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Herb‑target virtual screening 
and network pharmacology 
for prediction of molecular 
mechanism of Danggui Beimu 
Kushen Wan for prostate cancer
Hong Li1, Andrew Hung2 & Angela Wei Hong Yang1* 

Prostate cancer (PCa) is a cancer that occurs in the prostate with high morbidity and mortality. 
Danggui Beimu Kushen Wan (DBKW) is a classic formula for patients with difficult urination including 
PCa. This study aimed to investigate the molecular mechanisms of DBKW for PCa. We obtained DBKW 
compounds from our previous reviews. We identified potential targets for PCa from literature search, 
currently approved drugs and Open Targets database and filtered them by protein–protein interaction 
network analysis. We selected 26 targets to predict three cancer‑related pathways. A total of 621 
compounds were screened via molecular docking using PyRx and AutoDock Vina against 21 targets 
for PCa, producing 13041 docking results. The binding patterns and positions showed that a relatively 
small number of tight‑binding compounds from DBKW were predicted to interact strongly and 
selectively with three targets. The top five high‑binding‑affinity compounds were selected to generate 
a network, indicating that compounds from all three herbs had high binding affinity against the 21 
targets and may have potential biological activities with the targets. DBKW contains multi‑targeting 
agents that could act on more than one pathway of PCa simultaneously. Further studies could focus on 
validating the computational results via experimental studies.

Prostate cancer (PCa) is a cancer that occurs in the prostate, with more than one million new cases diagnosed in 
2018 across the  world1. In developed countries, the morbidity of PCa is high, which may be because prostate-spe-
cific antigen screening tests are undertaken as part of routine physical  examinations1. PCa is a significant health 
problem globally, which brings a huge economic burden to  society2. Males from certain racial/ethnic groups are 
more likely to be affected by PCa than others, as are people in lower socio-economic  groups3. PCa patients present 
dysuria, frequent micturition, urgency, haematuria, urinary incontinence or acute urinary  retention4. Recent 
studies pointed out that chronic prostatitis is highly associated with PCa, as it is one of the possible risk factors 
of  PCa5,6 and may result in increasing cell proliferation and even potential  carcinogenesis7–9. Furthermore, there 
is evidence that males suffering from chronic prostatitis had a 30% higher probability of developing  PCa10 while 
there are no direct links between benign prostatic hyperplasia and  PCa11. As the understanding of PCa continues 
to deepen, a set of systematic and individualised routine treatments have been formed and recommended in clini-
cal practice guidelines, such as active surveillance and observation, radiotherapy, surgery, androgen deprivation 
therapy, chemotherapy and  immunotherapy12. However, they are associated with many adverse events, such as 
fatigue, neuropathy, stomatitis, diarrhoea, nausea, vomiting and  headache12.

Due to limited therapeutic effects and adverse events associated with routine  treatments13,14, an increasing 
number of PCa patients are seeking complementary and alternative medicine including Chinese herbal medicine 
(CHM) for the management and/or support of androgen deprivation  therapy15–17. CHM potentially provides a 
wealth of bioactive natural compounds and has been used for the management of urination-related disorders 
for a long time  period18,19. A recent systematic review involving 1224 patients reported that CHMs might delay 
the development of PCa, extend survival time and improve patients’ physical performance, without any adverse 
 events20.
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Danggui Beimu Kushen Wan (DBKW; Chinese Angelica, Fritillaria and Flavescent Sophora Pill), also known 
as Guimu Kushen Wan or Kushen Wan, is a classical herbal formula that was initially recorded in the Jin Gui Yao 
Lue (Synopsis of Prescriptions of the Golden Chamber; ZHANG, Zhongjing; 205 AD), containing Angelicae 
Sinensis Radix (ASR; Dang gui), Fritillariae Thunbergii Bulbus (FTB; Zhe bei mu) and Sophorae Flavescentis 
Radix (SFR; Ku shen)21. Our previously published reviews have revealed that this formula has been used for 
managing urinary-related disorders for thousands of  years22,23 and it has been extended to manage a wide range 
of malignant tumours in clinical practice, such as  PCa24,25, cervical  cancer24, bladder  cancer24, liver  cancer26 
and vulvar basal cell  carcinoma27. Nowadays, it has still been widely used and shown to be effective in clincial 
practice at treating a number of urinary system diseases involving  PCa24. However, the mechanisms of action 
of DBKW for the management of PCa have not been investigated. This study is the first time using herb-target 
virtual screening to identify potential inhibitors and attempt to explain the molecular mechanisms of a Chinese 
herbal formula for PCa management.

Results and discussion
Compounds identified from DBKW’s ingredients for molecular docking. A total of 818 constitu-
ents were retrieved from the published literature which utilised different methods (such as LC–MS, HPLC and 
UPLC-CAD) to identify chemical compounds from individual herbs of DBKW, including 408 compounds from 
ASR, 133 compounds from FTB, and 277 compounds from  SFR28. After removal of duplicates, 764 components 
were identified. Among them, the structures of 113 compounds are unknown. Since elements could not be accu-
rately docked with the current docking strategy employed, they were not selected. Therefore, 621 compounds 
were selected for molecular docking (Supplementary Figs. S1 to S5 and Tables S1 online).

Potential targets for PCa. Candidate targets from literature search. Fourteen pharmacological studies 
were included in our published  thesis28. Within the 14 included studies, none of the studies targeted PCa (Group 
A). There are nine studies focused on the treatment effects of DBKW on specific drug targets, including four 
studies on cancers except for PCa (Group B)29–31 and five studies on chronic prostatitis (Group C)32–36. Subse-
quently, no drug targets were in Group A because no studies were identified in literature search. Nonetheless, 
seven targets were identified in Group B (B-cell lymphoma/leukemia-2-associated X (BAX)29,30, B-cell lympho-
ma/leukemia-2 (BCL2)30, caspase 3 (CASP3), hypoxia inducible factor-1α (HIF1A)30,31, phosphatase and tensin 
homolog (PTEN), prostaglandin-endoperoxide synthase 2 (PTGS2)29, and tumour protein 53 (TP53)30) and 
seven targets in Group C (intercellular cell adhesion molecule-1 (ICAM1)36, interleukin 1β (IL1B)37, interleukin 
2 (IL2)33, interleukin  833,  malondialdehyde34, superoxide  dismutase34, and tumour necrosis factor-α35).

Candidate targets from currently approved drugs for PCa. Eighteen currently approved drugs for PCa in four 
treatment groups (androgen deprivation therapy, chemotherapy, immunotherapy and bone health) were identi-
fied and 21 drug targets for them were retrieved from the DrugBank database (Group D), including acid phos-
phatase prostate (ACPP), aryl hydrocarbon receptor (AHR), androgen receptor (AR), BCL2, cytochrome P450 
family 17 subfamily A member 1 (CYP17A1), cytochrome P450 family 21 subfamily A member 2 (CYP21A2), 
cytochrome P450 family 19 subfamily A member 1 (CYP19A1), farnesyl diphosphate synthase (FDPS), gera-
nylgeranyl diphosphate synthase 1 (GGPS1), gonadotropin releasing hormone receptor (GNRHR), potassium 
voltage-gated channel subfamily H member 2 (KCNH2), luteinizing hormone/choriogonadotropin receptor 
(LHCGR), microtubule associated protein 2, microtubule associated protein 4 (MAP4), microtubule associ-
ated protein tau (MAPT), nuclear receptor subfamily 1 group I member 2 (NR1I2), nuclear receptor subfam-
ily 1 group I member 3, programmed cell death 1 (PDCD1), tumour necrosis factor superfamily member 11 
(TNFSF11), tubulin alpha 4a (TUBA4A) and tubulin beta 1 class VI (TUBB1) (Supplementary Table S2 online).

Figure 1.  Potential target proteins and their network analyses. (a) Venn diagram of candidate drug targets 
for prostate cancer. Group A: Targets from studies of prostate cancer; Group B: Targets from studies of cancers 
except prostate cancer; Group C: Targets from studies of chronic prostatitis; Group D: Targets from currently 
approved drugs for prostate cancer; Group E: Targets under category of ‘prostate carcinoma’ in Open Targets 
database. (b) Protein–protein interaction network of drug targets for prostate cancer. This figure was generated 
by the STRING database. (c) Network of top 10 Kyoto Encyclopedia of Genes and Genomes pathways. AR 
androgen receptor, ACPP acid phosphatase prostate, BAX B-cell lymphoma-2 associated X, BCL2 B-cell 
lymphoma-2, CASP3 Caspase 3, CYP17A1 Cytochrome P450 family 17 subfamily A member 1, CYP21A2 
Cytochrome P450 family 21 subfamily A member 2, CYP19A1 Cytochrome P450 family 19 subfamily A 
member 1, FDPS farnesyl diphosphate synthase, GGPS1 geranylgeranyl diphosphate synthase1, GNRHR 
gonadotropin releasing hormone receptor, HIF1A hypoxia inducible factor-1α, ICAM1 intercellular cell 
adhesion molecule 1, IL1B interleukin 1β, IL2 interleukin 2, IL8 interleukin 8, KCHN2 potassium voltage-gated 
channel subfamily H member 2, LHCGR  luteinizing hormone/choriogonadotropin receptor, MAP2 microtubule 
associated protein 2, MAP4 microtubule associated protein 4, MAPT microtubule associated protein tau, MDA 
malondialdehyde, NR1I2 nuclear receptor subfamily 1 group I member 2, NR1I3 nuclear receptor subfamily 
1 group I member 3, PDCD1 programmed cell death 1, PTEN phosphatase and tensin homolog, PTGS2 
prostaglandin-endoperoxide synthase 2, SOD superoxide dismutase, TNFA tumour necrosis factor-α, TNFSF11 
tumour necrosis factor superfamily member 11, TP53 tumour protein 53, TUBA4A tubulin alpha 4a, TUBB1 
tubulin beta 1 class VI.
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Candidate targets after cross‑comparison. A total of 7692 targets were listed in the category of ‘prostate carci-
noma’ in the Open Targets database (Group E). All the targets identified from literature and the approved drugs 
(Groups A, B, C and D) were compared to the targets from the Open Targets database (Group E), respectively. 
After cross-comparison, 28 candidate drug targets were identified (Fig. 1a).

Protein–protein interaction (PPI) network of the targets. The PPI network of the 28 candidate targets is illus-
trated in Fig. 1b. Twenty-eight nodes and 79 edges are present, with a 5.64 average node degree and 0.604 average 
local clustering coefficient. Among the 28 drug targets, 26 of them have been clustered into one group, indicating 
that they may interact with each other. However, two of them (ACPP and KCNH2) did not have any interac-
tions with others. Thus, only 26 of them were selected to perform subsequent computational analyses. A node 
in Fig. 1b stands for a target. The thickness of the edge between two proteins is proportional to the strength of 
evidence supports for the interaction of the two  targets38.

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. There are 93 KEGG pathways which were 
identified, including 21 cancer-related pathways, 21 infectious disease-related pathways, 7 signal transduction-
related pathways, 6 immune system-related pathways, 5 cell growth and death-related pathways, 5 endocrine 
system-related pathways and 28 other pathways. Cancer-related pathways and infectious disease-related path-
ways account for the highest proportion of all pathways (22.58% respectively) (Supplementary Table S3 online). 
Then, we selected the top 10 KEGG pathways based on their p-values to generate a network (Fig. 1c).

In Fig. 1c, the sizes of the nodes represent the p-values of the pathways. A larger node size indicates that it is 
more important in the network. When a target was identified in a specific KEGG pathway, an arrow was used 

Table 1.  Characteristics of 26 identified targets for prostate cancer. AHR aryl hydrocarbon receptor, AR 
androgen receptor, BAX B-cell lymphoma-2 associated X, BCL2 B-cell lymphoma-2, CASP3 Caspase 3, 
CYP17A1 cytochrome P450 family 17 subfamily A member 1, CYP21A2 cytochrome P450 family 21 subfamily 
A member 2, CYP19A1 cytochrome P450 family 19 subfamily A member 1, FDPS farnesyl diphosphate 
synthase, GGPS1 geranylgeranyl diphosphate synthase1, GNRHR gonadotropin releasing hormone receptor, 
HIF1A hypoxia inducible factor-1α, ICAM1 intercellular cell adhesion molecule 1, IL1B interleukin 1β, IL2 
interleukin 2, LHCGR  luteinizing hormone/choriogonadotropin receptor, MAP4 microtubule associated 
protein 4, MAPT microtubule associated protein tau, NR1I2 nuclear receptor subfamily 1 group I member 
2, PDCD1 programmed cell death 1, PTEN phosphatase and tensin homolog, PTGS2 prostaglandin-
endoperoxide synthase 2, TNFSF11 tumour necrosis factor superfamily member 11, TP53 tumour protein 53, 
TUBA4A tubulin alpha 4a, TUBB1 tubulin beta 1 class VI.

No Target Open targets score UniPortKB ID PDB ID PDB organism SWISS-MODEL Source

T01 TP53 1.00 P04637 4QO1 Human Yes Targets from literature

T02 PTEN 1.00 Q07820 1D5R Human Yes Targets from literature

T03 PTGS2 1.00 P35354 5F19 Human Yes Targets from literature

T04 HIF1A 0.51 Q16665 4H6J Human No Targets from literature

T05 BCL2 0.45 P10415 6FS0 Human No Targets from literature 
and drugs

T06 BAX 0.39 Q07812 4S0P Human Yes Targets from literature

T07 CASP3 0.16 P42574 5IBC Human Yes Targets from literature

T08 ICAM1 0.15 P05362 1MQ8 Human Yes Targets from literature

T09 IL1B 0.10 P01584 5MVZ Human No Targets from literature

T10 IL2 0.09 Q0GK43 1PY2 Human Yes Targets from literature

T11 GNRHR 1.00 P30968 5VBL Human No Targets from drugs

T12 AR 1.00 P10275 5CJ6 Human No Targets from drugs

T13 CYP17A1 1.00 P05093 3RUK Human No Targets from drugs

T14 TUBB1 1.00 Q9H4B7 5IJ0 Human Yes Targets from drugs

T15 TUBA4A 1.00 P68366 5KMG Human Yes Targets from drugs

T16 TNFSF11 1.00 O14788 5BNQ Human (Chain A) No Targets from drugs

T17 FDPS 1.00 P14324 1YQ7 Human No Targets from drugs

T18 LHCGR 0.37 P22888 4AY9 Human No Targets from drugs

T19 PDCD1 0.33 Q15116 5WT9 Human No Targets from drugs

T20 CYP19A1 0.32 P11511 3EQM Human No Targets from drugs

T21 NR1I2 0.06 O75469 6BNS Human No Targets from drugs

T22 AHR 0.05 P35869 5NJ8 Human No Targets from drugs

T23 CYP21A2 0.03 P08686 5VBU Human No Targets from drugs

T24 GGPS1 0.01 O95749 2Q80 Human No Targets from drugs

T25 MAPT 0.05 P10636 6HRE Human No Targets from drugs

T26 MAP4 0.01 P27816 6HRE Human No Targets from drugs
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from the nodes towards the target. Within the top 10 KEGG pathways, the first and second pathways were cancer-
related pathways. Others included three infectious disease-related pathways, one cell growth and death-related 
pathway, one signal transduction-related pathway, one endocrine and metabolic disease-related pathway, one 
endocrine system-related pathway and one neurodegenerative disease-related pathway.

Further selection of the 21 targets for molecular docking. After the PPI network analyses of the 
targets for PCa, 26 targets were identified. Characteristics of the 26 drug targets are listed in Table 1. Within the 
26 targets, except for TNFSF11 which is a mouse and human chimera, 25 targets were from homo sapiens. There 
are ten targets with the highest associating score (1.00) in the Open Targets database, indicating that these targets 
had the strongest evidence from the 20 data sources for an association with PCa based on the  evidence39. The 
structures of nine targets were obtained by homology modelling using the online SWISS-MODEL server, due to 
missing loop  segments40. In addition, the only known structure of the tau peptide in PDB is of the fibrillar form, 
and not the likely native fold. Therefore, targets with this structure (MAPT and MAP4) were excluded from 
docking analyses. Further work is needed to predict or determine the native form of this protein for accurate 
docking studies. Also, three of the targets, including FDPS, GGPS1 and TNFSF11, are related to the bone health 
of PCa patients but not for original PCa nidus. Thus, these targets were excluded from docking studies as well. 
Future studies could focus on the investigation of the mechanisms of action of DBKW for these targets. Con-
sequently, a total of 21 targets were selected for molecular docking, namely TP53 (T01), PTEN (T02), PTGS2 
(T03), HIF1A (T04), BCL2 (T05), BAX (T06), CASP3 (T07), ICAM1 (T08), IL1B (T09), IL2 (T10), GNRHR 
(T11), AR (T12), CYP17A1 (T13), TUBB1 (T14), TUBA4A (T15), LHCGR (T18), PDCD1 (T19), CYP19A1 
(T20), NR1I2 (T21), AHR (T22) and CYP21A2 (T23).

Molecular docking predictions. Characteristics of the docking results. All of the 621 compounds from 
DBKW with known or obtained structures were docked with the 21 targets for PCa, in order to predict their 
binding affinity, binding sites, orientation and molecular ligand conformation. A total of 13041 docking results 
were produced. In molecular docking, the lower (more negative) the binding energy in a docking result, the 
higher the binding affinity of the ligand that are predicted to exhibit against the target. The lowest binding scores 
between all compounds and all targets ranged from − 2.4 to − 13.3 kcal/mol, with an average binding score of 
− 6.58 kcal/mol. The top 11 high-binding-affinity compounds with multi-targeting activities included KA165, 
KB033, KB031, KB032, KB030, ZA08, ZA09, ZC12, KA013, KB034 and ZA16. In addition, from the point of 
view of each target, the total docking scores of all compounds to a target ranged from − 3619.5 to − 4877.5 kcal/
mol, with an average score of − 4309.06 kcal/mol. The top 10 targets ranked by their total binding score were T03, 

Table 2.  Details of docking results between 621 natural compounds from Danggui Beimu Kushen Wan and 
21 targets for prostate cancer (kcal/mol). Corresponding target full names refer to Table 1. Corresponding 
compound names refer to Supplementary Tables S1 to S3 online. Ave average value, Max maximum, Med 
median value, Min minimum, SD standard deviation, SEM standard error of mean.

Target ID Target name
Total binding 
score Min

25% 
percentile Med

75% 
percentile Max Ave SD SEM

95% confidence 
interval of mean

Top 1 compoundLower Upper

T01 TP53 − 3773.0 − 9.1 − 6.8 − 5.8 − 4.7 − 2.9 − 5.76 1.29 0.05 − 5.86 − 5.66 KB032

T02 PTEN − 4704.0 − 11.0 − 8.4 − 7.3 − 5.8 − 3.3 − 7.18 1.59 0.06 − 7.30 − 7.06 KB031

T03 PTGS2 − 4877.5 − 12.0 − 8.7 − 7.5 − 6.0 − 2.9 − 7.45 1.81 0.07 − 7.59 − 7.31 KA090

T04 HIF1A − 3628.0 − 8.3 − 6.2 − 5.5 − 4.9 − 2.6 − 5.54 1.01 0.04 − 5.62 − 5.46 KB030

T05 BCL2 − 4604.1 − 11.5 − 8.2 − 7.3 − 6.0 − 2.4 − 7.03 1.47 0.06 − 7.14 − 6.92 KB031

T06 BAX − 4020.8 − 9.3 − 7.0 − 6.3 − 5.2 − 2.9 − 6.14 1.17 0.05 − 6.23 − 6.05 KB034

T07 CASP3 − 4331.2 − 11.4 − 7.7 − 6.8 − 5.4 − 3.2 − 6.61 1.46 0.06 − 6.72 − 6.50 KB032

T08 ICAM1 − 3619.5 − 8.9 − 6.5 − 5.6 − 4.5 − 2.6 − 5.53 1.29 0.05 − 5.62 − 5.43 KA065

T09 IL1B − 3839.6 − 8.9 − 6.9 − 6.0 − 4.6 − 2.4 − 5.86 1.36 0.05 − 5.97 − 5.76 KA165

T10 IL2 − 3861.2 − 8.7 − 6.7 − 5.9 − 5.1 − 2.6 − 5.89 1.07 0.04 − 5.98 − 5.81 KB033

T11 GNRHR − 4426.3 − 11.0 − 7.7 − 6.8 − 5.7 − 2.9 − 6.76 1.37 0.05 − 6.86 − 6.65 ZA08

T12 AR − 4280.4 − 9.5 − 7.5 − 6.7 − 5.7 − 2.6 − 6.53 1.21 0.05 − 6.63 − 6.44 KA013

T13 CYP17A1 − 4643.2 − 12.5 − 8.4 − 7.2 − 5.6 − 2.8 − 7.09 1.72 0.07 − 7.22 − 6.96 KB031

T14 TUBB1 − 4435.2 − 10.7 − 8.0 − 6.9 − 5.5 − 2.7 − 6.77 1.54 0.06 − 6.89 − 6.65 KB032

T15 TUBA4A − 4330.8 − 9.7 − 7.8 − 6.8 − 5.4 − 2.9 − 6.61 1.4 0.05 − 6.72 − 6.50 KE012

T18 LHCGR − 4530.2 − 11.4 − 8.2 − 7.1 − 5.5 − 3.0 − 6.92 1.63 0.06 − 7.04 − 6.79 KA165

T19 PDCD1 − 3793.4 − 8.5 − 6.6 − 5.9 − 5.0 − 2.7 − 5.79 1.08 0.04 − 5.87 − 5.71 KA165

T20 CYP19A1 − 4745.1 − 13.3 − 8.2 − 7.4 − 6.2 − 2.8 − 7.24 1.44 0.06 − 7.35 − 7.13 ZB27

T21 NR1I2 − 4844.4 − 12.1 − 8.5 − 7.6 − 6.2 − 2.6 − 7.40 1.6 0.06 − 7.52 − 7.27 KB034

T22 AHR − 4329.0 − 10.4 − 7.7 − 6.7 − 5.5 − 2.8 − 6.61 1.39 0.05 − 6.72 − 6.50 KB031

T23 CYP21A2 − 4873.3 − 11.7 − 8.6 − 7.7 − 6.1 − 2.8 − 7.44 1.64 0.06 − 7.57 − 7.31 KB030
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T23, T21, T20, T02, T13, T05, T18, T14 and T11. T03 had a − 4877.5 kcal/mol total binding score, which was the 
lowest total binding score among the 21 targets (Table 2 and Supplementary Table S4 online).

Binding patterns of all compounds against 21 targets. Binding patterns were analysed using histograms and 
boxplots to obtain an initial broad overview of the manner in which several key targets may interact with the 
DBKW compounds. The histograms were ranked by the total binding scores of the targets, to show the binding 
affinity distributions of all compounds for the 21 targets (Fig. 2a). Twenty-one targets were separated into four 
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Figure 2.  Binding patterns of all compounds against 21 targets. (a) Histograms of all compounds against 21 
targets; (b) boxplots of all compounds from individual herbs of Danggui Beimu Kushen Wan against 21 targets. 
For Fig. 4a, x-axes stand for the predicted binding affinity values and y-axes stand for total number of ligands. 
For Fig. 4b, x-axes stand for the target proteins and y-axes represent the binding affinity for the compounds 
from each herb. ASR Angelicae Sinensis Radix, FTB Fritillariae Thunbergii Bulbus, SFR Sophorae Flavescentis 
Radix. (I): Top 1–3 targets; (II): Top 4–9 targets; (III): Top 10–15 targets; (IV): Top 16–21 targets; sequence was 
ranked by total binding scores. Corresponding target names refer to Table 1.
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different groups (I–IV), with each group showing qualitatively different statistical distributions of the number 
of ligands with respect to binding affinity. Specifically, a relatively small number of tight-binding components 
from DBKW were predicted to interact strongly and selectively (binding score < − 9 kcal/mol) to the top nine 
targets (Group I and Group II). Targets in Group I involved more compounds (134, 114 and 110 compounds, 
respectively) than targets in Group II in this binding energy interval. In addition, most compounds from DBKW 
bound with intermediate affinity to targets in Groups I to III (− 7 to − 9 kcal/mol). However, for targets in Group 
IV, including T10, T09, T19, T01, T04, and T08, these targets interacted with a relatively large number of weak 
binding compounds (> − 6 kcal/mol). It is reasonable to hypothesise that the manner of interactions between 
compounds from DBKW and specific targets may be different. For targets in Groups I and II, which have the 
most high-binding-affinity compounds, a few herbal compounds may interact strongly and irreversibly with 
these three targets at some specific, highly attractive binding positions. Future studies could focus on investigat-
ing the mechanisms of action of DBKW for these top nine targets. In contrast, for other targets, especially targets 
in Group IV, dynamic interaction mechanisms, such as frequently reversible binding, dissociation and ‘ligand 
swapping’ at different binding positions, may occur between most of the compounds and these targets.

Additionally, boxplots were constructed to display in more detail the distribution of binding affinity values of 
compounds from the individual herbs of DBKW against the 21 targets, to obtain an idea of the manner in which 
each herb may differently interact with its proposed targets (Fig. 2b). In the boxplots, the interquartile range is 
used to identify the dispersion degree of the middle 50% of the data as well as non-normal distribution values. 
The smaller the interquartile range value, the more concentrated the data is in the middle 50%, while the larger 
the value, the more dispersed the data is. SFR has the smallest interquartile range for each target, followed by 
ASR and FTB, and compared to the location of the interquartile ranges of ASR and FTB the interquartile range 
of SFR is in the lower binding scores interval. This indicates that most compounds from SFR have higher bind-
ing affinity compared to the compounds from ASR and FTB. In addition, some non-normal distribution was 
found. It is interesting to note that, for the targets except T03, T10, T11 and T12, one of the outlier points was the 
minimum binding score between the compounds and targets. Furthermore, the compounds against each target 
(except T11 and T20) with the lowest binding scores were all identified from the herb SFR.

Three‑dimensional structures of docked ligand–protein complexes. T03 (PTGS2), which had the 
highest total binding affinity amongst all targets, plays an essential role in the process of cell motility, prolif-
eration and anti-apoptosis41. It was a likely target for the DBKW herbal ligands examined and was, therefore, 
selected for analysis of its ligand–target interaction. This analysis enabled identification of T03 residues which 
play important roles in interactions with herbal ligands, enabling future mutagenesis experiments to verify the 
binding mechanisms proposed in this study. Figure 3 shows clusters of likely binding positions indicated by 
ligand-binding poses between all compounds from DBKW and T03.

For T03, 467 compounds were predicted to bind at the inter–monomer interface (Fig. 3a), involving com-
pounds with the top five binding scores (KA090, ZC12, KB031, KA113 and KA091). These compounds are 
generally large molecules with a variety of structures, accounting for almost 75.2% of all herbal compounds. 
Nevertheless, these binding sites in T03 have not been investigated. Further studies could focus on the molecular 
mechanisms of these compounds for T03 via molecular dynamics simulations and experimental studies. These 
compounds, which come from all of the three herbs, may act to disrupt the function of T03 by preventing the 
formation of a functional dimer. In addition, clusters located directly at the two known active sites were focused 
on one at each monomer, since these were more likely to serve as competitive inhibitors of T03. In these active 
pockets, a total of 68 compounds were predicted to bind (Fig. 3b). It is interesting to find that most of the com-
pounds that formed H-bonds with key active site residues were identified from the herb ASR. However, the 
boxplot (Fig. 2b) showed that compared to the compounds from FTB and ASR, more compounds from SFR had 
a higher binding affinity against T03. The reason behind the docking results needs to be further investigated.

Figure 3.  Docking pose interactions between all compounds and prostaglandin-endoperoxide synthase 
2 (T03). (a) Primary binding sites of prostaglandin-endoperoxide synthase 2. (b) Active binding sites of 
prostaglandin-endoperoxide synthase 2.
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Furthermore, direct binding of a ligand to the three key active site residues, including R120 (106), Y355 (341) 
and Y385 (371), is likely to enable effective inhibition of T03 by preventing these sidechains from performing 
their normal enzymatic  function41. Therefore, analyses were focused on compounds predicted to form hydrogen 
bonding to these key active site residues. There were 21 compounds that formed hydrogen bonds (H-bonds) with 
one or more catalytic triad residues, including 19 compounds from ASR and 2 compounds from FTB (Table 3).

Only 1 compound (azelaic acid (DC012)) was predicted to form H-bonds with all three catalytic triad residues 
(Fig. 4a), whereas 7 compounds formed H-bonds with 2 residues (Fig. 4b) and 14 compounds formed H-bonds 
with one of the key active site residues (Supplementary Fig. S6 online). DC012 contains a long hydrophilic 
chain with two carboxyl groups where the H-bonds were found connecting to the catalytic triad residues. For 
compounds forming H-bonds with two residues, all compounds were found to form bonds to residue Y355 
(341), four compounds to residue R120 (106) and three compounds to residue Y385 (371). For the structures 
of these seven compounds, three of them contained long carbon chain structures (DA108, DA114 and DA164) 
and three of them contained aromatic rings (DA175, DB019 and ZF04). Three compounds formed H-bonds 
between their ester groups and residues (DA164, DA175 and DB019), two compounds formed H-bonds with 
surroundings via their aldehyde groups (DA114 and DA175), two compounds via hydroxyl groups (DB019 and 
F04), one compound via carboxyl group (DA108) and one compound via its amidogen group (ZF04). Lastly, 14 
compounds formed H-bonds with only one of the key active site residues. Seven of them contained aromatic 
rings (DA012, DA053, DA134, DA216, DB004, DB005 and DA024) and the others contained long carbon chain 
structures (DA145, DA153, DA165, DA172, DA173, DA196 and ZF02). Furthermore, 13 compounds were found 
to form H-bonding to residue Y385 (371), 1 compound to residue R120 (106) and none to residue Y355 (341). In 
seven compounds, including DA053, DA134, DA165, DA172, DA173, DA196 and DA216, H-bonds were found 
between aldehyde groups and the surrounding residues. Five compounds, including DA012, DA153, DB004, 
DB005 and DB024, formed H-bonds with surrounding residues via their ester groups. In addition, H-bonds 
were identified between hydroxyl groups in DA145 and R120 (106) and between carboxyl groups in ZF02 and 
Y385 (371).

Comparing the above structures with the known inhibitor of PTGS2, salicylate (aspirin), which has an aro-
matic ring with a carboxyl and an ester group, some similarities could be identified (Fig. 4c)42. The structures of 
10 compounds had aromatic rings, including DA012, DA053, DA134, DA175, DA216, DB004, DB005, DB019, 
DB024 and ZF04. A total of eight compounds had ester groups (DA012, DA153, DA164, DA175, DB004, DB005, 
DB019 and DB024) and three compounds involved carboxyl (DA108, DC012 and ZF02).

On the other hand, the top five binding affinity compounds of PTGS2 were KA090, ZC12, KB031, KA113 
and KA091, whereas in the active binding sites, the top five binding affinity compounds were KA120, DA064, 

Table 3.  Details of compounds from hydrogen bonds with one or more key active site residues.

No Compound full name Molecular weight

Key active site residues with H-bonds

Binding affinityR120 (106) Y355 (341) Y385 (371)

1. Compounds form hydrogen bonds with three catalytic triad residues

DC012 Azelaic acid 188.22 1 1 1 − 5.6

2. Compounds form hydrogen bonds with two catalytic triad residues

DB019 Senkyunolide F 206.24 1 1 0 − 7.2

DA108 Tetradecanoic acid 228.37 1 1 0 − 6

DA175 5-Acetoxymethylfurfural 168.15 0 1 1 − 5.8

DA164 Trans,trans-2,4-Hexadienyl acetate 140.18 1 1 0 − 5.1

DA114 10-Undecenal 168.28 1 1 0 − 5

ZF04 Tyrosine 181.191 0 1 1 − 4.5

3. Compounds form hydrogen bonds with one catalytic triad residue

DB004 E-Butylidenephthalide 188.22 0 0 1 − 7.4

DB005 Butylphthalide 190.24 0 0 1 − 7.4

DA012 4-Hydroxy-3-butylphthalide 206.24 0 0 1 − 7.4

DB024 3-Butylidenephthalide 188.22 0 0 1 − 7.3

DA053 2,4-Dimethylbenzaldehyde 134.17 0 0 1 − 6.5

DA153 Methyl linolenate 292.5 0 0 1 − 6.3

DA216 P-hydroxyacetophenone 136.15 0 0 1 − 5.9

DA145 E-10-pentadecenol 226.4 1 0 0 − 5.8

DA134 Benzaldehyde 106.12 0 0 1 − 5.3

DA173 2-Nonanone 142.24 0 0 1 − 5.2

DA165 2-Undecanone 170.29 0 0 1 − 5.1

DA196 6-Undecanone 170.29 0 0 1 − 5.1

ZF02 Leucine 131.175 0 0 1 − 4.9

DA172 4-Octanone 128.21 0 0 1 − 4.9
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ZC07, DA084 and DA012. These compounds come from all three herbs of the formula, indicating that the effects 
of the compounds from the herbal formula may be superior to those of the compounds from any single herb. 
However, binding affinity values alone may not be fully accurate as an indicator of potential biological activity, 
since they can have errors of up to 2 kcal/mol43. Therefore, an inspection of the number of strong non-covalent 
interactions between ligands and binding sites should also be used to predict potential bio-activities of herbal 
compounds, a general approach previously employed in analyses of molecular docking  results44,45. H-bonds are 
the strongest non-covalent interactions and therefore, the total number of H-bonds formed between ligands and 
key active site residues can be used to predict the extent to which a ligand may act as an effective inhibitor of 
PTGS2. Moreover, compared to the structure of the known inhibitor of PTGS2, within the compounds that form 
H-bonds with key active site residues, these compounds are predicted to be inhibitors of T03, including DC012, 

Figure 4.  Ligand–target interactions for compounds forming hydrogen bonds with catalytic triad residues of 
prostaglandin-endoperoxide synthase 2. (a) Compounds forming hydrogen bonds with three catalytic triad 
residues. (b) Compounds forming hydrogen bonds with two catalytic triad residues. (c) Structure of inhibitor 
of prostaglandin-endoperoxide synthase 2, salicylate (aspirin). DA108 tetradecanoic acid, DA114 10-undecenal, 
DA164 trans,trans-2,4-hexadienyl acetate, DA175 5-acetoxymethylfurfural, DB019 senkyunolide F, DC012 
azelaic acid, ZF04 tyrosine.
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DA175, DB019, ZF04, DA012, DB004, DB005 and DB024. Additionally, seven compounds were predicted as 
inhibitors of PTGS2 with moderate probability, including DA053, DA108, DA134, DA153, DA164, DA175 and 
ZF02. Although some of the compounds mentioned above were reported to have pharmacological activities, 
such as azelaic acid (DC012)46, butylphthalide (DB005)47 and P-hydroxyacetophenone (DA216)48, none of these 
15 compounds were reported as an inhibitor of T03. Thus, these compounds from DBKW are worthy of further 
examination for their possible novel inhibitory activity against T03.

Biological pathways prediction. There are three signalling pathways in the top 10 KEGG pathways 
(pathways in cancer, p53 signalling pathway and NF-κB signalling pathway) that are highly associated with can-
cers, incluing  PCa49 (Fig. 1c). A total of eight target proteins (T01 to T07, and T10) are involved in the pathway 
relevant to the occurrence and development of  cancers50. Molecular docking prediction indicated that the total 
binding score of these targets ranging from − 3628.0 to − 4877.5 kcal/mol. Five of them (T02, T03, T05, T06 
and T07) have a high total binding affinity (< − 4000.0 kcal/mol), involving the top total binding affinity protein 
(PTGS2), implying that DBKW may act on this pathway. In addition, five targets were clustered in to the p53 
signalling pathway including T01, T02, T05, T06 and T07 with a range of − 3773.0 to − 4704.0 kcal/mol total 
binding affinity. In this pathway, TP53, which has a total binding affinity of − 3773.0 kcal/mol, is a transcriptional 
activator of TP53-regulated targets functioning for the cell cycle arrest, cellular senescence and  apoptosis51–53. 
Moreover, other TP53-regulated targets have a close relationship with repairing damaged DNA in human body, 
as they can strengthen or weaken the activities of  TP5354. All the four enriched TP53-regulated targets have a 
high total binding affinity (< − 4000.0 kcal/mol). Thus, this pathway may also be one of the biological pathways 
that DBKW acts on. Lastly, recent studies reported that NF-κB may be strongly associated with the development 
of inflammation-induced cancer since it may stimulate tumour cell survival, invasion, metastasis and androgen 
deprivation therapy drug  resistance55. Moreover, it has been hypothesised that the carcinogenesis effects induced 
by chronic inflammation may be reduced if the NF-κB signalling pathway is  inhibited56. According to the present 
molecular docking results, the total binding affinities of the four targets in this group including T03, T05, T08 
and T09 were from − 3619.5 to − 4877.5 kcal/mol. Furthermore, T03 and T05 have a high total binding affinity 
(< − 4000.0 kcal/mol), accounting for 50% of all annotated targets in this pathway, indicating that DBKW may 
target NF-κB signalling pathways, which may be a treatment strategy for inflammation-induced  cancer56.

Figure 5.  Network of the formula, herbs, chemical compounds and targets. ASR Angelicae Sinensis Radix, 
DBKW Danggui Beimu Kushen Wan, FTB Fritillariae Thunbergii Bulbus, SFR Sophorae Flavescentis Radix. 
For  corresponding compound names, refer to Supplementary Tables S1 to S3 online; for corresponding target 
names, refer to Table 1.
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Interaction network of formula, herbs, compounds and targets. A total of 47 compounds were 
selected, including 8 compounds from ASR, 14 compounds from FTB and 25 compounds from SFR. A network 
was generated to demonstrate the relationship between the formula, herbs, the top five compounds with the 
highest binding affinity and the 21 targets (Fig. 5). Figure 5 shows that SFR had the highest number of high 
binding affinity compounds (25 compounds), which interacted with the highest number of targets (20 targets 
excluding CYP19A1 (T20)), followed by FTB, which had 14 compounds interacting with 13 targets. For ASR, 
eight compounds were identified with high binding affinity when binding with five targets. Amongst all of the 
47 high binding affinity compounds, 15 compounds, including KB031, KA165, KB033, KB030, KB032, KB034, 
ZC12, ZA08, KA090, KA179, KA065, KC007, ZA09, ZA16 and ZA25, interacted with more than one target. 
Flavesine B (KB031) interacted with the most targets (13 targets), including T01, T02, T03, T04, T05, T07, T08, 
T10, T13, T14, T19, T22 and T23.

The network indicates that high-binding-affinity compounds may have potential biological activities with the 
targets, although most of the compounds were from SFR. Current research indicates that combining active com-
pounds produces additional or even synergistic effects which are superior to those of a single compound, since 
concurrent and selective interactions may occur with multiple targets of a  disease57,58. Although the molecular 
docking results provided a comprehensive overview of the possible mechanisms of action of DBKW for PCa tar-
gets, these docking results should be validated in further experimental studies. Furthermore, there are no existing 
studies relevant to the mechanisms of action of the top five high-binding-affinity compounds for the correspond-
ing targets. Thus, these compounds identified from DBKW may be novel scaffolds for the management of PCa.

Strengths and limitations. Although CHM has been widely used in China and Western countries, its 
clinical applications are always questionable due to a lack of scientific evidence. This study has combined knowl-
edge bases (literature and database searches) and computational approaches to form a more complete picture 
of the physiological pathways through which the herbal formula may act to treat PCa, thereby, enhancing the 
chance of producing effective targeted therapy. This is an innovative multidisciplinary approach to the identifi-
cation of potential key bioactive natural products in a complex mixture of DBKW that will lay the groundwork 
for future in vitro and pre-clinical studies in cancer animal models. This creative multidisciplinary approach 
focused on the ‘multi-target, multi-compounds’ approach, which overcomes the weaknesses of the traditional 
‘one target, one drug’ approach. The interactions between the herbal formula, its ingredients with multiple com-
pounds and multiple targets can be clearly illustrated through the establishment of their network. Therefore, the 
scientific evidence developed through this process can be used to explain the mechanisms of action of the herbal 
formula. This methodology can also be adapted to explore other natural products for other diseases.

Nonetheless, limitations in this study could not be avoided. The successful development of a drug relies criti-
cally on understanding its pharmacokinetics and potential toxicity, as well as its propensity to be falsely identified 
as bioactive. For the compounds, all compounds with known structures were selected for docking and may have 
included some toxic chemicals. However, the primary purpose of this project was to identify as many potential 
compounds as possible for the targets first. If the potential compounds are toxic, further analyses need to be 
performed in future studies to identify safe doses for humans or to manipulate the structures of the compounds 
in order to reduce their toxicity. Secondly, language barriers can occur during a text-mining approach. In this 
project, only articles published in English or Chinese were included. However, articles with high-quality and 
well-designed studies written in other languages, such as Japanese and Korean, may have been ignored. It is 
recommended that future review studies include an investigator with other Asian language backgrounds in the 
review team in order to facilitate examination of non-English and non-Chinese literature. Thirdly, the current 
project did not involve experimental studies (such as in vitro and in vivo) to validate the in silico results. The 
results from the current project need to be interpreted with caution as a compound may show a strong binding 
in docking studies and even in in vitro experiments, however, it may not exert biological activities in animal 
studies. Thus, future studies should perform in vitro and in vivo experiments to validate the computational 
results. Lastly, there is always a limitation to extrapolate in silico findings to in vivo or clinical situations without 
consideration of other factors, including doses, pharmacokinetics and patients’ conditions. Those factors should 
also be investigated and confirmed in further research.

Conclusions
DBKW is a classical herbal formula developed 1800 years ago and it has been widely used for treating difficulty 
in urination involved in PCa in modern times. Molecular docking indicated that compounds from DBKW 
may interact with 21 targets associated with PCa. The binding patterns showed that a relatively small number 
of tight-binding components from DBKW were predicted to interact strongly and selectively with three targets 
(T03, T23 and T21), especially for T03 (PTGS2), at some specific, highly attractive binding positions. Fifteen 
DBKW compounds (DC012, DA175, DB019, ZF04, DA012, DB004, DB005, DB024, DA053, DA108, DA134, 
DA153, DA164, DA175 and ZF02) were predicted as inhibitors of PTGS2. Three signalling pathways including 
pathways in cancer, p53 signalling pathway and NF-κB signalling pathway in the top 10 KEGG pathways were 
identified and that may be highly associated with cancers, involving PCa. Network analysis showed that DBKW 
contains multi-targeting agents that could act on more than one pathway of PCa at the same time. Although 
molecular docking provided an initial insight into the possible mechanisms of action of DBKW for PCa, the exact 
interactions between promising compounds, corresponding targets and diverse pathways need to be thoroughly 
investigated further. The stability of the ligand–protein poses predicted in the current study could be assessed 
using molecular dynamics simulations in the future. A multidisciplinary network-based pharmacological study 
of DBKW for PCa, including in silico, in vitro and in vivo studies, is needed, as this would systematically explore 
the relationship across the formula, herbs, chemical compounds, targets and pathways involved in PCa. Moreover, 
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pharmacokinetic and toxicity studies, and high-quality and well-designed RCTs, are recommended in the future 
to comprehensively investigate the effects and safety of DBKW for the management of PCa.

Methods
Identification of compounds from DBKW’s ingredients. Chemical compounds identified from 
DBKW’s ingredients were obtained from the published literature, which provided the phytochemical and phar-
macodynamic properties of DBKW from modern experimental  studies28.

Acquisition of structures of identified compounds. Each of the identified compound was searched in 
the PubChem database (https:// pubch em. ncbi. nlm. nih. gov) for its PubChem CID/SID number, 3D structures 
and physicochemical properties. Each molecular structure was obtained in a standard SMILES (SDF file) format. 
Molecular structures that could not be found in PubChem were drawn manually using the software ChemDraw 
18.2. All molecular structures were converted into the conventional protein structure PDB file format using 
Chem 3D 18.2. Chemical structures were checked and corrected using the software where necessary during the 
conversion.

Identification of potential targets for PCa. Literature search. We identified potential drug targets of 
DBKW from the included article in our published thesis, as the thesis has included all pharmacological studies 
of DBKW in 21 electronic  databases28. We identified drug targets in studies if the original three-herb DBKW 
formula was utilised as the intervention and focused on targets for cancers in the study. Considering close re-
lationship between PCa and chronic prostatitis as described before, we also identified targets from the studies 
relevant to chronic prostatitis.

Then, one researcher (HL) screened the included studies to identify possible drug targets and extracted 
the data into a predesigned Excel template. The second researcher (AY) double checked the data. When any 
discrepancies between the two researchers occurred, a discussion with the third party (AH) was conducted. 
Characteristics of the candidate drug targets of DBKW were descriptively summarised.

Approved drugs for PCa. The 2019 National Comprehensive Cancer Network Clinical Practice Guidelines in 
Oncology-Prostate Cancer was searched to identify currently approved drugs for  PCa12. The guideline was elec-
tronically screened to identify the names of all drugs recommended for PCa. Subsequently, the known drug 
targets were retrieved from the DrugBank database (www. drugb ank. ca) on 18 August 2019, using drug names 
as keywords. The data was checked by a researcher (AY). Discussion with the third party (AH) was performed 
if any disagreement between the two researchers occurred. The treatment methods, drug names and their drug 
targets were descriptively summarised.

KEGG enrichment of selected target proteins for PCa. Since it is significant for drug discovery to thoroughly under-
stand the biological functions and possible pathways of multiple targets, KEGG enrichment was  performed59. 
KEGG enrichment aimed to investigate potential biological pathways of the candidate  proteins50,60–62 and we 
used the Enrichr database (https:// amp. pharm. mssm. edu/ Enric hr) to perform the enrichment. The Enrichr 
database is a public database containing more than 180000 gene sets based on 102 public sources and it provides 
more systematic annotated results than other commonly used databases, such as  MSigDB60. To confirm the 
enrichment results were statistically significant, we set ‘p < 0.05’ in the database. We also selected the top ten 
KEGG annotated pathways which were ranked by their corresponding p-values to generate a network using 
Cytoscape (v3.7.2)63, as this network could distinctly present the connection between targets and significant 
pathways.

Selection of candidate targets for subsequent computational analyses. We identified candidate targets of DBKW 
from literature search. There were four groups of identified targets: targets identified from the studies on PCa 
were categorised as Group A; targets identified from the studies on cancers except for PCa were defined as Group 
B; targets identified from the studies on chronic prostatitis were classified as Group C; and targets from currently 
approved drugs for PCa were regarded as Group D. Additionally, targets listed under the category of ‘prostate 
carcinoma’ in the Open Targets database (www. opent argets. org) were defined as Group E, which were used as 
a reference target list to compare to the targets from the four groups (Groups A, B, C and D) respectively. The 
Open Targets database could not only connect drug targets to diseases, but also comprehensively identify and 
prioritise targets based on multi-year and large-scale human genetics and genomics data from various of public 
data  sources39. We selected the overlap targets, which were identified from the cross-comparison approach, for 
subsequent in silico analyses.

In order to systematically understand the biological functions of multiple candidate targets and their poten-
tial  interactions64, we used the STRING database (https:// string- db. org), a publicly available and accessible 
database, to analyse the PPI networks of the candidate  targets65. The selected candidate targets were input and 
searched using the Homo Sapiens program. We set the network edges to ‘Confidence’ to present the strength of 
data support, and defined the interaction score to ‘above 0.400’ to identify the results with medium confidence. 
We included targets if they demonstrated PPI for subsequent analyses. For targets which did not interact with 
each other, we excluded them.

Acquisition of structures of the selected targets. The Uniprot ID and PDB ID of the 28 proteins 
were searched and obtained from the Uniprot database (www. unipr ot. org). A basic local alignment search tool 

https://pubchem.ncbi.nlm.nih.gov
http://www.drugbank.ca
https://amp.pharm.mssm.edu/Enrichr
http://www.opentargets.org
https://string-db.org
http://www.uniprot.org
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(BLAST) search was performed using the online BLAST server (https:// blast. ncbi. nlm. nih. gov/ Blast. cgi) to iden-
tify the most appropriate protein  sequences66. The structures of identified protein sequences were downloaded 
from the RCSB PDB Protein Data Bank (www. rcsb. org) in PDB file format and then examined and compared 
using the protein visualisation and analysis software VMD. For proteins from the PDB with missing loop seg-
ments, homology modelling was employed using the SWISS-MODEL server (www. expasy. org/ swiss model) to 
repair the 3D structures of these  proteins67. Protein structures retrieved from the RCSB database or predicted via 
homology modelling were pre-processed using PyRx for subsequent computational docking studies.

Molecular docking between compounds from DBKW and targets for PCa. Molecular docking 
is a computational technique that tests various orientations and conformations of a ligand to identify possible 
binding sites of targets and to provide approximate estimates of ligand-binding-affinity  values68. Interactions 
between DBKW compounds and targets for PCa were predicted using the automated docking software PyRx 
(v0.8) and AutoDock Vina (v1.1.2). The docking software AutoDock Vina was utilised in this project to conduct 
molecular  docking69. All protein and compound files for molecular docking were prepared by the docking GUI 
frontend PyRx, which was also employed to produce docking parameter input files. All protein and compound 
PDBQT files were prepared by PyRx based on their corresponding PDB files. The ‘Maximise’ option in PyRx 
was used to define the docking boxes around the targets, since it could ensure the availability of the entire pro-
tein surface and accessible interior pockets for potential binding of ligands during ‘blind’ docking. The default 
exhaustiveness value of 8 was set for all molecular dockings. The dockings were performed by specifying fixed 
structures for protein receptors, whereas the ligands were semi-rigid with full torsional flexibility. The Intel 
Xeon Sandy Bridge 2.6 GHz Broadwell nodes of the high-performance computing cluster located at the National 
Computational Infrastructure (Canberra, Australia) was used to conduct Autodock Vina calculations.

Visualisation of 3D docking positions and 2D ligand–receptor interaction diagrams. Targets 
with the highest predicted total binding affinity to the herbal compounds were selected for analysis of 3D struc-
tures and 2D visualisations of ligand–residue interactions at their respective docking positions. Ligand–residue 
contact plots were generated using the software Discovery Studio Visualizer 2019. The known active binding 
sites and the key active binding site residues were searched in the RCSB Protein Data Bank database. Com-
pounds located in the active binding sites were selected to identify the number of hydrogen bonds formed with 
the key active site residues. The structures of the compounds were descriptively summarised and compared to 
the known ligand of the target.

Network model analyses between formula, herbs, chemical compounds and targets. Consid-
ering the difference in binding affinity within each compound against various targets, the top five compounds 
with the highest binding affinity values to each target were selected for further investigation, since these com-
pounds were the most likely to have physiological importance. The top five compounds with highest binding 
affinity were selected to generate a network using Cytoscape (v3.7.2), to demonstrate the relationships across the 
formula, herbs, chemical compounds and targets. The target and the herb were considered to possess a strong 
connection if the chemical components from the herb had an optimal binding affinity beyond a prescribed 
threshold which was determined based on the range of predicted binding energies obtained for the entire herbal 
library with the target.
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