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Sepsis-induced cardiac injury (SIC) is one of the most common complications in the
intensive care unit (ICU) with high morbidity and mortality. Mitochondrial dysfunction
is one of the main reasons for SIC, and Interleukin-13 (IL-13) is a master regulator
of mitochondria biogenesis. The aim of the present study was to investigate the
role of IL-13 in SIC and explore the underlying mechanism. It was found that
reactive oxygen species (ROS) production and apoptosis were significantly increased in
lipopolysaccharide (LPS)-stimulated primary cardiomyocytes, which was accompanied
with obvious mitochondria dysfunction. The results of RNA-sequencing (RNA-seq),
mitochondrial membrane potential, fatty acid uptake and oxidation rate suggested
that treatment with IL-13 could restore the function and morphology of mitochondria,
indicating that it played an important role in protecting septic cardiomyocytes. These
findings demonstrated that IL-13 alleviated sepsis-induced cardiac inflammation and
apoptosis by improving mitochondrial fatty acid uptake and oxidation, suggesting that
IL-13 may prove to be a potential promising target for SIC treatment.

Keywords: sepsis, cardiomyocyte apoptosis, IL-13, mitochondria, fatty acid

INTRODUCTION

Sepsis-induced myocardial dysfunction is one of the main causes of death in the intensive care unit
(ICU). Various theories and therapies have been proposed to treat septic patients with impaired
cardiac function (Ichinose et al., 2007; Xu et al., 2012; Venet and Monneret, 2018). In recent
years, mitochondrial dysfunction has been considered as a crucial cause of sepsis-induced cardiac
injury (SIC) with augmented release of reactive oxygen species (ROS) and decreased mitochondrial
oxidative phosphorylation (Drosatos et al., 2011, 2013; Schilling et al., 2011). Toxic ROS and
insufficient energy metabolism finally lead to the impairment and apoptosis of cardiomyocytes
(Sepúlveda et al., 2020).

Interleukin-13 (IL-13) is a protein secreted by many cell types and recognized as a type
2 immunity cytokine that plays an important role in a variety of diseases, including allergic
inflammation, schistosomiasis, and tissue repair (Qian et al., 2021). Recently, IL-13 is reported to
be increased after endurance exercise, probably due to type 2 innate lymphocytes (ILC2) expansion
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in the muscle. IL-13 preserves the ability of fatty acid utilization
and mitochondrial biogenesis in the muscle (Knudsen et al.,
2020). Although IL-13 is known to have a protective effect in
various diseases, whether IL-13 also has a cardioprotective effect
in sepsis remains to be defined.

In this study, we investigated the potential role of IL-13 in
protecting mitochondria and alleviating SIC. IL-13 decreased
the apoptosis and increased the cardiac function in SIC.
Furthermore, we evaluated the morphology of mitochondria
and expression level of ROS in different conditions. Finally, we
explored the possible mechanisms whereby IL-13 recovered the
fatty acid utilization of mitochondria in the septic state. Our
findings suggest that IL-13 may be a promising therapeutic target
in SIC.

MATERIALS AND METHODS

Primary Cardiomyocyte Culture
Primary cardiomyocytes were isolated from neonatal rats aged
1–3 days (Wang et al., 2020). Briefly, the neonatal SD rat heart
was digested into single cells in 0.1% trypsin (Gibco) diluted
with Hank’s balanced salt solution (HBSS, Cytiva) at 37◦C.
Then, low glucose Dulbecco’s Modified Eagle’s Medium (DMEM,
Cytiva) containing fetal bovine serum (FBS) was added into the
single cardiomyocyte suspension to neutralize the trypsin. In the
end, the cardiomyocytes were cultured in low glucose DMEM
containing 10% FBS at 37◦C with 5% CO2.

Model Establishment
The cellular model of SIC was established by lipopolysaccharide
(LPS, Sigma-Aldrich, United States) incubation. Briefly, primary
cardiomyocytes were cultured in low glucose DMEM containing
10 ug/ml LPS for 6 h. Morphology and pulse rhythm of
cardiomyocytes were observed.

C57BL/6 mice (JSJ Co., Shanghai, China) were raised in the
specific pathogen free (SPF)-grade environment, all biosecurity
as well as institutional safety procedures were approved and
supervised by the Ethics Committee of Shanghai Chest Hospital
(Shanghai, China). C57BL/6 were intraperitoneally (i.p.) injected
with LPS at a dosage of 10 mg/ml for 6 h.

Adenosine Triphosphate Measurement
Adenosine Triphosphate (ATP) production was measured by
ATP measurement assay (Beyotime, China) according to the
operating manual. Briefly, lysis solution was added into the
cardiomyocytes and then centrifuged at 12000 × g at 4◦C for
5 min. Then, the ATP standard solution was diluted to an
appropriate concentration gradient with ATP test solution, and
100 ul ATP test solution was added into the microplate for 3 min
in advance. Finally, 20 ul standard solution and sample solution
were added into the prepared ATP test solution and detected by
luminometry (Thermo Fisher Scientific, United States).

Reactive Oxygen Species Measurement
Generation of ROS was detected with ROS Assay Kit (Beyotime,
China). In brief, DCFH-DA was diluted to a concentration

of 10 uM. Cardiomyocytes were washed with PBS firstly and
incubated with DCFH-DA at 37◦C for 20 min. After that,
cells were washed with PBS for 3 times and detected by
fluorescent microscopy.

Mitochondrial Morphology
Mitochondria of primary cardiomyocytes were stained with
MitoTrackerTM Deep Red (Invitrogen, United States). Briefly,
1 mM mitoTracker solution was diluted to the final work
concentration of 50 nM with DMEM. Primary cardiomyocytes
were washed with PBS and incubated with mitoTracker work
solution for 30 min at 37◦C. After staining, cells were washed with
PBS for 3 times again and added fresh DMEM.

TUNEL Staining
TUNEL assays were performed with sections using One-
step TUNEL Cell Apoptosis Detection Kit (Beyotime, China)
principally according to the supplier’s instruction. In addition,
the nuclei in the slices were labeled with DAPI, and finally
photographed with a fluorescence microscope.

Isolation of Mitochondria
Mitochondria from primary cardiomyocytes were extracted
according to the instructions of QIAGEN (United States). Cells
were collected and added with lysis buffer and incubated at 4◦C
for 10 min. After that, samples were centrifuged at 1000 × g at
4◦C for 10 min. The precipitation was collected, incubated with
disruption buffer, and then homogenized using a Dounce tissue
grinder. The supernatant was collected in a new clear tube after
1000 × g centrifuge at 4◦C for 10 min. Next, the samples were
centrifuged again at 6000 × g for 10 min and added with 1 ml
mitochondria, stored, and suspended until precipitation. Finally,
the samples were centrifuged at 6000× g for 20 min, resuspended
and stored for future use.

Extraction and qPCR of Mitochondria
DNA
The gene expression of mitochondria DNA (mtDNA) was
determined by RT-qPCR with SYBR Green. Relative expression
was quantified to Rplp0 as the internal standard control. All
primer sequences are listed in Supplementary Table 1.

Western Blot Analysis
Protein lysates and Western blotting were performed using
the classic methods. Briefly, each protein sample (30 ug) was
resuspended in SDS-PAGE loading buffer, boiled at 95◦C for
10 min and electrophoresed with appropriate gels. After that, the
protein was electrotransferred to PVDF membrane (Millipore,
United States) and blocked with 5% non-fat milk for 1 h at
room temperature. Antibodies of Bcl2, Bax, Caspase3, α-tubulin,
α-actin and Cox4 (Cell Signaling Technology, United States)
and OXPHOS (Invitrogen, United States) were added to bind
the membrane overnight at 4◦C. Then, the membrane was
washed with TBST for 3 times and incubated with HRP-
conjugated secondary antibodies (Cell Signaling Technology,
United States) for 1 h at room temperature. Finally, the PVDF
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FIGURE 1 | Interleukin-13 (IL-13) alleviates cardiomyocyte apoptosis and reactive oxygen species (ROS) production in vivo. (A) Representative figures of
echocardiography (ECG). (B) TUNEL staining was used to observe the level of apoptosis and (C) quantitative results were calculated with image J. (D) The level of
ROS was observed with DHE probe and (E) calculated. (F) The level of Adenosine Triphosphate (ATP) production. Data are shown as the mean ± SEM (n = 3).
*P < 0.05; **P < 0.01; ***P < 0.001.

membrane was washed with TBST for 3 times and developed with
electrochemiluminescence solution (Millipore, United States).

Transmission Electron Microscope
Investigation
The heart was isolated from the LPS-induced cardiac injury mice
and cut into 1 mm3 sections and incubated with fixative solution
(Daixuan Biotechnology Co., Ltd., China) immediately, followed
by incubation with 2.5% glutaraldehyde overnight. After that, the
fixed samples were washed by ddH2O and put into 30, 50 and 70%
ethanol at 4◦C for 10 min each in sequence. Then it was given
to 80, 90 and 95% acetone for 10 min one by one, and to 100%
acetone for 10 min × 2. Afterward, the specimen was immersed
into epoxy resin and shaken at 30◦C for 4 h. Finally, the prepared
sample was sliced to ultrathin sections for transmission electron
microscope (TEM) observation (Hitachi, Tokyo, Japan).

Mitochondrial Membrane Potential
Detection
Mitochondrial membrane potential was detected with JC-10
Mitochondrial Membrane Potential Assay Kit (Yeasen, China).
According to the instructions, JC-10 stock solution was diluted
with ddH2O at the ratio of 1:1000 to make JC-10 work solution.
Primary cardiomyocytes were washed with PBS and incubated
with 1 ml DMEM mixed with 1 ml JC-10 work solution at
37◦C for 20 min. After that, cell samples were washed with
PBS twice and added with fresh DMEM for confocal laser
microscopic observation.

RNA Sequencing and Analysis
RNA was extracted from heart tissues that were grown under
the appropriate conditions using the RNeasy mini kit (Qiagen,
United States). After that, RNA-sequencing (RNA-seq) was
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FIGURE 2 | Interleukin-13 alleviates cardiomyocyte apoptosis and ROS production in vitro. (A) PI and Annexin V dye was used to observe the level of apoptosis.
(B) PI positive cells were counted by flow cytometry and (C) calculated. Annexin V positive cells (D) and the apoptosis ratio (E) were counted by flow cytometry and
calculated. (F) DCFH-DA staining was applied to detect the level of ROS and (G) measured with image J. Data are shown as the mean ± SEM (n = 3). *P < 0.05;
**P < 0.01; ***P < 0.001.

performed by GENEWIZ (Suzhou, China). Genes with a | fold-
change (FC) | > 1 and P < 0.05 were defined as significant
differential expressed genes for further analysis.

Fatty Acid Uptake Rate Detection
According to the instruction book, primary cardiomyocytes were
seeded into black 96-well plate and incubated with LPS or IL-
13. After that, 100 ul fatty acid dye solution (Sigma-Aldrich,
United States) was added for 1 h incubation. Finally, fluorescence
was detected with VARIOSKAN LUX (Thermo Fisher Scientific,
United States) and reported as Fluorescence (RFU).

Fatty Acid Oxidation Rate Detection
Fatty acid oxidation rate assay (Genmed Scientifics Inc.,
United States) was applied to detect the rate of β-oxidation
rate. According to the instruction manuscript, primary

cardiomyocytes were seeded into 96-well plate. After stimulation,
substrate of palmitoyl carnitine was added into the 96-well plates
for β-oxidation. Finally, VARIOSKAN LUX was used to detect
OD values at 420 nm. Fatty acid β-oxidation rate = [(ODsample-
ODbackgroud) × system volume (ml)]/[sample protein content
(mg)× 105× reaction time(min)].

Statistical Analysis
Data are presented as the mean± SEM at least three duplications
of different samples. Student’s t-test was applied for analysis
between two groups and one-way analysis of variance (ANOVA)
was used for comparisons between multiple groups. GraphPad
Prism 7.0 (GraphPad Software Inc., United States) were used to
analyze and illustrate the data. Differences with p-values < 0.05
were considered statistically significant.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 September 2021 | Volume 9 | Article 736603

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-736603 September 13, 2021 Time: 12:25 # 5

Guo et al. IL-13 for Cardiomyocytes Mitochondrial Protection

FIGURE 3 | Interleukin-13 recovers homeostasis and morphology of
mitochondria. (A) Measurement of mitochondrial membrane potential using
the JC-10 probe. (B) Calculation of the membrane potential change ratio with
a monomer/polymer. (C) Level of ATP production. (D) mitochondria DNA
(mtDNA)/nuclear DNA (nDNA) ratio. (E) Mitochondrial morphology shown by
MitoTracker deep red staining. (F) Mitochondrial morphology shown by
transmission electron microscope (TEM). Mitochondria was labeled with black
triangle. Data are expressed as the mean ± SEM (n = 3). *P < 0.05;
**P < 0.01; ***P < 0.001.

RESULTS

Interleukin-13 Alleviates LPS-Induced
Cardiomyocyte Apoptosis and ROS
Production in vivo
To understand the potential role of IL-13 in protection
against SIC, LPS was injected i.p. to induce a cytokine storm.
Echocardiography (ECG) was employed to determine the
cardiac function in LPS-induced cardiac injury. As shown in
Figure 1A, myocardial systolic function was decreased after
LPS injection, and IL-13 mitigated cardiac injury and reversed
to a certain extent. Eject fraction (EF) and fraction shorting
(FS) were calculated in Supplementary Figures 1A,B. The

heart was then harvested and TUNEL stained. As shown in
Figures 1B,C, compared with the control group, LPS induced
obvious cardiomyocyte apoptosis and IL-13 attenuated the
apoptosis. In addition, DHE staining was employed to evaluate
the ROS production in LPS-induced cardiac injury. As shown in
Figures 1D,E, the change of ROS production was in accordance
with the level of apoptosis, suggesting that ROS may be an
important cause of cardiomyocyte apoptosis. Furthermore, H&E
staining showed that LPS caused edema of the heart tissue as
represented by enlarged tissue space (Supplementary Figure 2).
We also observed the change of ATP in the heart of the septic
mice, which is a crucial form of energy for the heart. Interestingly,
LPS decreased the production of ATP and IL-13 treatment
eliminated the disorder of energy metabolism (Figure 1F).

Interleukin-13 Alleviates LPS-Induced
Cardiomyocyte Apoptosis and ROS
Production in vitro
Next, we explored the therapeutic effect of IL-13 with primary
cardiomyocytes. PBS, 10 ug/ml LPS and LPS + IL-13(50 ng/ml)
was added to cardiomyocytes, respectively. After that, PI and
Annexin V dyes were employed to mark the necrotic and
apoptotic cells, respectively. As shown in Figure 2A, necrotic and
apoptotic cells were increased conspicuously in LPS-stimulated
group as compared with the control group, while IL-13 relieved
the necrosis and apoptosis effectively. To obtain a quantification
result of apoptosis, we used flow cytometry for more accurate
investigation. As shown in Figures 2B,C, PI positive cells were
decreased markedly in IL-13 treatment group as compared with
LPS group (13.6% vs. 5.6%). Meanwhile, Annexin V positive cells,
which represent the total apoptotic cells, were also decreased
after IL-13 treatment (Figures 2D,E). In addition, we also
detected the ROS production using the DCFH-DA assay kit. As
shown in Figures 2F–G, the level of ROS in normal primary
cardiomyocytes was very low but increased markedly after LPS
induction. Together, we conclude that IL-13 could protect the
cardiomyocytes and reduce the production of ROS.

Interleukin-13 Sustains the Homeostasis
of Mitochondria
The above results suggest that IL-13 could alleviate the apoptosis
of cardiomyocytes but the exact mechanism remains to be further
understood. In consideration of the change in ATP production,
IL-13 may play a protective role by maintaining the homeostasis
of mitochondria. Next, we evaluated the mitochondria function
by detecting the membrane potential by JC-10, which is a
bicolourable membrane potential probe that reflects the function
of mitochondria. JC-10 presents the polymer that displays
red fluorescence in mitochondria of normal cardiomyocytes
but resolves into a monomer with green fluorescence when
damage occurs in mitochondria. As shown in Figures 3A,B,
red fluorescence decreased, and green fluorescence increased
after LPS stimulation. IL-13 recovered the membrane potential
of mitochondria by regulating its homeostasis. After that, we
detected the production of ATP in primary cardiomyocytes.
As shown in Figure 3C, IL-13 increased ATP production as
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FIGURE 4 | Change of electronic delivery chain in lipopolysaccharide (LPS)-induced cardiomyocytes. (A) Western immunoblotting and (B–F) quantification of
multiple OxPhos proteins from primary cardiomyocytes induced by LPS (n = 3). (G) Expression level of representative genes related to electronic delivery chain by
RNA-sequencing (RNA-seq) in the mouse heart. Data are presented as a heatmap (n = 6). Data are shown as the mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001.

expected. In addition, IL-13 treatment increased the biogenesis of
mitochondria as determined by the ratio of mtDNA and nuclear
DNA (nDNA; Figure 3D).

Interleukin-13 Sustains the Morphology
of Mitochondria
In addition to the functional change of mitochondria, the
morphology also restored to normal after IL-13 treatment. A deep
red MitoTracker dye was applied to evaluate the change of
mitochondria. As shown in Figure 3E, normal cardiomyocytes
had more dense and dispersive mitochondria compared with

those in LPS group. After LPS stimulation, the mean area of
mitochondria became shorter (Supplementary Figure 3A), and
the proportion of cardiomyocytes with fragmented mitochondria
was increased (Supplementary Figure 3B). Next, we analyzed
ultrastructural changes by TEM. As shown in Figure 3F, normal
cardiomyocytes had more large mitochondria with regular
arrangement as compared with LPS group. Supplementation
of IL-13 restored the number, size and arrangement of
mitochondria in inflammatory cardiomyocytes. In addition, LPS-
stimulated mitochondria were characterized by the presence of
fragmented cristae and swollen Vacuoles.
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FIGURE 5 | Change of mitochondria biogenesis in LPS-induced cardiomyocytes. (A) Expression level of representative genes related to mitochondria biogenesis by
RNA-seq in the mouse heart. Data are presented as a heatmap (n = 6). (B) The expression level of genes related to fatty acid metabolism was validated by RT-qPCR
(n = 3). Data are shown as the mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001.

LPS Leads to Damage of Electronic
Delivery Chain
To investigate the cause of damaged ATP production, the
expression level of OxPhos in control and LPS-induced
cardiomyocytes was detected by Western Blot. It was found that
the expression level of complex II, complex IV, and complex
V was significantly decreased (Figures 4A–F). Furthermore,
the hearts were harvested from the control and LPS-induced
mice with or without IL-13 treatment for RNA-seq to explore
the potential mechanisms. It was found that IL-13 treatment
significantly up-regulated the expression of 62 genes and down-
regulated the expression of 36 genes in the heart of LPS and
IL-13 groups (P < 0.05 and | log2FC| > 1) (Supplementary
Figure 4). Interestingly, of the genes significantly related to
electronic delivery chain, only Grprl1 underwent significant

change (Figure 4G), knowing that Grprl1 is responsible to
transport proteins from the membrane to mitochondria matrix
in an ATP-dependent manner. This finding suggests that IL-
13 could not restore the electronic delivery chain activity at
transcriptional level, and there may be other potential pathways.

Interleukin-13 Reverts the LPS Induced
Mitochondria Biogenesis Disorder
Knowing that IL-13 could not ameliorate LPS-induced
mitochondria injury, we next analyzed the change of
mitochondria biogenesis in LPS-induced cardiac injury. As
shown in Figure 5A, totally 13 associated genes reverted after
IL-13 treatment as compared with LPS group. Interestingly,
among these genes, Acadl, Acsl1, Acot6, Acat2, Acox2, Echs1,
Acsm4, Acsbg2, Slc27a2, and Lpl were responsible for fatty acid
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FIGURE 6 | Interleukin-13 ameliorates fatty acid uptake and oxidation in mitochondria. (A) Rate of fatty acid uptake in primary cardiomyocytes. (B) Rate of fatty acid
oxidation in primary cardiomyocytes. Data are shown as the mean ± SEM (n = 3). *P < 0.05; **P < 0.01; ***P < 0.001.

uptake and β-oxidation, knowing that they are the main energy
source for the heart. Only three genes (Gbe1, Pdha1, and Prkaa1)
were related to carbohydrate metabolism. Based on the results of
heatmap analysis, we validated the fatty acid metabolism gene
expression level in primary cardiomyocytes by RT-qPCR, and
found that Lpl, Acadl, Acsl1, Slc27a2, Acsbg2, Acsm4, and Acat2
underwent significant changes in LPS + IL-13 group compared
with LPS, which is in consistent with the result of RNA-seq
(Figure 5B). These results suggest that IL-13 may alleviate the
LPS induced mitochondria biogenesis disorder by increasing the
expression level of fatty acid uptake and β-oxidation.

Interleukin-13 Ameliorates Fatty Acid
Uptake and Oxidation of Mitochondria
To determine whether IL-13 could ameliorate the fatty acid
metabolism in LPS-stimulated primary cardiomyocytes, we
detected the rate of fatty acid uptake and oxidation. As shown
in Figure 6A, fatty acid uptake was impacted obviously by LPS
compared with the control group, and IL-13 treatment improved
the damaged uptake efficiency. In accordance with the results
of uptake, IL-13 restored the activity of fatty acid oxidation at
both 6 and 12 h after LPS stimulation (Figure 6B). These results
suggest that IL-13 could effectively ameliorate sepsis-induced
mitochondrial biogenesis dysfunction.

DISCUSSION

Sepsis-induced cardiac injury is one of the most common
postoperative complications in the ICU, causing high morbidity
and mortality. SIC is mainly characterized as systolic dysfunction
in the serious inflammation environment. However, myocardial
dysfunction in sepsis is a well-recognized but poorly understood
condition without effective treatment.

Numerous mechanisms including calcium overload, ROS
production, calcium overload, inactivation of ion channels and
mitochondria dysfunction are involved in the development of
SIC. Mitochondrial dysfunction is a hotspot of research on septic
cardiomyopathy in recent years. Previous studies reported that
LPS affected mitochondrial biosynthesis and eventually mediated

the apoptosis of cardiomyocytes (Xin and Lu, 2020). Xu et al.
(2018) demonstrated that several key regulators of mitochondria-
associated apoptosis were abnormally expressed in the cecal
ligation puncture (CLP) animal model, which may prove to
be a promising potential target for the treatment of SIC with
traditional Chinese medicine.

Sepsis-induced mitochondrial dysfunction is organ-specific
and depends on the phase of the disease (Makrecka-Kuka et al.,
2019). It is therefore significant to find a new regulator for
mitochondrial dysfunction in the treatment of the disease. IL-
13 is a key factor of type 2 immunity and plays an important
role in fighting helminth infection, regulating asthma and tissue
repair (Chu et al., 2021; Rodriguez-Rodriguez et al., 2021;
Snodgrass et al., 2021). Previous research showed that IL-13
could maintain and increase the function and morphology
of mitochondria in different diseases. For example, IL-13
could prevent and treat sepsis-induced brain dysfunction by
enhancing the mitochondrial function and content in the
brain microglia (Yan et al., 2020). In addition, latest research
demonstrated that IL-13 mediated the mitochondrial metabolism
from glycolysis switch into fatty acid oxidation, thus improving
skeletal muscle endurance (Knudsen et al., 2020). These studies
are consistent with the finding in our study that LPS induced
obvious damage to mitochondrial function and morphology
in terms of the decreased number, the smaller size, cell
derangement and vacuolar formation in both in vivo and in vitro
SIC models.

It is remarkable to note that β-oxidation of fatty acid,
rather than glycolysis, is the primary energy supply for adult
cardiomyocytes, which is different from other cells (Schulze
et al., 2016; Cao et al., 2019). Recent studies reported that
depressed cardiac function always accompanied with damaged
mitochondrial fatty acid oxidation, and prevention of sepsis-
induced fatty acid β-oxidation could improve heart function
(Drosatos et al., 2011; Soraya et al., 2016). Our results also
confirm that fatty acid oxidation plays a major role in the
development of SIC. LPS mainly affects the transcription of genes
involved in mitochondrial fatty acid uptake and β-oxidation,
while IL-13 can restore the expression of these genes and rate
of fatty acid uptake and oxidation to a certain extent, thereby
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reducing the apoptosis of cardiomyocytes caused by sepsis
induced mitochondrial injury.

Clinically, SIC is a heterogeneous disease with different
damage degrees of cardiac function and mitochondria caused by
different sources of infection (Ehrman et al., 2018; Hollenberg
and Singer, 2021). In this study, we used 10 mg/mL LPS
to induce relatively consistent and stable endotoxemia, but
different concentration gradients were missing (Ndongson-
Dongmo et al., 2019; Vico et al., 2019). Another limitation
of the current study is that SIC is a dynamic disease over
time. In this study, we mainly focused on the myocardial
protection in the early stage of the disease and set 6 h after LPS
injection as the time point of observation. Pathophysiological
changes and possible mechanisms of SIC with different severities
and at different time points will be further evaluated in our
subsequent experiments.

In conclusion, mitochondrial dysfunction is an important
cause of SIC as represented by production of large amounts
of ROS and myocardial cell apoptosis. IL-13 could effectively
improve the ability of fatty acid uptake and oxidation in
mitochondria, thereby reducing mitochondrial dysfunction and
ameliorating apoptosis of SIC. Our results demonstrated that IL-
13, working as an important immunity regulator, may prove to be
an important potential target for the treatment of SIC.
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