
BioMed CentralCardiovascular Diabetology
Cardiovascular Diabetology 2002, 1 xReview
How hyperglycemia promotes atherosclerosis: molecular 
mechanisms
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Abstract
Both type I and type II diabetes are powerful and independent risk factors for coronary artery
disease (CAD), stroke, and peripheral arterial disease. Atherosclerosis accounts for virtually 80%
of all deaths among diabetic patients. Prolonged exposure to hyperglycemia is now recognized a
major factor in the pathogenesis of atherosclerosis in diabetes. Hyperglycemia induces a large
number of alterations at the cellular level of vascular tissue that potentially accelerate the
atherosclerotic process. Animal and human studies have elucidated three major mechanisms that
encompass most of the pathological alterations observed in the diabetic vasculature: 1)
Nonenzymatic glycosylation of proteins and lipids which can interfere with their normal function
by disrupting molecular conformation, alter enzymatic activity, reduce degradative capacity, and
interfere with receptor recognition. In addition, glycosylated proteins interact with a specific
receptor present on all cells relevant to the atherosclerotic process, including monocyte-derived
macrophages, endothelial cells, and smooth muscle cells. The interaction of glycosylated proteins
with their receptor results in the induction of oxidative stress and proinflammatory responses 2)
oxidative stress 3) protein kinase C (PKC) activation with subsequent alteration in growth factor
expression. Importantly, these mechanisms may be interrelated. For example, hyperglycemia-
induced oxidative stress promotes both the formation of advanced glycosylation end products and
PKC activation.

Both type I and type II diabetes are powerful and inde-
pendent risk factors for coronary artery disease (CAD),
stroke, and peripheral arterial disease [1–3]. Atherosclero-
sis accounts for virtually 80% of all deaths among North
American diabetic patients, compared with one third of
all deaths in the general North American population [1].
More then 75% of all hospitalizations for diabetic compli-
cations are attributable to cardiovascular disease.

Prolonged exposure to hyperglycemia is now recognized
as the primary casual factor in the pathogenesis of diabetic
complications [4–6]. Hyperglycemia induces a large
number of alterations in vascular tissue that potentially
promote accelerated atherosclerosis. Currently, three ma-
jor mechanisms have emerged that encompass most of
the pathological alterations observed in the vasculature of
diabetic animals and humans: 1) Nonenzymatic glyco-
sylation of proteins and lipids 2) oxidative stress 3) pro-
tein kinase C (PKC) activation. Importantly, these
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mechanisms are not independent. For example, hypergly-
cemia-induced oxidative stress promotes the formation of
advanced glycosylation end products and PKC activation
[7].

Advanced glycosylation end products
The effects of hyperglycemia are often irreversible and
lead to progressive cell dysfunction [8]. For example, in
diabetic patients with functioning pancreatic transplants
renal pathology continues to progress for at least 5 years
after diabetes has been cured [8]. The mechanism for
these observations is unclear, but suggests that cellular
perturbations may persist despite the return of normogly-
cemia (the so-called memory effect). Thus, persistent rath-
er than transient, acute metabolic changes are of pivotal
importance in the pathogenesis of diabetic complications.

One of the important mechanisms responsible for the ac-
celerated atherosclerosis in diabetes is the nonenzymatic
reaction between glucose and proteins or lipoproteins in
arterial walls, collectively known as Maillard, or browning
reaction [9]. Glucose forms chemically reversible early
glycosylation products with reactive amino groups of cir-
culating or vessel wall proteins (Schiff bases), which sub-
sequently rearrange to form the more stable Amadori-type
early glycosylation products. Equilibrium levels of Schiff-
base and Amadori products (the best known of which is
hemoglobin A1C) are reached in hours and weeks, respec-
tively [10] (Figure 1). Some of the early glycosylation
products on long-lived proteins (e.g. vessel wall collagen)
continue to undergo complex series of chemical rear-
rangement to form advanced glycosylation end products
(AGEs) [10]. Once formed, AGE-protein adducts are sta-
ble and virtually irreversible. Although AGEs comprise a
large number of chemical structures, carboxymethyl-
lysine-protein adducts are the predominant AGEs present
in vivo [11,12].

AGEs accumulate continuously on long-lived vessel wall
proteins with aging and at an accelerated rate in diabetes
[10]. The degree of nonenzymatic glycation is determined
mainly by the glucose concentration and time of exposure
[10]. However, another critical factor to the formation of
AGEs is the tissue microenvironment redox potential.
Thus, situations in which the local redox potential has
been shifted to favor oxidant stress, AGEs formation in-
creases substantially [7,13–17].

AGEs can accelerate the atherosclerotic process by diverse
mechanism, which can be classified as non-receptor de-
pendent (Table 1) and receptor-mediated (Table 2).

Non-receptor mediated mechanisms
Glycosylation of proteins and lipoproteins can interfere
with their normal function by disrupting molecular con-

formation, alter enzymatic activity, reduce degradative ca-
pacity, and interfere with receptor recognition (Table 1).
Thus, changes in the normal physiology of proteins that
are relevant to atherogenesis, may promote atherosclero-
sis in diabetic individuals.

Perhaps the most studied example is interference of the
normal physiology of the low-density lipoprotein (LDL)
particle. The glycosylation process occurs both on the ap-
oprotein B [18] and phospholipid [19] components of
LDL, leading to both functional alternations in LDL clear-
ance and increased susceptibility to oxidative modifica-
tions.

Clinical studies have shown an increased level of AGEs on
LDL obtained from diabetics compared with normal indi-
viduals [19,20]. Glycosylation of LDL apo B (the surface
protein of LDL) occurs mainly on a positively charged
lysine residues within the putative LDL receptor binding
domain which are essential for the specific recognition of

Table 1: Atherosclerosis promoting effects of AGEs: Non-Recep-
tor Mediated Mechanisms

Extracellular matrix
Collagen cross linking [74]
Enhanced synthesis of extracellular matrix components [10]
Trapping of LDL in the subendothelium [75]
Glycosylated subendothelial matrix quenches nitric oxide [76]

Functional alterations of regulatory proteins
bFGF glycosylation reduces its heparin binding capacity and its 
mitogenic activity on endothelial cells [13]
Inactivation of the complement regulatory protein CD59 [26]

Lipoprotein modifications
Glycosylated LDL [19,20]
Reduced LDL recognition by cellular LDL receptors [21]
Increased susceptibility of LDL to oxidative modification [19]

Table 2: Atherosclerosis promoting effects of AGEs: Receptor 
Mediated Mechanisms

Promoting inflammation
Secretion of cytokines such as TNF-α , IL-1 [74].
Chemotactic stimulus for monocyte-macrophages [37,38]

Induction of cellular proliferation
Stimulation of PDGF [37] and IGF-I [40] secretion from monocytes 
and possibly SMC.

Endothelial dysfunction
Increased permeability of EC monolayers [34,35]
Increased procoagulant activity [35]
Increased expression of adhesion molecules [33]
Increased Intracellular oxidative stress [31,34]

IGF-I = Insulin-like growth factor I; IL-1 = Interleukin-1; PDGF = 
Platelet-derived growth factor; TNF-α = Tumor necrosis factor-α .
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LDL by the LDL receptor [20]. LDL glycosylation is in-
creased in correlation with glucose levels, and AGE-ApoB
levels are up to 4-fold higher in diabetic patients [19,20].
Glycosylation of ApoB results in a significant impairment
of LDL-receptor-mediated uptake decreasing the in vivo
clearance of LDL compared to native LDL [21] (Figure 2).
Several studies have shown that degradation of glycated
LDL is impaired in cultured human fibroblasts (which
posses LDL receptor) compared with normal LDL, and
that this impairment is proportional to the extent of gly-
cation [21]. In contrast to fibroblasts, human monocyte-
derived macrophages recognize glycated LDL to a greater
extent than native LDL [22]. The uptake of glycated LDL
by these cells, however, is not mediated by the LDL recep-
tor pathway, but by a high-capacity, low-affinity receptor
pathway [22]. Thus, glycated LDL are poorly recognized
by the specific LDL receptor and are preferentially recog-
nized by a nonspecific (scavenger) receptor present on hu-
man macrophages. Because LDL glycosylation enhances
its uptake by human aortic intimal cells [23] and mono-
cyte-derived macrophages [22] with stimulation of foam
cells formation, the recognition of glycated LDL by the
scavenger receptor pathway is thought to promote intrac-
ellular accumulation of cholesteryl esters and promote
atherosclerosis (Figure 2).

Another atherogenic effect of glycation is to confer in-
creased susceptibility of LDL to oxidative modification.
Oxidation reactions occur normally during glycation can
oxidize the amine-containing phospholipids component
of LDL, independently of transition metals or exogenous
free radical-generating systems [19]. Advanced glycosyla-
tion of an amine-containing phospholipids component
of LDL is accompanied by progressive oxidative modifica-
tion of unsaturated fatty acid residues [21]. LDL oxidation
following AGE-LDL formation occurs in direct proportion
to glucose concentration and can be inhibited by the AGE
formation inhibitor aminoguanidine [19]. Thus, glyca-
tion confers increased susceptibility of LDL to oxidative
modification [21,24], which is considered a critical step in
its atherogenicity.

Another example is the alterations in normal function of
the complement regulatory protein. Deposition of the
membrane attack complex of complement (MAC) in
blood vessels stimulates proliferation of fibroblasts and
smooth muscle cells, in part by releasing growth factors
such as fibroblast growth factor and platelet derived
growth factor from MAC-targeted endothelium [25]. MAC
deposition is normally restricted because cells express the
regulatory membrane protein CD59, which limits com-
plement activation and MAC formation. Glycation of the
complement regulatory protein CD59 results in its inacti-

Figure 1
The formation of advanced glycosylation end products.
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vation [26] and may increased the sensitivity of the dia-
betic endothelium to MAC-induced release of growth
factors and cytokines.

Glycosylation of matrix components such as collagen VI,
laminin, and vitronectin decreased binding of anionic
heparan sulfate, leading to greater turnover of heparan
sulfate [10]. The absence of HS is thought to stimulate a
compensatory overproduction of other matrix compo-
nents through altered partitioning of growth-regulatory
factors between matrix bound proteoglycans and cells
[10]. AGEs on matrix also alter the normal interactions of
transmembrane integrin receptors with three specific ma-
trix liganeds. For example, modification of the cell bind-
ing domains of type IV collagen causes decreased
endothelial cell adhesion [10].

Receptor-mediated mechanisms
The cellular interactions of AGEs are mediated through a
specific receptor for AGE determinants on cell surfaces
[16]. The presence of the AGE receptor (RAGE), a member
of the immunoglobulin superfamily of receptors [27], has
been demonstrated in all cells relevant to the atheroscle-
rotic process including monocyte-derived macrophages,
endothelial cells, and smooth muscle cells [16,28] (Table

2). The macrophage AGE receptor system is closely tied to
AGE turnover, and is thought to represent a mechanism
that responds to raising AGE levels with aging and de-
grade senescent proteins [29].

In mature animals, RAGE expression on these cells is low
[28]. However, under certain pathological circumstances,
sustained upregulation of RAGE occurs. In pathological
lesions, abundance of RAGE expressing cells is usually as-
sociated with sites of accumulated RAGE ligands. In dia-
betic vasculature, cells expressing high levels of RAGE are
often proximal to areas in which AGEs are abundant
[17,30].

AGE interaction with RAGE on endothelial cells results in
the induction of oxidative stress and consequently of the
transcription factor NF-κB [31,32] and VCAM-1 [33] (Fig-
ure 3). In addition, engagement of AGEs with their specif-
ic receptors results in reduced endothelial barrier function
[33,34]. With increased permeability of endothelial cell
monolayers [34,35]. Thus, the interaction of AGEs with
RAGE-bearing endothelial cells can mediate initiating
events in atherogenesis. For example, increased endothe-
lial permeability can lead to increased lipid entry into the
subendothelium. Enhancement of adhesive interactions

Figure 2
Potential mechanisms by which LDL glycosylation increases its atherogenicity. Advanced glycosylation of the phospholipid com-
ponent of LDL is accompanied by the progressive oxidative modification of unsaturated fatty acid residues. Glycosylation of
LDL apoB reduces its recognition by the LDL receptor and increases uptake through the scavenger receptor (see text for
details).
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of monocytes with the endothelial surface can subse-
quently result in transendothelial migration (Figure 4).

Binding of soluble AGEs to RAGE-bearing monocytes in-
duces chemotaxis [36], followed by mononuclear infiltra-
tion through an intact endothelial monolayer [37,38].
Pathological studies of human atherosclerotic plaques
showed infiltration of RAGE-expressing cells in the ex-
panded intima [28]. Monocyte-macrophage interaction
with AGEs results also in the production of mediators
such as interleukin-1, tumor necrosis factor-α, platelet-de-
rived growth factor, and insulin growth factor-I
[37,39,40], which have a pivotal role in the pathogenesis
of atherosclerosis [41].

In smooth muscle cells, binding of AGE-modified pro-
teins to RAGE is associated with increased cellular prolif-
eration [42]. Although the precise mechanism of this
response is unknown, the growth-promoting effects medi-
ated by the RAGE are likely to be cytokine or growth-factor
mediated. Thus, under conditions of enhanced tissue AGE
deposition, receptor-mediated interaction of AGE-pro-
teins with vascular wall cells facilitate the migration of in-
flammatory cells into the lesion with the subsequent
release of growth-promoting cytokines.

The potential role of RAGE in the atherogenic process in
diabetes has been demonstrated by Park and associates
[43]. In the model of atherosclerosis-prone mice due to
homozygous deletion of apolipoprotein E (apoE) gene,
the induction of diabetes using streptozotocin resulted in
atherosclerosis of increased severity compared to euglyc-
emic apoE controls. The development of vascular was
more rapid with the formation of more complex lesions
(fibrous caps, extensive monocyte infiltration, etc) and
atherosclerosis extending distally in the aorta and major
arteries. Increased expression of RAGE and the presence of
AGEs in the vessel wall, especially at sites of vascular le-
sions were also evident. Blockade of AGE-RAGE interac-
tion using a truncated soluble extracellular domain of
RAGE resulted in a striking suppression of lesions in dia-
betic mice, with lesions largely arrested at the fatty streak
stage and a large reduction in complex lesions. These ef-
fects were independent of glucose and lipid levels [43].

Protein kinase c
The metabolic consequences of hyperglycemia can be ex-
pressed in cells in which glucose transport is largely inde-
pendent of insulin. The resulting intracellular
hyperglycemia has been implicated in the pathogenesis of
diabetic complications through the activation of the pro-
tein kinase C (PKC) system [44–46].

Figure 3
Consequence of AGE interaction with the AGE receptor on endothelial cells.
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High ambient glucose concentrations activate PKC by in-
creasing the formation of diacylglycerol (DAG), the major
endogenous cellular co-factor for PKC activation, from
glycolytic intermediates such as dihydroxy-acetone phos-
phate and glyceraldehyde-3-phosphate. The elevation of
DAG and subsequent activation of PKC in the vasculature
can be maintained chronically [47].

PKC is a family of at least 12 isoforms of serine and thre-
onine kinases. Although several PKC isoforms are ex-
pressed in vascular tissue, in the rat model of diabetes
there is a preferential activation of PKC β2 in the aorta,
heart, and retina, and PKC β1 in the glomeruli [48,49].

The PKC system is ubiquitously distributed in cells and is
involved in the transcription of several growth factors,
and in signal transduction in response to growth factors
[48,50,51]. In vascular smooth muscle cells, PKC activa-
tion has been shown to modulate growth rate, DNA syn-
thesis, and growth factor receptor turnover [46,48]. For
example, hyperglycemia-induced PKC activation also re-
sults in increased platelet derived growth factor-β receptor
expression on smooth muscle cells and other vascular
wall cells (e.g., endothelial cells, monocyte-macrophages)
[52,53].

PKC activation increases the expression of transforming
growth factor-β (TGF-β), which is one of the most impor-
tant growth factor regulating extracellular matrix produc-
tion by activating gene expression of proteoglycans and

collagen and decreasing the synthesis of proteolytic en-
zymes that degrade matrix proteins [54]. Increased expres-
sion of TGF-β is thought to lead to thickening of capillary
basement membrane – one of the early structural abnor-
malities observed in almost all tissues in diabetes. PKC β
selective inhibitor (LY333531) attenuates glomerular ex-
pression of TGF-β and ECM proteins such as fibronectin
and type IV collagen [49,50].

Oxidative stress
Oxidative stress is widely invoked as a pathogenic mecha-
nism for atherosclerosis. Among the sequelae of hypergly-
cemia, oxidative stress has been suggested as a potential
mechanism for accelerated atherosclerosis [7,55,56]. Hy-
perglycemia can increase oxidative stress through several
pathways. A major mechanism appears to be the hyperg-
lycemia-induced intracellular reactive oxygen species
(ROS), produced by the proton electromechanical gradi-
ent generated by the mitochondrial electron transport
chain and resulting in increased production of superoxide
[7].

Two other mechanisms have been proposed that may ex-
plain how hyperglycemia causes increased ROS forma-
tion. One mechanism involves the transition metal-
catalyzed autoxidation of free glucose, as described in cell-
free systems. Through this mechanism, glucose itself initi-
ates autoxidative reaction and free radical production
yielding superoxide anion (O2

-) and hydrogen peroxide
(H2O2) [57]. The other mechanism involves the transi-

Figure 4
Mechanisms by which AGEs induce endothelial dysfunction and promote atherosclerosis.
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tion metalcatalyzed autoxidation of protein-bound Ama-
dori products, which yields superoxide and hydroxyl
radicals and highly reactive dicarbonyl compounds [55]
(see Glycoxidation).

There is also evidence that hyperglycemia may compro-
mise natural antioxidant defenses. Under normal circum-
stances, free radicals are rapidly eliminated by
antioxidants such as reduced glutathione, vitamin C, and
vitamin E. Reduced glutathione content [58,59], as well as
reduced vitamin E [60,61] have been reported in diabetic
patients. Plasma and tissue levels of vitamin C are 40–
50% lower in diabetic patients compared with nondiabet-
ic subjects [62,63].

Importantly, there appears to be a tight pathogenic link
between hyperglycemia-induced oxidant stress and the
two hyperglycemia-dependent mechanisms of vascular
damage described above, namely AGEs formation and
PKC activation (Figure 5).

Glycoxidation
Some of the individual advanced glycosylation products
such as Nε-carboxymethyl)lysine (CML) and pentosidine
are formed in reactions of protein with glucose only under
oxidative conditions [15,64–66]. Thus, some AGEs are
produced by combined processes of glycation and oxida-
tion and have been termed glycoxidation products [56].
Each AGE structure has its own formation mechanism and
thus its own dependence on oxidative stress. However,
since glycoxidation products on proteins are irreversible,
it has been suggested that they may be an integrative bi-
omarker for the accumulated oxidative stress the respec-
tive tissue has been exposed to [14,55].

As previously discussed, the interaction between AGE
epitopes and the cell surface AGE receptor upregulate oxi-
dative stress response genes [31] and release oxygen radi-
cals [67]. Thus, hyperglycemia simultaneously enhances
both AGEs formation and oxidative stress, and the mutual
facilitatory interactions between glycation and oxidation

Figure 5
Relationship between rates of oxidant generation, antioxidant activity, oxidative stress, and oxidative damage in diabetes. [O2]*

represents various forms of reactive oxygen species [ROS]. The overall rate of formation of oxidative products leading to oxi-
dative tissue damage is dependent on ambient levels of both [O2]* and substrate. Increased generation of [O2]* depends on
several sources including glucose autoxidation, increased mitochondrial superoxide production, and as a result of the receptor
for advanced glycosylation end products activation. [O2]* deactivation is reduced because antioxidant defenses are compro-
mised in diabetes. Note that oxidative stress also promotes other hyperglycemia-induced mechanisms of tissue damage. Oxida-
tive stress activates protein kinase C (PKC) and accelerates the formation of advanced glycosylation endproducts (AGEs).
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chemistry can contribute sinergistically to the formation
of AGEs, oxidative stress, and diabetic complications (Fig-
ure 5). Indeed, there are strong correlations between levels
of glycoxidation products in skin collagen and the severity
of diabetic retinal, renal, and vascular disease [68,69].

Oxidative stress and PKC activation
Oxidative stress may also be involved in the activation of
DAG-PKC in vascular tissue [7]. Oxidants produced in the
setting of hyperglycemia can activate PKC [70]. Further-
more, several studies have shown that antioxidants such
as vitamin E can inhibit PKC activation probably by de-
creasing DAG levels [7,71–73].
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