tissues or organs, and the following sources 
have been applied for treating KOA, such as bone mar-
row (BM) [21, 22], trabecular bone [23], adipose tissue 
(AT) [19], synovial fluid [24], synovium [25], and periph-
eral blood [26]. Stromal cells from different sources have 
different differentiation capacities, different clinical ben-
efits, and cultural characteristics [27]. Hence, cell source 
is an important consideration for successful outcomes 
in mesenchymal stromal cell therapies and the common 
sources include bone marrow, adipose, synovial fluid, 
and synovium. According to the number of studies, bone 
marrow-derived MSCs (BM-MSCs) could be the pre-
dominant cell source, followed by adipose tissue-derived 
MSCs (AT-MSCs).

Exosome is a specific extracellular vesicle ranged from 
30 to  150 nm diameter [28] with a density of between 
1.1 and 1.2 g/mL [29], found in multiple types of cell 
[30] and extracellular fluids, such as plasma [31], syno-
vial fluid [32], urine [33], amniotic fluid [34], saliva [35], 
cerebrospinal fluid [36], breast milk [37], and tears [38]. 
MSC-Exos transfer bioactive lipids, nucleic acids (DNA, 
mRNAs, and non-coding RNAs) [39], and proteins 
between cells to elicit biological responses (gene-regu-
lation [40], proliferation, apoptosis [41], immunomodu-
lation [42], and so on) in recipient cells [43]. Different 
MSC-Exos have heterogeneity, even extracellular RNA 
extracted from exosomes and non-vesicles derived by the 
same cell have heterogeneity [44].

Phenotypic analysis
Phenotypic analysis confirms the expression of various 
MSCs-related surface markers. Most MSCs are positive 

for cluster of differentiation (CD)73 (5’ nucleotidase) 
[45–51], CD90 (Thy 1 membrane glycoprotein) [48–54], 
CD105 (endoglin) [32, 50, 51, 55–57], CD44 (hyaluronan 
receptor) [48, 49, 58, 59], and lack expressions for CD34 
(hematopoietic progenitor cell antigen) [32, 55, 56, 60, 
61], CD14 (myeloid cell-specific leucine-rich glycopro-
tein) [60–63], CD45 (protein tyrosine-phosphatase) [64–
68], and HLA-DR (human leukocyte antigens class II DR) 
[62, 68, 69]. Individual markers include CD146 (S-endo1, 
melanoma cell adhesion molecule, Muc18, or glycerin) 
[65–67, 70], CD29 (integrin β 1) [45–47, 52, 53, 64–66], 
CD49e (integrin α 5), CD54 (intercellular adhesion mol-
ecule 1), CD106 (vascular cell adhesion molecule) [63], 
CD146 (melanoma cell adhesion molecule) [32, 55, 56, 
67, 70], CD166 (activated leukocyte cell adhesion mol-
ecule) [63, 67], CD271 (low-affinity nerve growth factor 
receptor) [32, 46, 47, 55, 56, 65–67], SSEA-4 (stage-spe-
cific embryonic antigen-4) [45], Notch 1 (neurogenic 
locus notch homologue protein 1), HLA-ABC (human 
leukocyte antigens, histocompatibility complex class I 
molecules) [71, 72], and Stro 1 (stromal antigen 1) [68].

Besides CD44, CD73, CD90, CD105, some protein 
markers have the potentials to be new and specific mark-
ers [73]. Stro-1 and CD271 are cell membrane single-pass 
type I proteins that translocate from the endoplasmic 
reticulum to the cell membrane in response to the deple-
tion of intracellular calcium. However, it is unclear 
whether Stro-1 expression correlates with multipotency 
[46]. SSEA-4 is an embryonic stem cell marker, and 
CD146 is detected on perivascular cells around venules 
[69]. Erdogan et al. reported that AT-MSCs in New Zea-
land rabbits did not express CD73 and CD90 [58], while 
Chen et al. detected the expression of CD90 [59]. Some 
markers appeared already at the optic vesicle stage but 
did not remain highly expressed in the later differentia-
tion stage [74].

As for Exos, they are characterized by the expression of 
endosomal markers, including tetraspanins (CD9, CD63, 
CD81, and CD82) due to endosomal origin [32, 64, 68, 
75–77], whereas TSG101 (tumor suppressor gene 101), 
an endosomal sorting complex required for transport-
related protein specific for micro-vesicle body formation, 
is not specifically expressed in exosomes [32]. The com-
mon surface marker profile of MSCs and MSC-exosomes 
is shown in Table 1.

Culture
MSCs are spindle-shaped and adherent cells, capable of 
proliferation, self-renewal, and differentiating into cells 
of multi-lineage. One of the characteristic features of 
MSCs is adhering to tissue culture plastic and generating 
colonies when plated at low densities [78]. MSCs growing 
from individual foci, or colonies from the microscopic 
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view, and these colonies generated from progenitor cells 
have been called the colony-forming unit fibroblast [79]. 
The ability of MSCs to undergo chondrogenic, osteo-
genic, and adipogenic differentiation has been reported 
in vitro and in vivo.

Chondrogenic differentiation largely depends on the 
culture conditions. Mediators capable of promoting 
chondrogenesis, such as transforming growth factor-beta 
(TGF-β), have been elucidated using simplified in  vitro 
models [80]. Recently, Yin et al. indicated that MSCs dif-
ferentiated into mature chondrocytes after 21  days of 
co-culture with ECM-derived particles in a micrograv-
ity environment without exogenous TGF-β3 [81]. Chon-
drogenesis can be achieved either in 2-dimensional or 
3-dimensional culture systems in  vitro. The 3-dimen-
sional culture system facilitates greater cell contacts and 
interactions of cells with the ECM, allowing cells to adapt 
to their native morphology [82]. Moreover, the efficiency 
of chondrogenesis tends to be lower in the 2-dimensional 

culture system. The scaffold-free 3-dimensional cultures 
provide a high-density cell culture environment and are 
commonly classified as pellet or micromass culture sys-
tems [83]. In general, the induced cartilage was more 
similar to hyaline cartilage in the micromass culture 
technique, while the pellet culture is more useful for 
clinical applications [84]. Moreover, platelet-rich plasma 
(PRP), MSCs, and chondrocytes co-culture would favor 
chondrogenesis without hypertrophic and pathologic 
responses [85]. Chondrocytes cultured with MSC-Exos 
enhanced proliferation and chondrogenesis [86]. The 
flow diagram of applying MSC-based therapy is pre-
sented in Fig. 1.

Functions of MSC‑based therapy for cartilage 
regeneration in KOA
Impact on chondrocyte
Increased chondrogenesis, improved proliferation, 
reduced apoptosis, and maintenance of autophagy of 

Table 1 Surface markers on mesenchymal stromal cells and exosomes

MSCs Mesenchymal stromal cells, BM bone marrow, AT adipose tissue, UC umbilical cord, SF synovial fluid, Exos exosomes, CD cluster of differentiation, SSEA-4 stage-
specific embryonic antigen-4, α-SMΑ α-smooth muscle actin, HLA human leukocyte antigen, TSG101 Recombinant Tumor Susceptibility Gene 101, HSP70 heat-shock 
protein 70

Species Source Positive antigens Negative antigens References

Human Bone marrow CD13, CD29, CD44, CD71, CD90, CD106, CD120a, 
CD124, CD271, CD146, Stro‑1, SSEA‑4

CD14, CD34, CD45 [65, 66]

Rabbit Bone marrow CD29, CD73, CD105, CD146 CD34, CD45 [45]

Rat Bone marrow CD29, CD44, CD90 CD34, CD11, CD45 [52, 53]

Mice Bone marrow Sca‑1, CD29 CD45, CD11b [64, 65]

Human Adipose CD13, CD29, CD44, CD73, CD90, CD105, CD271, 
CD146

CD31, CD34, CD45, Stro‑1, SSEA‑4 [46, 47]

Rabbit Adipose CD29, CD44, α‑SMA, CD90 CD34, CD45 [58, 59]

Rat Adipose CD44, CD73, CD90 CD34, CD45, CD11b [48, 49]

Mice Adipose CD29, CD105 CD34, CD45 [57]

Human Synovial fluid/synovium CD13, CD73, CD90, CD105, Stro‑1, SSEA‑4, CD146 CD11b, CD14, CD19, CD34, CD45, CD79b, CD271, 
HLA‑DR

[32, 55, 56]

Human Blood CD29, CD73, CD90, CD105, CD146, CD166 CD45, Stro‑1, SSEA‑4, CD271 [67]

Horse Blood CD73, CD90, CD105, CD146 [70]

Human Term placenta CD29, CD44, CD73, CD90, CD105, SSEA‑4 CD11b, CD14, CD19 CD31, CD34, CD45, Stro‑1, 
HLA‐DR, CD271

[60, 61]

Human Amniotic fluid CD73, CD90, CD105 CD31, CD34, CD45 [54]

Human Umbilical cord CD73, CD90, CD105 CD11b, CD14, CD19, CD34, CD45, HLA‑DR, 
CD271, SSEA‑4

[62]

Human Trabecular bone CD90, CD73, CD105, CD166, CD106, CD146 CD14, CD19, CD34, CD45 [63]

Human BM‑MSC‑Exos CD9, CD81, TSG101 Calnexin [68]

Rabbit BM‑MSC‑Exos CD9, HSP70 [75]

Rat BM‑MSC‑Exos CD63, CD81, TSG101 Calnexin [76]

Mice BM‑MSC‑Exos CD63, CD81, syntenin 1, TSG101 [64, 77]

Human AT‑MSC‑Exos CD9, CD63, CD73, CD81, CD90, CD146, TSG 101, 
HLA‑ABC

Calnexin, CD45, HLA‑DR [68]

Human SF‑MSC‑Exos CD9, CD63, CD81, TSG101 [32]

Human UC‑MSC‑ Exos CD63 Calnexin [62]
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Fig. 1 The flow diagram of applying MSC‑based therapy. Firstly, choose the appropriate origin of MSCs, then isolate MSCs from other cells, and 
authenticate them. Inject the MSCs or isolate MSCs‑derived exosomes by centrifugation or other methods, and then inject the exosomes after 
authentication. MSCs: mesenchymal stromal cells
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chondrocytes are the main functions of MSC-based 
therapy on KOA. The chondrogenesis is primarily due 
to chondrogenic differentiation of MSCs triggered by 
some growth factors or enhanced activity of chondro-
progenitors and chondrocytes stimulated by MSCs [87]. 
Moreover, human AT-MSCs showed a high chondro-
genic potential supported by the increased expression of 
sex-determining region of Y chromosome-box transcrip-
tion factor 9 (SOX9), as a chondrocyte precursor marker 
[88]. One study reported a reduced matrix synthesis and 
low proliferation rate of chondrocytes in the injured car-
tilage, while the restored proliferation ki67 enhanced 
after injecting human umbilical cord-derived MSCs 
[89]. Additionally, the proliferation rate of chondro-
cytes was increased while co-culturing with BM-MSCs 
[90]. In addition, synovial MSC-Exos have the potential 
to improve proliferation and migration of chondrocytes 
in  vitro and in  vivo [91]. TGF-β1-stimulated MSC-Exos 
increased the cell viability of the chondrocyte-restricted 
rat cell  line [92]. Rat BM-MSC-Exos under hypoxic pre-
treatment promoted the proliferation and migration of 
chondrocytes [93].

Apoptosis of chondrocytes is another characteristic 
of the progression of OA. Chen et al. reported a notable 
decrease of the proportion of dUTP nick end labeling 
positive cells that indicated apoptosis in cartilage after 
injection with MSCs compared with the phosphate-buff-
ered saline [94]. Apoptosis could be a potential thera-
peutic pathway for KOA [95]. Moreover, the apoptosis 
of chondrocytes was remarkably inhibited by cocultur-
ing with BM-MSCs under hypoxia [90]. Exos also have a 
positive effect on preventing cartilage damage. Interleu-
kin (IL)-1β treatment inhibited cell viability and DNA 
synthesis activity, and enhanced apoptosis of chondro-
cytes. However, BM-MSC-Exos treatment promoted cell 
viability and DNA synthesis activity with a lower apop-
tosis rate [96]. Wu et  al. also reported AT-MSC-Exos 
inhibited cell apoptosis and enhanced autophagy [97]. 
Autophagy can be detected combined with apoptosis in 
KOA. Autophagy serves as an adaptive response under 
environmental changes that maintain the survival of 
chondrocytes by preserving energy metabolism in cells. 
The levels of Beclin‐1 and microtubule‐associated pro-
tein light chain 3, as two vital proteins in the autophagic 
process, were detected to manifest a reduced autophagic 
activity in KOA animal model that treated with phos-
phate-buffered saline, whereas MSCs therapy maintained 
almost the same level as that of the normal group [94].

Impact on the ECM
Regulating the balance of synthesis and catabolism of 
the ECM is essential to treat degenerative diseases, 
such as KOA. Matrix metalloproteinases (MMPs) refer 

to a family of zinc-dependent ECM remodeling endo-
peptidases that degrade the ECM. On the other hand, 
the tissue inhibitors of MMPs (TIMPs) are important 
regulators of ECM turnover, tissue remodeling, and cel-
lular behavior that inhibit the proteolytic activity of 
MMPs within the ECM. BM-MSCs balanced the ratio of 
MMP‐13 to TIMP‐1 in cartilage and reduced the expres-
sion of cartilage hypertrophic markers such as collagen 
(Col)-X, fibroblast growth factor receptors 1–3, parathy-
roid hormone-related protein, and MMP-13 [98]. Sev-
eral studies reported the higher expression of gene Col 
2α1 in KOA cartilage, which encoded the α-1 chain of 
Col II, after MSC-based therapy [24, 99]. Moreover, the 
expressions of a disintegrin and metalloproteinase with 
thrombospondin motifs-5 and MMP13 in cartilage were 
significantly downregulated after treating with human 
umbilical cord-derived MSCs [89]. Hyaluronan syn-
thase-1 mRNA expression was upregulated in BM-MSCs 
after co-culture with chondrocytes from the KOA model, 
whereas hyaluronidase-1 was downregulated [100]. Chen 
et  al. revealed that BM-MSC-Exos could promote the 
expression of Col II, SOX9, and aggrecan while negatively 
regulating the expression of chondrocyte hypertrophy 
markers MMP-13 in mouse models of post-traumatic 
KOA [101].

Impact on the inflammatory cytokines
Inflammatory response plays an important role in the 
pathogenesis of KOA. The most important groups 
controlling the disease seem to be pro-inflammatory 
cytokines and anti-inflammatory cytokines, which have 
an antagonistic effect. The former mainly includes IL-1β, 
tumor necrosis factor‐α (TNF‐α), IL-6, IL-15, IL-17, 
and IL-18. Another is formed by TNF-stimulated gene 
6, IL-4, IL-10, IL-13, IL-37, and others. IL-37 partly res-
cued IL-1β and impaired cartilage formation of MSCs. 
This effect contributed to a lower MMP3 expression 
and an increased ratio of Col-II/ Col-I without increas-
ing hypertrophy markers [102]. Pro-inflammatory (M1) 
macrophages are associated with a high production of 
pro-inflammatory mediators such as TNF-α, IL-6, IL-1β, 
and IL-12, and are required for T cell activation. These 
cytokines induce destructive processes in chondrocytes 
manifesting a lower expression of Col-II and aggrecan 
synthesis [103].

Some researchers found decreased expressions of 
inflammatory and catabolic markers including IL-1β, 
TNF-α, and MMP13, after AT-MSCs injection [104], 
BM-MSCs injection [105], or induced pluripotent stro-
mal cell-chondrocytes transplant in KOA model. How-
ever, no difference in Col-II and Col-I expression was 
found between transplanted cartilage and other groups 
[106]. One study determined that both IL-1β and TNF-α 



Page 6 of 20Xiang et al. Stem Cell Research & Therapy           (2022) 13:14 

immunostaining in chondrocytes in the cartilage were 
significantly enhanced after human umbilical cord-
derived MSCs treatment and reserved almost back to 
normal tissue. Additionally, umbilical cord-derived MSCs 
therapy also led to increased expression of anti-inflam-
matory factors, TNF-stimulated gene 6, and IL-1 recep-
tor antagonist, in the articular chondrocytes [89]. Human 
AT-MSCs seem to adapt and respond better to both 
inflammatory stimuli and autologous protein solution 
than BM-MSCs in vitro [107]. Co-culture with AT-MSCs 
counteracted the IL-1β-induced mRNA upregulation of 
the MMP-3, MMP-13, TNF- α, and IL-6 in chondrocytes. 
Importantly, AT-MSCs increased the expression of the 
anti-inflammatory cytokine IL-10 in chondrocytes [108, 
109].

As for treatment with Exos, injection of miR-9-5p-con-
tained Exos alleviated the inflammation in KOA, which 
was evidenced by downregulated levels of inflammatory 
factors and reduced oxidative stress injury [110]. Lu et al. 
reported synovial MSC-Exos enhanced IL-1β-induced 
cell proliferation, whereas inhibited apoptosis and 
inflammation and the target relationship of miR-26a-5p 
and phosphatase and tensin homologue were predicted 
and confirmed [111]. Moreover, Zhe et  al. investigated 
miR-26a-5p in human BM-MSCs exerted an alleviatory 
effect on the damage of the synovial fibroblasts [112].

Impact on the immunity
Macrophages could play a crucial role in modulat-
ing inflammation during the pathogenesis of KOA via 
various secreted mediators. These cells can polarize to 
pro-inflammatory and anti-inflammatory (M2) pheno-
types. One study exposed AT-MSCs to osteoarthritic 
synovial fluid for two days for determining the effect of 
their secretome on differentiation of monocytes into 
pro-inflammatory M1-like macrophages and mature 
dendritic cells, and the effect on T cell proliferation and 
expansion of T regulatory cells. The results suggest that 
the exposure of AT-MSCs upregulated the immunosup-
pressive factors that induce monocytes into the M2-like 
phenotype and inhibit differentiation of monocytes into 
mature dendritic cells. Only the secretome of exposed 
AT-MSCs was detected to inhibit proliferation of T cells 
and promote T regulatory cells expansion [113].

More than 240 micro-RNAs were found in AT-MSCs 
and accounted for most of the genetic message that 
protected chondrocytes and M2 macrophage polariz-
ing. Ragni et  al. [114] have confirmed an increased M2 
phenotype marker CD163 and reduced the chondrocyte 
inflammation marker vascular cell adhesion molecule-1 
on inflamed macrophages and chondrocytes. BM-MSCs-
Exos and AT-MSCs-Exos have reported relieving KOA 
by promoting the phenotypic transformation of synovial 

macrophages from M1 to M2 [115, 116]. Moreover, TGF-
β1-stimulated BM-MSC-Exos reduced pro-inflammatory 
factors by promoting M2 polarization of synovial mac-
rophages [117].

Impact on the mitochondrial function
Aging and exposure to stress would determine the chon-
drocyte phenotype in osteoarthritis and age-related 
mitochondrial dysfunction and associated oxidative 
stress might induce senescence in chondrocytes [118]. 
The mitochondrial transfer was found from BM-MSCs 
to osteoarthritis chondrocytes. One study showed an 
increased mitochondrial membrane potential when co-
cultured with mitochondria from MSCs compared with 
chondrocytes without mitochondria transfer. The activ-
ity of mitochondrial respiratory chain enzymes and the 
content of adenosine-triphosphates were significantly 
improved [119].

Impact on the paracrine effect
Some researchers thought the paracrine effect of MSCs 
was mediated or performed by MSC-derived extracellu-
lar vesicles, while others support the induction of parac-
rine effect was independent of extracellular vesicles [120]. 
In general, the paracrine effect and Exos both represent 
cell-to-cell contact and biological information delivery. 
Extracellular vesicles have been traditionally classified 
into four subtypes, mainly based on their origins and 
sizes. MSC-Exos, as the smallest extracellular vesicles, 
have recently been suggested as a mechanism for their 
therapeutic potentials [121]. Figure 2 shows the functions 
of MSC-based therapy.

Mechanisms in cartilage regeneration 
by MSC‑based cell therapy
Pathways or axis
Regulations of inflammation, immunoregulatory, and 
metabolic pathways and the expression of key molecules 
by the MSCs-based therapy have been revealed in recent 
research. The nuclear factor-kappaB (NF-κB) family 
plays crucial roles in various biological processes includ-
ing mechanical processes, immunity, inflammation, and 
oxidative stress response, which could be activated by 
chemokines, pro-inflammatory cytokines, and degrada-
tion factors. NF-κB comprises five members: RelA (p65), 
c-Rel, RelB, NF-κB1 (p50), and NF-κB2 (p52) [122]. Yu 
et al. reported that the deletion of RelA in culturing BM-
MSCs could increase the chondrogenic differentiation 
[123]. Treatment with human AT-MSCs significantly 
reduced the content of signal transducer and activator 
of transcription 3, which is a DNA-binding molecule 
that regulates the levels of many cytokines. Activation of 
signal transducer and activator of transcription 3 leads 
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to increased pro-inflammatory cytokine production 
and immune responses [124]. BM-MSC-Exos inhibited 
mitochondrial-induced apoptosis in response to IL-1β, 
involving p38 mitogen-activated protein kinase (MAPK), 
extracellular regulated protein kinases (ERK), and protein 
kinase B pathways (AKT) [125].

Chronic inflammation may contribute to stress‐induced 
senescence of chondrocytes and cartilage degeneration 
during the progression. Treatment of chondrocytes with 
MSCs down‐regulated senescence markers induced by 
IL‐1β including senescence‐associated β‐galactosidase 
activity, accumulation of γH2AX foci, and morphologi-
cal changes with enhanced formation of actin stress fib-
ers. Additionally, the treatment reduced the activation of 

MAPK, ERK1/2, and p38 and to a lower extent the phos-
phorylation of c-jun N-terminal kinase 1/2 [126], which 
represents a classical inflammatory pathway. Besides this, 
inflammation is a prerequisite for the protective effect 
of AT-MSCs. Van Dalen et al. proved that local applica-
tion of AT-MSCs in KOA joints led to rapid clustering of 
polymorphonuclear cells around AT-MSCs, while IL-1β 
stimulated this clustering which reduces the pro-inflam-
matory activity of the polymorphonuclear cells in  vitro 
[127].

In human chondrocytes, oxidative stress may lead to 
DNA damage and senescence. In addition, reactive oxy-
gen species (ROS) production is important in signal-
ing pathways activated by IL-1β in chondrocytes. As 

Fig. 2 The functions of injections of MSCs or MSCs‑derived exosomes. MSCs can protect cartilage by differentiation into chondrocyte lineages, 
affecting the chondrocytes, mediating mitochondrial function, regulating cytokines, balancing the synthesis and catabolism of the extracellular 
matrix (ECM), modifying immune reactions, and paracrine activity that might be involved with the secreted exosomes. Exosomes are small 
extracellular vesicles that include lipids, nucleic acids, and proteins. MSCs: mesenchymal stromal cells, ECM: extracellular matrix
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oxidative stress is a key process in the induction and 
maintenance of senescence, Platas et al. investigated the 
effects of AT-MSCs on protein modification by ROS. 
In chondrocytes from the KOA model, IL-1β quickly 
induced the production of ROS and enhanced levels 
of 4-hydroxy-2-nominal-modified proteins, whereas 
AT-MSCs reduced the level of them [126]. In addition, 
human AT-MEC-Exos reduced the production of oxida-
tive stress in OA chondrocytes stimulated with IL-1β and 
resulted in an upregulation of peroxiredoxin 6 [128].

Cell proliferation activated by AT-MSCs in KOA rab-
bits may be specifically regulating the glycogen synthase 
kinase-3β (GSK-3β)/cyclin D1/cyclin-dependent kinase 
(CDK)4/CDK6 pathway. It reduced the elevated serum 
level of cartilage oligomeric matrix protein, blocked 
increases in the mRNA, and protein expression of GSK3β 
while decreasing the mRNA and protein expression of 
cyclin D1/CDK4 and cyclin D1/CDK6 in cartilage [129]. 
Wu et  al. demonstrated BM-MSCs increased the levels 
of the ECM proteins Col-II and SOX9 and decreased 
chondrocyte apoptosis and inflammation by upregulat-
ing the mediators of the autophagy phosphatidylinositol 
3 kinase/AKT/mammalian target of rapamycin (mTOR) 
pathway [130].

Key transcription factors
Key factors included TGFBI/BIGH3 (TGF-β-induced 
gene product-h3), bone morphogenetic proteins (BMPs), 
Nanog, and Oct4, which have important functions in cell 
adhesion, migration, proliferation, and apoptosis. TGFBI 
is a chondroprotective factor, released by MSCs and an 
anabolic regulator of cartilage homeostasis. Priming 
with TGFβ3 upregulated TGFBI transcription in murine 
MSCs and human MSCs and increased TGFBI secretion 
in human MSCs. Moreover, incubation of osteoarthritis-
like mouse chondrocytes with TGFβ3-primed murine 
MSC-conditioned media significantly upregulated the 
expression of chondrocyte anabolic markers but did not 
change the expression of catabolic and inflammatory fac-
tors [131]. BMPs are a subfamily of the TGF-β superfam-
ily that participate in the induction of bone and cartilage 
formation. BMP6 enhanced chondrogenesis of MSCs 
[132]. As key transcription factors for pluripotency and 
self-renewal, the overexpression of Nanog and Oct4 also 
enhanced chondrogenic reported that cell therapy by 
using MSCs after neurogenic differentiation and main-
tained MSCs properties in various culture conditions 
[133]. Stromal cell-derived factor-1α has been detected 
to promote stem cell migration and homing [134].

Non‑coding RNAs
Non-coding RNAs are functionally complex and are 
implicated in many crucial biochemical and cellular 

processes such as cell communication, inflammation, 
exosome biogenesis, tissue repair, regeneration, and 
metabolism. This wide distribution of biological activi-
ties confers on MSC-Exos the potential to elicit diverse 
cellular responses and interact with many cell types. 
MiR-410 is a key regulator of MSC chondrogenic dif-
ferentiation and directly targets Wnt3a triggering the 
Wnt signaling pathway [135]. Moreover, miR-127-3p 
from BM-MSCs inhibited cadherin-11 in chondrocytes, 
thereby blocking the Wnt/β-catenin pathway [96]. The 
miR-155-5p in synovial fluid-derived MSC-Exos pro-
moted proliferation and migration, suppressed apop-
tosis, and enhanced ECM secretion of osteoarthritic 
chondrocytes. Further, overexpression of Runt-related 
transcription factor 2 partially reversed the effect of the 
synovium-derived MSC-155-5p-Exos on osteoarthritic 
chondrocytes [136]. MiR-135b promoted M2 polariza-
tion of synovial macrophages through targeting MAPK6 
[117]. Additionally, miR-361-5p was verified to inhibit 
the NF-κB signaling pathway [137]. Synovium-derived 
MSC-extracellular vesicle-encapsulated miR-31 ame-
liorates KOA via the lysine-specific demethylase 2A/
E2F transcription factor 1/pituitary tumor transforming 
gene 1 axis [91]. The upregulation of miR-143 and miR-
124 in cellular and mouse OA models treated with Exos 
remarkably restored the normal expression of NF-κB and 
Rho Kinase 1 pathways [138]. Human AT-MSCs-Exos 
inhibited cell apoptosis, enhanced matrix synthesis, and 
reduced the expression of catabolic factors via the mTOR 
signaling pathway. MiR-100-5p decreased the luciferase 
activity of the mTOR 3′-untranslated region [97]. Hu 
et al. revealed that miR-365 expression was activated by 
chondrogenic induction in both MSCs from the osteo-
arthritis model and BM-MSCs [139]. Additionally, some 
micro-RNAs protect the cartilage, such as miR-26a-5p 
targeting phosphatase and tensin homolog, miR-26a-5p 
targeting prostaglandin-endoperoxide synthase 2 [111, 
112], miR-136-5p targeting E74-like factor 3 [101], and 
miR-520d-5p targeting histone deacetylase 4 [140]. Most 
reported non-coding RNAs were detected in the Exos, 
and detailed mechanisms are presented in Table 2.

Moreover, circle-RNAs and long non-coding RNAs 
play vital roles in micro-RNAs interaction and show 
abnormal expression in osteoarthritis, which may be 
an important target for regulating osteoarthritis and 
for drug treatment. These RNAs regulate the progress 
of KOA by completing with micro-RNAs or other non-
coding RNAs, that is called the ceRNA regulatory net-
work, such as circRNA_ATRNL1 targeting miR‐145‐5p 
[141], circRNA_0001236 targeting miR-3677-3p [142], 
circRNA_HIPK3 targeting miR-124-3p [143], lncRNA 
GRASLND [144], lncRNA MEG3 targeting EZH2-medi-
ated H3K27me3 [145], lncRNA HOTAIRM1-1 targeting 
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miR-125b [146], lncRNA HOTTIP targeting miR-455-3p 
[147], lncRNA EPB41L4A‐AS1 and lncRNA SNHG7 tar-
geting miR‐146a [148], and lncRNA LYRM4-AS1 target-
ing miR-6515-5p [149].

The physical situation on MSC‑based cells
The external physical situation could affect the cartilage 
and MSCs phenotype, such as conditions with hypoxia, 
hydrostatic pressure, compression, or magnetic fields. 
Nonetheless, the standard culture systems of the external 
physical situation have not been well-established yet and 
mechanisms are unclear.

Several studies have determined the application of low 
oxygen tension or hypoxia in MSC chondrogenesis and 
culture. In the presence of IL-1β, a significant in glycosa-
minoglycan, as a measure of proteoglycan levels, col-
lagen, and water content, was observed under hypoxic 
condition (2%  O2, 5%  CO2, 93%  N2) [150]. Moreover, the 
mRNA expression of Col-II and aggrecan was upregu-
lated in chondrocytes co-cultured with BM-MSCs under 
hypoxia (5%  CO2 and 95%  N2), and DNA methylation of 
the SOX9 promoter was significantly decreased under 
hypoxia [90]. Low oxygen tension (5%) was observed 
to promote ECM production by chondrocytes and 
enhanced the chondrogenesis of AT-MSCs compared 
to that cultured in normal condition [151]. Grayson 
and colleagues showed that under a 2%  O2 hypoxia, the 
expression of stromal cell genes Oct-4 and Rex-1 was 
upregulated [152].

Magnetic fields have been reported to enhance the 
chondrogenic differentiation of MSCs. Pulsed electro-
magnetic fields drastically promoted chondrogenesis 
by a specific hydrogel with high expressions of Col-II, 
aggrecan, and SOX9 genes [153]. Besides pulsed elec-
tromagnetic fields, a static magnetic field with 0.4 T was 
demonstrated to produce a strong chondrogenic differ-
entiation response after 14 days of culturing through the 
TGF-β pathway [154]. Further, the presence of electro-
magnetic fields could partly replace the addition of TGF-
β3, while the efficacy of chondrogenesis was statistically 
increased in the culture system. In TGF-β3-treated pel-
lets, a further significant increase of 72.7% in aggrecan 
gene expression was induced by electromagnetic fields at 
5 weeks [155].

Ultrasound-targeted microbubble destruction has been 
confirmed to increase the homing of transplanted MSCs 
to targeted organs. Stromal cell-derived factor-1α, as an 
important role in BM-MSCs migration, was loaded in 
microbubble. The number of migrated cells was higher 
when loaded microbubble under the guidance of ultra-
sound that the ultrasonic irradiation conditions of duty 
ratio 10%, intensity 1 W/cm2, time 30 s [134].

Clinical application
The initial injection of MSC-based therapy was in 2008 
[156], and a total of 23 non-case report studies are 
reported to apply MSC-based therapy for KOA since 
then. Thirteen of them were designed as randomized 
controlled studies, although with heterogeneity in 
sources cell, preparation methods, and dosage of MSCs. 
No study using MSC-Exos in KOA has been revealed yet. 
BM was the most frequently used source of MSCs (13/23 
studies; 57%) [157–169], AT was used in 7 trials (30%) 
[18, 19, 170–174], and umbilical cord was used in two in 
two trial (9%) [15, 175], and one study used MSCs from 
placenta (4%) [176]. In 12 trials in phase I, the different 
dosages were compared. The control interventions in the 
rest trials were hyaluronic acid injection in five trials [15, 
157, 160, 163, 175], PRP injection in four trials [161, 167, 
168, 172], saline injection in four trials [19, 163, 164, 176], 
total knee arthroplasty in one study [162], and conserva-
tional treatment [18]. Combined therapy included total 
knee arthroplasty [162], PRP [161], PRP with arthro-
scopic debridement [172], and hyaluronic acid [160]. 
Most included individuals had grade II–III of Kellgren-
Lawrence. Table 3 summarizes the study characteristics.

Dosage of MSCs
The single injection dosage ranged from 1.56 ×  104 to 
1 ×  108 cells, and the most wildly proved dosage was 
5 ×  107 cells. Repeated injections or high dosage showed 
superiority than single injection or low dosage. Matas 
et al. clarified that repeated umbilical cord-derived MSCs 
(2 ×  107 cells, every half year) treatment showed better 
improvements in pain and function than receiving injec-
tion only once at 1-year follow-up for individuals with 
KOA [15]. Moreover, Lamo-Espinosa et  al. reported a 
high dosage with 1 ×  108 BM-MSCs together with hya-
luronic acid resulted in a larger clinical and functional 
improvement [160]. In addition, Chahal et  al. found 
lower cartilage catabolic biomarkers and MRI synovitis 
in participants with higher doses [166] and the effects 
were maintained until 2-year follow-up [177].

Safety of MSC‑based therapy
In general, MSC-based therapy is safe with mild adverse 
events. The most common adverse events were transient 
arthralgia, swelling of joints after local injection [171], 
and low back pain [158], which were mild to moderate 
and were usually spontaneously relieved within 7  days 
without special treatment or controlled with ibupro-
fen [159]. Song et  al. reported one patient experienced 
mild edema and cramps of bilateral lower extremities 
that were relieved in 21  days without treatment [170]. 
Pers et  al. demonstrated one severe adverse event that 
one patient with hypertension and hyperlipidemia 
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Table 3 Characteristics of clinical trials about mesenchymal stromal cell‑based therapy for cartilage regeneration in knee osteoarthritis

RCT  Randomized controlled trial, MSCs mesenchymal stromal cells, BM bone marrow, AT adipose tissue, NR not reported, AE adverse event, NRS numerical pain rating 
scale, VAS visual analog scale, WOMAC Western Ontario and McMaster Universities Osteoarthritis Index, SF-36 short-form 36 health survey questionnaire, KOOS Knee 
Injury and Osteoarthritis Outcome Score, MRI magnetic resonance imaging, TKA total knee arthroplasty, HA hyaluronic acid, PRP platelet-rich plasma, K-L Kellgren-
Lawrence

Design Sample size Source Dosage (cells) Control 
intervention

Phase of trial K‑L grade Outcomes Follow‑up References

RCT 30 BM‑MSCs 4 ×  107 HA II II‑IV MRI, WOMAC, 
VAS, Lequesne 
index

12 months [157]

RCT and obser‑
vational study

18 AT‑MSCs 1, 2, 5 ×  107 None I/IIa > II AE, WOMAC, 
NRS, SF‑ 36, 
MRI

24 months [170]

Observational 
study

15 BM‑MSCs 4 ×  107 None I/II II‑III AE, WOMAC, 
VAS, Lequesne 
index SF‑ 36, 
MRI

12 months [158]

Observational 
study

18 AT‑MSCs 2, 10, 50 ×  106 None I III‑IV AE, WOMAC, 
VAS, KOOS

6 months [171]

Observational 
study

12 BM‑MSCs 4 ×  107 None II II‑IV MRI, WOMAC, 
VAS, SF‑36

12 months [159]

RCT 26 UC‑MSCs 2 ×  107 HA I/II I‑III MRI, WOMAC 12 months [15]

RCT 24 AT‑MSCs 1 ×  108 Saline IIb II‑IV MRI, WOMAC, 
KOOS

6 months [19]

RCT 30 BM‑MSCs 1, 10 ×  107 HA I/II  > II MRI, WOMAC, 
VAS

12 months [160]

RCT 60 BM‑MSCs 1 ×  108 PRP II  > II MRI, WOMAC, 
VAS

12 months [161]

Observational 
study

25 AT‑MSCs 1.89 ×  106 PRP, arthro‑
scopic debride‑
ment

II I‑III Lysholm, 
Tegner activity 
scale, VAS

16 months [172]

RCT 20 Placenta‑
derived 
MSCs

5–6 ×  107 Saline II II‑IV VAS, KOOS, 
ROM, MRI

6 months [176]

Observational 
study

18 AT‑MSCs 1, 5, 10 ×  107 None I/II  > II WOMAC, MRI, 
arthroscopy

6 months [173]

RCT 140 BM‑MSCs 1.56 ×  104 TKA III II‑IV Radiographs, 
MRI

15 years [162]

RCT 60 BM‑MSCs 25, 50, 75, 
150 ×  106

HA I/II II‑III WOMAC, VAS 12 months [163]

RCT 30 AT‑MSCs 1 ×  108 Conservative 
management

II II‑III AE, MRI, KOOS, 
WOMAC, NRS

12 months [18]

RCT 43 BM‑MSCs 4 ×  107 Saline I/II II‑IV VAS, WOMAC 6 months [164]

Observational 
study

29 UC‑MSCs 1 ×  107 HA II I‑II WOMAC 6 months [175]

Observational 
study

4 BM‑MSCs 8–9 ×  106 None I NR VAS, X‑ray, 
activities

12 months [165]

Observational 
study

12 AT‑MSCs 5 ×  107 None I NR AE, MRI 12 months [174]

Observational 
study

12 BM‑MSCs 1, 10, 50 ×  106 None I/IIa III‑IV ROM, KOOS, 
WOMAC, MRI

12 months [166]

RCT 18 BM‑MSCs NR PRP II II‑IV KOOS, ROM 12 months [167]

RCT 57 BM‑MSCs NR PRP II II‑IV KOOS, ROM 12 months [168]

Observational 
study

12 BM‑MSCs 6 ×  107 None I II‑III AE, KOOS, MRI 24 months [169]
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experienced unstable angina pectoris without creased 
cardiac markers 3 months after AT-MSCs injection [171]. 
Adverse events were predominant in the high doses 
(> 5 ×  107 cells) [163].

Effects on structure, pain, activities, and quality of living
Intra-articular injections of MSCs improved structure, 
pain, the function of the knee joint, rendering them a 
promising novel treatment for KOA. Besides these, this 
therapy had potential in activities, such as climbing the 
stairs and walking, and inflammatory factors. These ben-
efits may last for several years, even be more apparent 
after months. Orozco et al. demonstrated an average 27% 
decrease of poor cartilage areas in severe KOA [159]. For 
MSCs-treated patients, Vega et al. [157] and Dilogo et al. 
[175] reported cartilage quality improvements that were 
quantified by  T2 relaxation measurements. Although Lee 
et  al. thought there was no improvement of cartilage at 
6 months in the MSCs group, whereas the defect in the 
control group was increased [19]. Radiological, arthro-
scopic, and histological measures consistently dem-
onstrated decreased deterioration by regeneration of 
hyaline-like articular cartilage [173]. For pain and func-
tion, Soler et al. [158] revealed a relevant pain relief since 
day 8 and maintained after one year. Khalifeh et al. clari-
fied improvement in range of motion of the knee joint 
after MSCs injection was significant between the 2-week 
and 24-week follow-up [176]. The walking time without 
pain improved [165]. Although knees deteriorate gradu-
ally, they were still better than at baseline at 5 years [178]. 
Pro-inflammatory monocytes/macrophages [166] and 
IL-10/12 levels [168] decreased in the synovial fluid after 
MSCs injection.

Compared with ongoing conventional conservative 
management, AT-MSCs showed clinically significant 
pain and functional improvement after one year [18]. 
Moreover, greater improvements in Western Ontario and 
McMaster Universities Osteoarthritis Index (WOMAC) 
total score, WOMAC pain, and physical function were 
recorded than saline [164]. There were greater improve-
ments in the pain, function, daily living activities, and 
sports and recreational activities subscales in people 
receiving MSCs therapy than PRP, although less than the 
combination of two therapies [167].

Future directions
Based on the current application states, different cell 
sources have been clarified in the clinic by phase I/
II studies, while no MSC-Exos are used. Therefore, a 
standard for MSCs therapy in KOA is required, which 
includes cell selection, authentication (phenotypic analy-
sis and multipotent differentiation potential, especially 
distinguish with progenitor cells), culture or expansion 

methods, dosages, and rehabilitation program after injec-
tion. Second, Exos are good cargo and have potential in 
clinic application. The contained specific non-coding 
RNAs are important and may have an essential influ-
ence on the therapeutic effects. LncRNAs and circR-
NAs in Exos and the safety and doses of Exos need large 
research, which will be the aim of future clinical trials. 
Third, previous researchers have focused on the influ-
ence of physical situations on MSCs, while the mecha-
nisms are still unclear. In addition, no study reported the 
changes of MSCs-Exos, RNA, or DNA sequence after 
physical exposure, which might be an unexpected trend. 
Although we merely discuss biological materials in MSC-
based therapy, scaffold-assisted grafts or complex 3D 
hybrid tissues of MSCs or Exos with or without electro-
magnetic fields are interesting trends for severe KOA. At 
last, besides cartilage regeneration, functional subchon-
dral bone regeneration also has a significant impact on 
KOA treatment.

Conclusions
MSCs and MSC-exosomes, as new therapeutic methods 
for KOA, showed unique advantages. The selection of dif-
ferent origins of MSCs may be inconsistent based on the 
research goal and the phenotype exhibits various char-
acteristics. MSCs and the derived exosomes carried out 
various functions in the treatment of KOA which include 
of increase of chondrogenesis, proliferation of chondro-
cyte, reduction of apoptosis, maintenance of autophagy, 
regulation synthesis and catabolism of the ECM, regula-
tion of immune response, inhibition of inflammation, 
monitoring the mitochondrial dysfunction, and the par-
acrine effect. These functions were partly demonstrated 
through several biological pathways or axis, such as 
NF-κB, MAPK, ROS, and mTOR pathways. Exosomes 
are primary mediators of intercellular communications 
especially by transferring non-coding RNAs to adja-
cent cells or remote cells. Different physical conditions 
(hypoxia, magnetic fields, and ultrasound) have been 
studied to enhance the functions in MSC-based therapy 
experiments. This review has presented the evidence for 
MSC-based therapy as a new approach to the cell-free 
treatment of KOA. However, a standard for MSC-based 
therapy in KOA is required.
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