Citation: Sekizuka T, Kai M, Nakanaga K, Nakata N, Kazumi Y, et al. (2014) Complete Genome Sequence and Comparative Genomic Analysis of Mycobacterium massiliense JCM 15300 in the Mycobacterium abscessus Group Reveal a Conserved Genomic Island MmGl-1 Related to Putative Lipid Metabolism. PLoS ONE 9(12): e114848. doi:10.1371/journal.pone. 0114848

Editor: Jean Louis Herrmann, Hopital Raymond Poincare - Universite Versailles St. Quentin, France

Received: February 27, 2014
Accepted: November 14, 2014
Published: December 11, 2014
Copyright: © 2014 Sekizuka et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by a Grant-in-Aid (25461178) for Scientific Research (C) from the Japan Society for the Promotion of Science (http://www.jsps.go.jp/english/index.html), by a grant from the Ohyama Health Foundation (http://www.disclo-koeki.org/10a/01044/index.html) and by a Grant-in-Aid (H25-Shinko-Ippan-015) from the Ministry of Health, Labour, and Welfare, Japan (http://www.jsps.go.jp/english/e-grants/ grants.html). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Yoshihiko Hoshino is a PLOS ONE Editorial Board member. This does not alter the authors' adherence to all PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

Complete Genome Sequence and Comparative Genomic Analysis of Mycobacterium massiliense JCM 15300 in the Mycobacterium abscessus Group Reveal a Conserved Genomic Island MmGI-1 Related to Putative Lipid Metabolism

Tsuyoshi Sekizuka ${ }^{1 * 9}$, Masanori Kai ${ }^{29}$, Kazue Nakanaga ${ }^{2}$, Noboru Nakata ${ }^{2}$, Yuko Kazumi ${ }^{3}$, Shinji Maeda ${ }^{3}$, Masahiko Makino ${ }^{2}$, Yoshihiko Hoshino ${ }^{2 *}$, Makoto Kuroda ${ }^{1}$
1. Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan, 2. Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan, 3. Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
*sekizuka@niid.go.jp (TS); yhoshino@niid.go.jp (YH)
9 These authors contributed equally to this work.

Abstract

Mycobacterium abscessus group subsp., such as M. massiliense, M. abscessus sensu stricto and M. bolletii, are an environmental organism found in soil, water and other ecological niches, and have been isolated from respiratory tract infection, skin and soft tissue infection, postoperative infection of cosmetic surgery. To determine the unique genetic feature of M. massiliense, we sequenced the complete genome of M. massiliense type strain JCM 15300 (corresponding to CCUG 48898). Comparative genomic analysis was performed among Mycobacterium spp. and among M. abscessus group subspp., showing that additional $ß$-oxidation-related genes and, notably, the mammalian cell entry ($m c e$) operon were located on a genomic island, M. massiliense Genomic Island 1 (MmGI-1), in M. massiliense. In addition, putative anaerobic respiration system-related genes and additional mycolic acid cyclopropane synthetase-related genes were found uniquely in M. massiliense. Japanese isolates of M. massiliense also frequently possess the MmGI-1 (14/44, approximately 32%) and three unique conserved regions (26/44; approximately $60 \%, 34 / 44$; approximately 77% and $40 / 44$; approximately 91%), as well as isolates of other countries (Malaysia, France, United Kingdom and United

States). The well-conserved genomic island MmGl-1 may play an important role in high growth potential with additional lipid metabolism, extra factors for survival in the environment or synthesis of complex membrane-associated lipids. ORFs on MmGl-1 showed similarities to ORFs of phylogenetically distant M. avium complex (MAC), suggesting that horizontal gene transfer or genetic recombination events might have occurred within MmGI-1 among M. massiliense and MAC.

Introduction

Nontuberculous mycobacteria (NTM) are classified into slowly growing mycobacterium (SGM) and rapidly growing mycobacterium (RGM) species; some of these bacteria cause pulmonary diseases [1]. Among RGM, the Mycobacterium abscessus group has been shown to be an emerging respiratory pathogen in cystic fibrosis, non-cystic-fibrosis bronchiectasis and chronic obstructive pulmonary disease $[2,3, \underline{4}, \underline{5}, 6]$, and is also an environmental organism found in soil, water and other ecological niches [$\underline{7}, \underline{8}$]. The M. abscessus group consists of three subspecies, M. abscessus subsp. abscessus (M. abscessus sensu stricto), M. abscessus subsp. massiliense (M. massiliense) and M. abscessus subsp. bolletii (M. bolletii) $[\underline{9}, 10]$. The three subspecies can generally be distinguished by phylogenetic analysis of the housekeeping gene, $r p o B$, and the macrolide resistance-related gene, erythromycin ribosome methyltransferase (erm) (41). Bryant et al. and Nakanaga et al. have recently reported more detailed classification methods, including, respectively, a whole-genome single nucleotide polymorphism (SNP) approach and a multiplex PCR method using insertion/deletion regions identified by wholegenome sequencing alignment analysis [$\underline{4}, \underline{11]}$. Several subcutaneous infections following surgery, other medical treatments or traumatic injury have recently been found to be caused by M. massiliense [12, 13, $14, \underline{15}]$. It was also recently reported that M. massiliense caused cutaneous infections that could not be attributed to a prior invasive procedure [16]. Phylogenetic analyses of the M. abscessus group have been performed, putative virulence factors of M. abscessus sensu stricto have been identified and studied, and the comparative whole-genome analysis of M. abscessus group isolated from patients of wide geographical origin have been performed [$\underline{4}, \underline{17}, \underline{18}, \underline{19]}$; however, a detailed comparative analysis of M. abscessus group subspp. to determine M. massiliense unique genetic feature is lacking. Thus, in the current study, we sequenced the complete M. massiliense JCM 15300 (CCUG 48898) genome and compared it with that of M. abscessus group subspecies.

Results and Discussion

Genomic sequence of M. massiliense JCM 15300

The complete chromosomal sequence of M. massiliense JCM 15300 was obtained by de novo assembly of short reads followed by gap-closing using directed PCR. The genome consisted of $4,978,382$ base pairs (bps) with a GC content of 64.1% and 4,950 predicted coding sequences (CDSs), 46 tRNA genes, one rRNA operon and two prophages (Fig. 1A). The chromosomal sequence corresponded to the predicted restriction fragment profiles obtained by PFGE analysis (data not shown). A draft genomic sequence of CCUG 48898 corresponding to JCM 15300 has been previously deposited in GenBank (NZ_AHAR01000000) by another research group. Thus, we performed a comparative pair-wise sequence alignment, revealing highly conserved synteny to the complete genomic sequence of JCM 15300 (S1 Figure and S1 Table). There were 188 mutations within 33 CDSs and 7 non-coding sites, suggesting that the differences between type strains may be due to frequent passaging and cultivation in various laboratories and bioresource centers. JCM15300 strain is smooth colony morphotype, and then there are no nonsense or frameshift mutations and in mps1-mps2-gap (MMASJCM_4183, MMASJCM_4184 and MMASJCM_4185) or mmpl4b (MMASJCM_4202) (data not shown), these data is consistent with a previous report [20].

Comparative genomic analysis within the Mycobacterium genus To characterize the genomic features of M. massiliense JCM 15300, a BLAST atlas analysis was performed; corresponding orthologs in complete and draft genomic sequences of other Mycobacterium spp. were compared with those of M. massiliense JCM 15300 as a reference (M. bolletii BD is a draft genomic sequence, but it is closely related to M. massiliense) (Fig. 1A). The BLAST atlas identified the conserved proteins in the core genome, which was represented by 973 CDSs (19.7\%) shared among all 15 Mycobacterium spp. genomes. M. massiliense JCM 15300 was highly similar to M. abscessus ATCC 19977 and M. bolletii BD in the M. abscessus group (Fig. 1B). In contrast, M. massiliense JCM 15300 showed a low similarity ($\sim 73 \%$ of mean identity) to SGM and other RGM (Fig. 1B). The 16S rRNA phylogenetic analysis suggested complete identity of M. massiliense JCM 15300 to M. abscessus ATCC 19977 and M. bolletii BD (Fig. 1C). These results indicate that M. massiliense is difficult to distinguish among the three M. abscessus subspecies using 16 S rRNA gene phylogeny and that the three subspecies belong to the M. abscessus group as suggested by many reports.

The above analysis demonstrated that there were several highly variable gene clusters and notable differences in GC content (64.1\%) among the 14 Mycobacterium spp. One prophage, located in the region from 1,816 to $1,880 \mathrm{kbs}$, had a lower GC content (59.64\%) and partially shared some conserved CDSs with M. abscessus ATCC 19977 (gray bar in the lower right of Fig. 1A). The average GC content of all 14 Mycobacterium spp. and 620 mycobacteriophages [21] was approximately 66% and 64%, respectively, suggesting that the low-GC content

Fig. 1. Circular representation of the M. massiliense JCM 15300 genome and comparative analysis among the complete genomes of Mycobacterium species. A. BLAST atlas of M. massiliense JCM 15300. The coding region of strain JCM 15300 was aligned against those of 14 other Mycobacterium genomes using BLASTP. The results are displayed as colored circles with increasing color intensity signifying increased similarity. It was estimated that the number of conserved proteins was 1,516 among all 14 Mycobacterium genomes. B. Box plot of identity percentage of conserved proteins between M. massiliense JCM 15300 and 14 other Mycobacterium spp. The top of each box in the box plot indicates the 75 th percentile, the bottom of each box indicates the 25th percentile and the center bar represents the median. C. Neighbor-joining phylogenetic tree based on 16S rRNA gene sequencing of Mycobacterium with 1,000 -fold bootstrapping. Scale bar indicates number of substitutions per site. The number at each branch node represents the bootstrapping value. Nocardia abscessus JCM 6043 (GenBank: AF430018) and Gordonia aichiensis DSM43978T (X80633) were used as outgroups.
doi:10.1371/journal.pone.0114848.g001
prophage was recently acquired. In contrast, another prophage, located in the region from $3,964,186$ to $4,013,302 \mathrm{bps}$, had an average GC content (64%), indicating that it could be specific to M. massiliense JCM 15300 (gray bar in the upper left of Fig. 1A).

Intriguingly, a notable genomic island from 946,561 to $1,057,603 \mathrm{bps}$, designated M. massiliense genomic island 1 (MmGI-1; indicated by the blue bar in the upper right of Fig. 1A), appeared to be conserved among M. massiliense JCM 15300, M. bolletii BD and M. avium 104. The genomic island contained gene clusters associated with lipid metabolism and lipid-related transporters (Fig. 2 and Table 1). B-oxidation-related genes were also identified, such as long-chain fatty acid-CoA ligase (MMASJCM_1018, MMASJCM_1019, MMASJCM_1028), acyl-CoA dehydrogenase (MMASJCM_1023, MMASJCM_1030, MMASJCM_1035, MMASJCM_1038), enoyl-CoA hydratase (MMASJCM_1008, MMASJCM_1009, MMASJCM_1010, MMASJCM_1022), 3-hydroxyacyl-CoA dehydrogenase (MMASJCM_1006, MMASJCM_1034), acyl-CoA thiolase (MMASJCM_1016, MMASJCM_1036) and acetyl-CoA acetyltransferase (MMASJCM_1014) (Table 1).

An ortholog of the mammalian cell entry ($m c e$) operon (MMASJCM_0985 to _0992) was found in the genomic island (Fig. 2 and Table 1). The mce operon of Actinomycetales species has been suggested to encode a subfamily of ATP-binding cassette (ABC) transporters that have a possible role in remodeling the cell envelope [22] and entry of the pathogen into non-phagocytic cells [23]. Although the function of the Mce protein family has not been clearly established, its members are believed to be membrane lipid transporters. For example, it has been demonstrated that the mce4 operon is required for cholesterol utilization and uptake by M. tuberculosis [24] and M. smegmatis [25]. M. massiliense JCM 15300 contained 8 loci from the mce operon, and one mce operon on the MmGI-1 genomic island demonstrated approximately 99% similarity to that of M. bolletii BD and approximately 80% similarity to that of M. avium 104 .

To characterize a provenance of MmGI-1 regions, the regions were subjected to BLASTN/BLASTP search against NCBI nt/nr databases excluding M. abscesses group sequences. Although the nucleotide search with BLASTN did not show notable homology to MmGI-1 region, the protein search with BLASTP showed that 105 ORFs on MmGI- 1 showed significant similarity to ORFs of Actinomycetales with 32 to 95% identity. Of 105 ORFs, forty-two ORFs showed similarities to ORFs of phylogenetically distant M. avium complex (MAC) (Fig. 3), suggesting that the MmGI-1 region might have been acquired through horizontal gene transfer or genetic recombination events with MAC.

Using 55 draft genomic sequences from the M. abscessus group [17] and one complete genomic sequence from M. massiliense JCM 15300, variation among the genomic islands was investigated. The phylogeny of M. abscessus group strains was further characterized by identifying 203,267 SNPs in the commonly shared genomic sequence (Fig. 2). The SNP phylogenetic analysis identified three clusters (i.e., massiliense, bolletii and abscessus clusters) from the M. abscessus group, consistent with a previous report [17]. Phylogenetic and heatmap analyses

Fig. 2. Schematic representation of genomic island $\mathbf{M m G I}-1$ and heatmap of $\mathbf{M m G I}-1$, anaerobic respiration genes and mycolic acid synthaserelated gene loci among $56 \mathbf{M}$. abscessus group strains. Phylogenetic tree based on 203,267 core genome SNPs in the whole-genome-sequenced M. abscessus group by the maximum-likelihood method with 1,000-fold bootstrapping. The scale indicates that a branch with a length of 0.1 is 10 times as long as one that would show a 1% difference between the nucleotide sequences at the beginning and end of the branch. The number at each branch node represents the bootstrapping value. The ORFs of M. massiliense strain JCM 15300 were aligned against the genomic sequences of 56 other M. abscessus group strains and M. avium 104 using TBLASTN (E-value cutoff, 1.00E-10; identity cutoff, 70%). A heatmap was constructed from amino acid identity.

[^0]suggested that MmGI-1 was partially shared among M. massiliense-related strains (Fig. 2). Notably, the ß-oxidation-related loci (MMASJCM_0982 to _1042) were also well conserved in M. bolletii BD and M24. These additional lipid-related metabolic genes may be important for high growth potential with additional lipid metabolism such as putative $ß$-oxidation pathway, extra factors for survival in the environment (as suggested by the presence of MCE family protein) or synthesis of complex membrane-associated lipids (as suggested by the presence of a long-chain-fatty-acid-CoA ligase).

Comparative genomic analysis within the M. abscessus group

To characterize the genomes of the previously described three clusters, we performed further comparative and BLAST atlas analyses based on the nucleotide sequences of two complete genomes and the predicted amino acid sequences of CDSs, respectively ($\underline{S 2}$ Figure and $\underline{S 2}$ and $\underline{S 3 \text { Table }), ~ a n d ~ t h e n ~ a l s o ~ p e r f o r m e d ~}$ pan-genomic analysis with 30 M . massiliense, 2 M , bolletii and 25 M . abscessus genome sequences because of a validation (S3 Figure). The pan-genomic analysis data is consistent with a previous report [19]. The comparative analysis yielded
Table 1. Genes on the genomic island MmGI-1 M. massiliense JCM 15300.

Gene_ID	Location at JCM 15300	Strand	Length	Product	COG classifications*	KEGG orthology	BLASTP top hit seqeuence (E-value cutoff: 1E-1, database: nr without M. abscessus group data)			
							Accession number	Organisms	E-value	Identities
MMASJCM_0936	946561.. 947025	-	154	guanosine-3', 5^{\prime} - bis(Diphosphate) 3'-pyrophosphohydrolase	TK		WP_023955244.1	Williamsia sp. D3	7E-39	53.85\%
MMASJCM_0937	947015..947167	-	50	hypothetical protein			WP_013871760.1	Frankia symbiont of Datisca glomerata	4E-06	47.73\%
MMASJCM_0938	947284..949143	-	619	hypothetical protein	H		EUA75642.1	$\begin{aligned} & \text { M. chelonae } \\ & 1518 \end{aligned}$	6E-161	69.98\%
MMASJCM_0939	949143..949457	-	104	hypothetical protein	S		EUA75643.1	M. chelonae 1518	4E-22	54.74\%
MMASJCM_0940	949859.. 950386	-	175	hypothetical protein			WP_015388818.1	M. yongonense	1E-72	66.27\%
MMASJCM_0941	950404..951273	-	289	hypothetical protein	0		WP_023363492.1	M. kansasii	8E-67	49.62\%
MMASJCM_0942	951280.. 952167	-	295	hypothetical protein	L		WP_023363490.1	M. kansasii	3E-118	62.93\%
MMASJCM_0943	952344..952706	+	120	hypothetical protein	K		WP_015388820.1	M. yongonense	6E-37	68.42\%
MMASJCM_0944	952851.. 953441	+	196	hypothetical protein			WP_015388821.1	M. yongonense	3E-54	61.96\%
MMASJCM_0945	953484..954032	+	182	hypothetical protein			WP_015388822.1	M. yongonense	1E-69	58.56\%
MMASJCM_0946	954019..955020	+	333	hypothetical protein			WP_015388823.1	M. yongonense	2E-154	72.50\%
MMASJCM_0947	955027.. 955311	-	94	hypothetical protein	S		EWT07839.1	Intrasporangium chromatireducens Q5-1	2E-34	64.89\%
MMASJCM_0948	956934..958430	-	498	site-specific DNAmethyltransferase	L		WP_020097565.1	Microbacterium sp. 11MF	7E-177	63.77\%
MMASJCM_0949	958473..958796	+	107	hypothetical protein			WP_011768395.1	Mycobacterium sp. KMS	3E-08	36.56\%
MMASJCM_0950	958893. 959312	-	139	hypothetical protein			WP_006339348.1	Gordonia rhizosphera	1E-14	31.85\%
MMASJCM_0951	959512.. 960780	+	422	hypothetical protein			WP_029121465.1	Mycobacterium sp. UNC410CL29Cvi84	1E-165	58.18\%
MMASJCM_0952	960806..961159	+	117	hypothetical protein			WP_020099065.1	Mycobacterium	5E-36	58.49\%
MMASJCM_0953	961156.. 961461	-	101	hypothetical protein	S		WP_024801663.1	Nocardia sp. BMG51109	2E-09	35.42\%
MMASJCM_0954	961458..961751	-	97	hypothetical protein	S		WP_020099063.1	Mycobacterium	2E-19	48.45\%
MMASJCM_0955	961838..962734	+	298	phosphoribosylpyrophosphate synthetase	FE		ETB46104.1	M. avium 105560	2E-48	51.56\%
MMASJCM_0956	962749..964272	+	507	nicotinamide phosphoribosyltransferase	H	K03462	ETB46369.1	$\begin{aligned} & \text { M. avium 10- } \\ & 5560 \end{aligned}$	0	71.69\%

Table 1．Cont．

\circ
$\stackrel{\circ}{0}$
∞
∞
44.97%
50．00\％
58．33\％
ふำ

72．06\％

응
N
N \circ
$\stackrel{\circ}{\gtrless}$
$\stackrel{1}{2}$

 83．74\％

 $\stackrel{\infty}{\infty}$
$\stackrel{\sim}{\Perp}$
$\stackrel{\sim}{\sim}$

No hits found \qquad 1．99ャ6tttてZ0 ${ }^{-}$dM WP＿015388818．1 WP＿025089036．1
 EUA78264．1
WP＿005143639．1
WP＿014384296．1
 ז－ CDO30896．1

 WP＿011726419．1
KBR61967．1
 N
N
O

K00517
 K03574

$\stackrel{\rightharpoonup}{\grave{1}}$
$\stackrel{\rightharpoonup}{\circ}$
0
0
0
 KDE98300．1

F

0
y
の$\bigcirc \quad$ ィ \quad 〇 ロ

○ әృeydsoud＇әృeィnıкd
Y u！əəoıd ןеэ！！əułodイи

 transcriptional regulator， TetR family
\qquad
 hypothetical protein
transcriptional regulator，K
TetR family

8
$\stackrel{3}{3}$
0

品possible DNA hydrolase hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein putative cytochrome conserved hypothetical integral membrane transcriptional regulator， transcriptional regulator，
TetR family beta－carotene ketolase hypothetical protein
hypothetical protein pyruvate，phosphate
dikinase hypothetical protein
hypothetical protein WP＿0117264 N
N
ल
$\stackrel{1}{0}$
■ M．vulneris －
Product
possible DNA hydrolase
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
putative cytochrome
P450 IgrA
conserved hypothetical
integral membrane
protein YrbE1A
transcriptional regulator，
TetR family
transcriptional regulator，
TetR family
beta－carotene ketolase
hypothetical protein
TetR family
hypothetical protein
hypothetical protein
beta－carotene ketolase
pyruvate，phosphate
tikinase
TetR family
hypothetical protein
transcriptional regulator，
TetR family
hypothetical protein
hypothetical protein
hylator，
herotein
her
 $+++++, 1,1$ $\begin{array}{lll}\text { MMASJCM＿0957 } & 964269 . .964919 ~+~ \\ \text { MMASJCM＿0958 } & 965195 . .965308 & + \\ \text { MMASJCM＿0959 } & 965479 . .965808 & + \\ \text { MMASJCM＿0960 } & 965980 . .967356 ~+~ \\ \text { MMASJCM＿0961 } & 967635 . .967844 & - \\ \text { MMASJCM＿0962 } & 968295 . .968783 & - \\ \text { MMASJCM＿0963 } & 968949 . .969167 & - \\ \text { MMASJCM＿0964 } & 969380 . .970636 ~-~ \\ \text { MMASJCM＿0965 } & 971395 . .971925 ~+~ \\ \text { MMASJCM 0966 } & 971981 . .972526 ~-~\end{array}$ MMASJCM＿0966 971981．． 972526 MMASJCM＿0967 972591．． 973097 MMASJCM＿0968 973468．． 975162 ＋ MMASJCM＿0969 975672．．976337＋ MMASJCM＿0970 976573．．976902＋ MMASJCM＿0971 976927．． 978438 MMASJCM＿0972 978435．．979052－ MMASJCM＿0973 979096．．980010－ MMASJCM＿0974 980007．．981524－ MMASJCM＿0975 981770．． 982378 ＋ MMASJCM＿0976 982618．． 983658 ＋ MMASJCM＿0977 983932．． 984459 ＋ MMASJCM＿0978 984571．． 986193 － MMASJCM＿0979 986685．． 987560 ＋ MMASJCM＿0980 987577．． 988209
Table 1. Cont.

Gene_ID	Location at JCM 15300	Strand	Length	Product	COG classifications*	KEGG orthology	BLASTP top hit seqeuence (E-value cutoff: 1E-1, database: nr without M. abscessus group data)			
							Accession number	Organisms	E-value	Identities
MMASJCM_0981	988316.. 989380	+	354	hypothetical protein			KDE98303.1	M. aromaticivorans JS19b1	0	77.68\%
MMASJCM_0982	989396..990508	+	370	putative phosphotransferase	R		WP_005141265.1	M. rhodesiae	0	75.41\%
MMASJCM_0983	990691...990807	+	38	hypothetical protein			No hits found			
MMASJCM_0984	990970.. 991083	-	37	hypothetical protein			No hits found			
MMASJCM_0985	991197...992228	+	343	putative YrbE family protein	Q		KBR61969.1	M. tuberculosis XTB13-223	2E-148	88.21\%
MMASJCM_0986	992228..993097	+	289	putative Mce family protein	Q		KBR61970.1	M. tuberculosis XTB13-223	8E-168	80.28\%
MMASJCM_0987	993105..994199	+	364	putative Mce family protein	Q		CDO30921.1	M. vulneris	0	70.56\%
MMASJCM_0988	994196..995203	+	335	putative Mce family protein	Q		WP_011726414.1	M. avium	0	75.52\%
MMASJCM_0989	995221.. 996162	+	313	putative Mce family protein	Q		KBR61973.1	M. tuberculosis XTB13-223	1E-176	77.96\%
MMASJCM_0990	996132.. 997280	+	382	putative Mce family protein	Q		KDO99908.1	M. avium subsp. hominissuis 101	0	67.28\%
MMASJCM_0991	997277.. 998266	+	329	putative Mce family protein	Q		WP_024637000.1	M. avium	2E-162	69.39\%
MMASJCM_0992	998263..999219	+	318	putative Mce family protein	Q		CDO30926.1	M. vulneris	3E-157	69.50\%
MMASJCM_0993	999262..999906	+	214	hypothetical protein			WP_007170571.1	M. parascrofulaceum	1E-82	61.27\%
MMASJCM_0994	$\begin{aligned} & 999982 . .10005- \\ & 84 \end{aligned}$	+	200	hypothetical protein			KDE98251.1	M. aromaticivorans JS19b1	5E-88	65.83\%
MMASJCM_0995	$\begin{aligned} & 1000670 . .1001- \\ & 113 \end{aligned}$	+	147	hypothetical protein			CDO30929.1	M. vulneris	7E-48	63.20\%
MMASJCM_0996	$\begin{aligned} & 1001158 . .1001- \\ & 496 \end{aligned}$	+	112	hypothetical protein			WP_007170568.1	M. parascrofulaceum	4E-44	62.39\%
MMASJCM_0997	$\begin{aligned} & 1001544 . .1002- \\ & 104 \end{aligned}$	+	186	hypothetical protein			CDO30931.1	M. vulneris	5E-91	75.71\%
MMASJCM_0998	$\begin{aligned} & 1002279 . .1002- \\ & 410 \end{aligned}$	+	43	hypothetical protein			No hits found			
MMASJCM_0999	$\begin{aligned} & 1002407 . .1003- \\ & 372 \end{aligned}$	-	321	hypothetical protein	0		WP_014711294.1	Mycobacterium sp. MOTT36Y	0	80.94\%
MMASJCM_1000	$\begin{aligned} & 1003379 . .1004- \\ & 497 \end{aligned}$	-	372	putative phosphotransferase	R		CDO90200.1	M. triplex	0	68.01\%
MMASJCM_1001	$\begin{aligned} & 1004938 . .1007- \\ & 496 \end{aligned}$	-	852	hypothetical protein	K		WP_030203671.1	Pilimelia anulata	0	72.98\%

Table 1. Cont.

Gene_ID	Location at JCM 15300	Strand	Length	Product	$\begin{aligned} & \text { COG } \\ & \text { classifications* } \end{aligned}$	KEGG orthology	BLASTP top hit se nr without M. absc	qeuence (E-value essus group data)	cutoff:	database
							Accession number	Organisms	E-value	Identities
MMASJCM_1002	$\begin{aligned} & 1007489 . .1008- \\ & 457 \end{aligned}$	-	322	cell division protein FtsH	0		WP_022566726.1	Nocardia asteroides	0	88.51\%
MMASJCM_1003	$\begin{aligned} & 1009865 . .1010- \\ & 737 \end{aligned}$	+	290	hypothetical protein			EUA78068.1	M. chelonae 1518	4E-180	95.32\%
MMASJCM_1004	$\begin{aligned} & 1010796 . .1013- \\ & 315 \end{aligned}$	+	839	hypothetical protein	D		WP_005113273.1	M. chelonae	0	94.89\%
MMASJCM_1005	$\begin{aligned} & 1015076 . .1015- \\ & 558 \end{aligned}$	-	160	hypothetical protein	Q		WP_013873946.1	Frankia symbiont of Datisca glomerata	3E-23	45.45\%
MMASJCM_1006	$\begin{aligned} & 1015591 . .1016- \\ & 388 \end{aligned}$	-	265	2-hydroxycyclohexane-carboxyl-CoA dehydrogenase	IQR		WP_011726451.1	M. avium	1E-162	83.77\%
MMASJCM_1007	$\begin{aligned} & 1016500 . .1017- \\ & 249 \end{aligned}$	+	249	3-oxoacyl-[acyl-carrier protein] reductase	IQR	K00059	WP_023985895.1	M. neoaurum	2E-135	80.82\%
MMASJCM_1008	$\begin{aligned} & 1017246 . .1018- \\ & 016 \end{aligned}$	+	256	enoyl-CoA hydratase	1	K15866	WP_011726449.1	M. avium	8E-104	66.54\%
MMASJCM_1009	$\begin{aligned} & 1018013 . .1018- \\ & 810 \end{aligned}$	+	265	enoyl-CoA hydratase	1	K15866	WP_011726448.1	M. avium	4E-145	82.95\%
MMASJCM_1010	$\begin{aligned} & 1018810 . .1019- \\ & 595 \end{aligned}$	+	261	enoyl-CoA hydratase	1	K15866	WP_029114372.1	Mycobacterium sp. URHB0044	7E-120	70.93\%
MMASJCM_1011	$\begin{aligned} & 1019592 . .1020- \\ & 860 \end{aligned}$	+	422	putative dioxygenase hydroxylase component	PR	K05549	WP_030136631.1	M. neoaurum	0	86.46\%
MMASJCM_1012	$\begin{aligned} & 1021187 . .1021- \\ & 393 \end{aligned}$	+	68	beta subunit of hydroxylase component of benzoate 1,2-dioxygenase	Q		WP_011726445.1	M. avium	3E-26	77.05\%
MMASJCM_1013	$\begin{aligned} & 1021459 . .1021- \\ & 659 \end{aligned}$	+	66	hypothetical protein	T		WP_030136633.1	M. neoaurum	3E-29	81.54\%
MMASJCM_1014	$\begin{aligned} & \text { 1021938..1022- } \\ & 864 \end{aligned}$	+	308	acetyl-CoA acetyltransferase	1	K00626	WP_014384231.1	M. intracellulare	0	84.36\%
MMASJCM_1015	$\begin{aligned} & 1022861 . .1024- \\ & 216 \end{aligned}$	+	451	hydroxymethylglutarylCoA synthase	1		WP_011726442.1	M. avium	0	73.38\%
MMASJCM_1016	$\begin{aligned} & 1024206 . .1025- \\ & 411 \end{aligned}$	+	401	putative thiolase	1		WP_011726441.1	M. avium	0	88.35\%
MMASJCM_1017	$\begin{aligned} & 1025490 . .1026- \\ & 350 \end{aligned}$	+	286	probable short-chain type dehydrogenase reductase	IQR	K12405	WP_011726440.1	M. avium	4E-172	84.27\%
MMASJCM_1018	$\begin{aligned} & 1026409 . .1028- \\ & 046 \end{aligned}$	+	545	long-chain-fatty-acidCoA ligase	IQ	K01911	WP_011726439.1	M. avium	0	66.42\%
MMASJCM_1019	$\begin{aligned} & 1028043 . .1029- \\ & 800 \end{aligned}$	+	585	long-chain-fatty-acidCoA ligase	IQ		WP_011726438.1	M. avium	0	68.67\%

Table 1. Cont.

Gene_ID	Location at JCM 15300	Strand	Length	Product	$\begin{aligned} & \text { COG } \\ & \text { classifications* } \end{aligned}$	KEGG orthology	BLASTP top hit seqeuence (E-value cutoff: 1E-1, database: nr without M. abscessus group data)			
							Accession number	Organisms	E-value	Identities
MMASJCM_1020	$\begin{aligned} & 1029761 . .1030- \\ & 786 \end{aligned}$	-	341	hypothetical protein	R		WP_023985889.1	M. neoaurum	7E-128	57.19\%
MMASJCM_1021	$\begin{aligned} & 1030966 . .1031- \\ & 418 \end{aligned}$	+	150	acyl dehydratase	I		WP_003923910.1	M. thermoresistibile	$2 \mathrm{E}-76$	75.00\%
MMASJCM_1022	$\begin{aligned} & 1031408 . .1032- \\ & 619 \end{aligned}$	+	403	enoyl-CoA hydratase	1	K15866	WP_007170622.1	M. parascrofulaceum	2E-174	67.74\%
MMASJCM_1023	$\begin{aligned} & 1032620 . .1033- \\ & 783 \end{aligned}$	+	387	isovaleryl-CoA dehydrogenase	I		WP_007170621.1	M. parascrofulaceum	0	81.61\%
MMASJCM_1024	$\begin{aligned} & 1033815 . .1035- \\ & 116 \end{aligned}$	+	433	phytoene dehydrogenase family protein	Q		WP_007170620.1	M. parascrofulaceum	0	81.73\%
MMASJCM_1025	$\begin{aligned} & 1035104 . .1035- \\ & 961 \end{aligned}$	+	285	citrate lyase beta chain	G	K01644	WP_007170619.1	M. parascrofulaceum	9E-111	66.92\%
MMASJCM_1026	$\begin{aligned} & 1036061 . .1036- \\ & 291 \end{aligned}$	-	76	hypothetical protein			No hits found			
MMASJCM_1027	$\begin{aligned} & 1036800 . .1037- \\ & 204 \end{aligned}$	+	134	hypothetical protein	1		CDO90349.1	M. triplex	4E-79	88.06\%
MMASJCM_1028	$\begin{aligned} & 1037208 . .1038- \\ & 746 \end{aligned}$	+	512	long-chain-fatty-acidCoA ligase	$1 Q$	K00666	WP_030136653.1	M. neoaurum	0	76.32\%
MMASJCM_1029	$\begin{aligned} & 1038743 . .1040- \\ & 002 \end{aligned}$	+	419	putative cytochrome P450 hydroxylase	Q	K00517	CDO30946.1	M. vulneris	0	90.31\%
MMASJCM_1030	$\begin{aligned} & 1040014 . .1040- \\ & 805 \end{aligned}$	$+$	263	3-alpha-hydroxysteroid dehydrogenase	IQR		WP_019509868.1	M. neoaurum	9E-156	82.89\%
MMASJCM_1031	$\begin{aligned} & 1040815 . .1042- \\ & 215 \end{aligned}$	+	466	aldehyde dehydrogenase	C	K00128	WP_003923898.1	M. thermoresistibile	0	75.28\%
MMASJCM_1032	$\begin{aligned} & 1042215 . .1042- \\ & 406 \end{aligned}$	+	63	hypothetical protein	C		WP_005141491.1	M. rhodesiae	3E-19	66.13\%
MMASJCM_1033	$\begin{aligned} & 1042569 . .1044- \\ & 056 \end{aligned}$	+	495	ferredoxin-NADP(+) reductase	ER	K00528	KBR61952.1	M. tuberculosis XTB13-223	0	64.02\%
MMASJCM_1034	$\begin{aligned} & 1044016 . .1045- \\ & 248 \end{aligned}$	+	410	4-hydroxybutyrate coenzyme A transferase	C		WP_011726433.1	M. avium	0	69.07\%
MMASJCM_1035	$\begin{aligned} & 1045317 . .1046- \\ & 471 \end{aligned}$	-	384	butyryl-CoA dehydrogenase	1		WP_019509874.1	M. neoaurum	0	84.03\%
MMASJCM_1036	$\begin{aligned} & 1046475 . .1047- \\ & 626 \end{aligned}$	-	383	acetyl-CoA acetyltransferase	1	K07823	WP_011726431.1	M. avium	0	87.21\%
MMASJCM_1037	$\begin{aligned} & 1047688 . .1048- \\ & 263 \end{aligned}$	-	191	transcriptional regulator, TetR family	K		WP_030136662.1	M. neoaurum	6E-93	71.96\%
MMASJCM_1038	$\begin{aligned} & 1048446 . .1049- \\ & 600 \end{aligned}$	-	384	butyryl-CoA dehydrogenase	1	K00248	WP_014941082.1	M. indicus pranii	0	84.38\%
MMASJCM_1039	$\begin{aligned} & 1049725 . .1050- \\ & 264 \end{aligned}$	-	179	transcriptional regulator, TetR family	K		WP_019509888.1	M. neoaurum	3E-67	60.12\%

Table 1. Cont.

Gene_ID	Location at JCM 15300	Strand	Length	Product	COG classifications*	KEGG orthology	BLASTP top hit seqeuence (E-value cutoff: 1E-1, database: nr without M. abscessus group data)			
							Accession number	Organisms	E-value	Identities
MMASJCM_1040	$\begin{aligned} & 1050416 . .1051- \\ & 048 \end{aligned}$	-	210	transcriptional regulator, TetR family	K		WP_005146732.1	M. rhodesiae	6E-102	74.00\%
MMASJCM_1041	$\begin{aligned} & 1051285 . .1052- \\ & 259 \end{aligned}$	$+$	324	hypothetical protein	1		WP_003938179.1	Rhodococcus ruber	5E-121	60.67\%
MMASJCM_1042	$\begin{aligned} & 1052411 . .1053- \\ & 019 \end{aligned}$	+	202	transcriptional regulator, TetR family protein, putative	K		WP_014384219.1	M. intracellulare	5E-97	71.14\%
MMASJCM_1043	$\begin{aligned} & 1053327 . .1053- \\ & 584 \end{aligned}$	+	85	hypothetical protein			WP_005111625.1	M. chelonae	2E-21	58.54\%
MMASJCM_1044	$\begin{aligned} & 1053701 . .1055- \\ & 929 \end{aligned}$	+	742	carbonic anhydrase	P	K01673	WP_005057131.1	M. chelonae	0	76.16\%
MMASJCM_1045	$\begin{aligned} & 1056430 . .1056- \\ & 960 \end{aligned}$	+	176	hypothetical protein			WP_028655880.1	Nocardioides sp. J54	2E-11	32.62\%
MMASJCM_1046	$\begin{aligned} & 1057007 . .1057- \\ & 603 \end{aligned}$	+	198	hypothetical protein	G		WP_003960345.1	Streptomyces clavuligerus	2E-05	37.18\%

*COG codes is as follows: C: Energy production and conversion, D: Cell cycle control, cell division, chromosome partitioning, E: Amino acid transport and metabolism, F: Nucleotide transport and metabolism, G: Carbohydrate transport and metabolism, H: Coenzyme transport and metabolism, I: Lipid transport and metabolism, K: Transcription, L: Replication, recombination and repair, O: Posttranslational modification, protein turnover, chaperones, P: Inorganic ion transp
and catabolism, R: General function prediction only, S: Function unknown, T: Signal transduction mechanisms.

[^1]the following four results: i) as a massiliense cluster-specific feature, there were six unique regions (\dagger^{1-6} in S2 Figure and Table 2) that contained an average GC content of 64%; ii) as a JCM 15300 -specific feature, there were 10 unique regions (• in S2 Figure and S2 Table) that had relatively low GC content; iii) the MmGI-1 genomic island (Fig. 3 and $\boldsymbol{\top}$ in S2 Figure) was shared with M. bolletii and showed partial similarity to M. avium 104; iv) there were two common deletions (\dagger^{7-8} in $\underline{S 2}$ Figure and $\underline{S 3}$ Table) in the massiliense cluster and one conserved region in the abscessus group (§ in S2 Figure and S3 Table).

In addition to the MmGI-1 genomic island described above, the massiliense cluster contained three notable conserved loci: i) a molybdopterin oxidoreductase (Fig. 2, Fig. 4A and Table 2); ii) universal stress proteins, an alcohol dehydrogenase and a xylulose-5-phosphate phosphoketolase (Fig. 2, Fig. 4B and Table 2); iii) a cyclopropane fatty acyl-phospholipid synthase and an S-adenosyl-L-methionine-dependent methyltransferase (Fig. 2, Fig. 4C and Table 2). In contrast to MmGI-1, these three regions were well conserved within the massiliense cluster.

Choo et al. previously reported that a high proportion of accessory strainspecific genes indicating an open, non-conservative pan-genome structure, and clear evidence of rapid phage-mediated evolution [19]. In fact, specific genes in M. massiliense JCM15300 contained phage-related genes, i.e. putative prophage integrase (S2 Table). On the other hand, in adjacent gene loci of three conserved regions, i.e. MMASJCM-2099..2100, MMASJCM-2507.. 2524 and MMASJCM4337..4346, there are no phage-related genes (Fig. 4 and Table 2). These data suggest that these conserved regions might be core-genome regions in ancestral M. abscessus group, and then have been deleted from genomes of M. abscessus and M. bolletii.

Prevalence of MmGI-1 and massiliense cluster unique regions in Japanese M. massiliense and M. abscessus isolates
We examined the prevalence of MmGI-1 and three massiliense cluster unique regions in Japanese M. massiliense and M. abscessus isolates using conventional PCR methods (S4 Table), because of in silico analysis using only isolates of Malaysia, France, United Kingdom and United States. The ratio of MmGI-1 positive M. massiliense and M. abscessus was 31.8% (14/44) and $1.4 \% ~(1 / 70)$, respectively (Fig. 5A and S5 Table). Applying Fisher's exact test, the proportion of MmGI-1 positive M. massiliense is significantly higher than that of M. abscessus ($P=0.0001$). M. massiliense frequently possesses three massiliense cluster unique regions in not only Japanese but also other countries (Malaysia, France and United States) isolates (Fig. 5A and S5 Table), suggesting that MmGI-1 and the massiliense cluster unique regions are highly conserved in M. massiliense isolated from various countries.

Fig. 3. Orthologous genes of MmGI-1 genes in Mycobacterium spp. without M. abscessus group. Phylogenetic tree based on the 16 S rRNA was constructed by Neighbor-joining method with 1,000-fold bootstrapping. Scale bar indicates number of substitutions per site. Species of black characters indicate that complete or draft genome sequences have been deposited at DDBJ/EMBL/GenBank. M. abscessus group is labeled by a yellow box. The number of BLASTP top hit orthologous genes against $\mathrm{MmGl}-1$ genes are shown with a right bar chart.
doi:10.1371/journal.pone.0114848.g003

Growth ability of MmGI-1 positive M. massiliense

The massiliense cluster contained a conserved molybdopterin oxidoreductase as described above, and an ortholog was also identified in the strictly anaerobic bacterium, Desulfitobacterium hafniense. It has been reported that molybdopterin oxidoreductase may provide the ability for anaerobic energy metabolism [26]. The xylulose-5-phosphate phosphoketolase may play a role in heterolactic fermentation in anaerobic heterolactic acid bacteria, including Lactobacillus and Leuconostoc organisms [27]. Moreover, the universal stress protein in Pseudomonas aeruginosa has been reported to have a crucial role in survival under anaerobic conditions [28]. These studies suggest that M. massiliense may grow or survive under anaerobic or hypoxic conditions. Indeed, the oxygen partial pressure in various tissues is approximately $20-50 \mathrm{~mm} \mathrm{Hg}$ ($3-7 \%$ oxygen) [29, 30, 31, 32]. To determine growth ability under hypoxic conditions, 27 smooth colony morphology isolates (12 M . abscessus, $8 \mathrm{MmGI}-1$ positive M. massiliense and 7 MmGI-1 negative M. massiliense isolates) were subjected to aerobic and microaerobic (approximately $6 \% \mathrm{O}_{2}$) conditions (Fig. 5B and 5C), because the aggregation of rough colony morphology isolates were hard to measure the degree of turbidity in the broth culture. In aerobic condition, MmGI-1 positive M. massiliense isolates show well growth than MmGI-1 negative isolates including M. abscessus (Fig. 5B). On the other hand, in microaerobic condition, the growth didn't show significant differences between M. massiliense and M. abscessus (Fig. 5C). MMASJCM-2099.. 2100 and MMASJCM-2057.. 2524 regions highly conserved in M. massiliense isolated from Japan, Malaysia, France, United Kingdom and United States, as well as MmGI-1. Although functions of these regions are still unclear, the importance of MmGI-1 might be supported by the existence on these conserved regions in M. massiliense, and MmGI-1 might relate to high growth potential with additional lipid metabolism such as putative β oxidation pathway.

Phylogenetic analysis of mycolic acid synthase-related genes

 The comparative genomic analysis indicated that M. massiliense including Japanese isolates possessed two extra CDSs that are possibly involved in the cyclopropanation of mycolic acid. A cyclopropane fatty acyl-phospholipid synthase (MMASJCM_4340) and an S-adenosyl-L-methionine-dependent methyltransferase (MMASJCM_4343) were detected only in the massiliense cluster (Fig. 4C). Both putative proteins encoded by these CDSs possessed the mycolic acid cyclopropane synthetase (CMAS) domain (pfam02353).Table 2. The unique conserved gene loci in massiliense cluster among M. abscessus group.

Gene_ID	Location at JCM 15300	Strand	Length	Product	Note
MMASJCM_0834	825792..826802	-	336	transcriptional regulator	
MMASJCM_0835	826913.. 827713	+	266	short chain dehydrogenase	
MMASJCM_2099	2098058.. 2101435	-	1125	putative molybdopterin oxidoreductase	see Fig. 4A
MMASJCM_2100	$2101513 . .2102112$	+	199	putative transcriptional regulator	see Fig. 4A
MMASJCM_2410	2427416.. 2427601	-	61	hypothetical protein	
MMASJCM_2411	2427632.. 2428042	+	136	hypothetical protein	
MMASJCM_2412	2428054..2428788	+	244	hypothetical protein	
MMASJCM_2507	2509971.. 2510735	-	254	universal stress protein family	see Fig. 4B
MMASJCM_2508	2510875.. 2511216	-	113	universal stress protein family	see Fig. 4B
MMASJCM_2509	2511996.. 2512505	+	169	probable conserved transmembrane protein	see Fig. 4B
MMASJCM_2510	2512542.. 2513558	+	338	alcohol dehydrogenase	see Fig. 4B
MMASJCM_2511	2513572.. 2514579	-	335	hypothetical protein	see Fig. 4B
MMASJCM_2512	2514754.. 2515698	+	314	universal stress protein family	see Fig. 4B
MMASJCM_2513	2515695.. 2518106	+	803	xylulose-5-phosphate phosphoketolase	see Fig. 4B
MMASJCM_2514	2518103.. 2518852	+	249	two component transcriptional regulatory protein DevR	see Fig. 4B
MMASJCM_2515	2518819.. 2519823	+	334	sensor kinase	see Fig. 4B
MMASJCM_2516	2519946.. 2520536	+	196	histidine kinase response regulator	see Fig. 4B
MMASJCM_2517	2520544.. 2521497	+	317	sulfate transporter	see Fig. 4B
MMASJCM_2518	2521466.. 2522251	+	261	sulfate transporter	see Fig. 4B
MMASJCM_2519	2522241.. 2522855	-	204	hypothetical protein	see Fig. 4B
MMASJCM_2520	2522957... 2523163	-	68	hypothetical protein	see Fig. 4B
MMASJCM_2521	2523183.. 2524058	-	291	universal stress protein family	see Fig. 4B
MMASJCM_2522	2524296.. 2525168	+	290	universal stress protein family	see Fig. 4B
MMASJCM_2523	2525188.. 2525475	+	95	hypothetical protein	see Fig. 4B
MMASJCM_2524	2525508.. 2525942	+	144	hypothetical protein	see Fig. 4B
MMASJCM_2869	2886124..2887602	+	492	carotenoid oxygenase	
MMASJCM_2870	2887612.. 2888793	+	393	two-component system	
MMASJCM_2871	2888790.. 2889410	+	206	two component transcriptional regulator	
MMASJCM_2872	2890468.. 2892372	-	634	hypothetical protein	
MMASJCM_2989	3016494.3018116	+	540	diaminopimelate decarboxylase	
MMASJCM_3589	3593912..3594541	-	209	transcriptional regulator	
MMASJCM_3590	3594814.. 3595809	+	331	2-amino-3-carboxymuconate-6-semialdehyde decarboxylase	
MMASJCM_4337	4335727..4337094	-	455	deoxyribodipyrimidine photolyase	see Fig. 4C
MMASJCM_4338	4337091.. 4338449	-	452	cell division inhibitor	see Fig. 4C
MMASJCM_4339	4338477..4339142	-	221	hypothetical protein	see Fig. 4C
MMASJCM_4340	4339165.. 4340058	-	297	cyclopropane-fatty-acyl-phospholipid synthase	see Fig. 4C
MMASJCM_4341	4340280..4341596	+	438	amine oxidase	see Fig. 4C
MMASJCM_4342	4341593.. 4342330	+	245	hypothetical protein	see Fig. 4C
MMASJCM_4343	4342327..4343601	+	424	S-adenosyl-L-methionine dependent methyltransferase	see Fig. 4C
MMASJCM_4344	4343598.. 4344383	+	261	hypothetical protein	see Fig. 4C
MMASJCM_4345	4344416..4344961	+	181	RNA polymerase sigma-70 factor	see Fig. 4C
MMASJCM_4346	4344943.. 4345665	+	240	hypothetical protein	see Fig. 4C

doi:10.1371/journal.pone.0114848.t002

Mycobacterium spp. possess 3 to 10 paralogs with a CMAS domain; for example, CmaA (cyclopropane mycolic acid synthase) and MmaA (methyl mycolic acid synthase) have been well characterized [33]. A phylogenetic analysis of CMAS domain-related proteins has indicated that one of the two extra proteins, MMASJCM_4340, is orthologous to MSMEG_1351 of M. smegmatis and MycrhN_0769/MycrhN_3064 of M. rhodesiae (S4 Figure). The other protein, MMASJCM_4343, is orthologous to UfaA1 (cyclopropane fatty acid synthase), which is present in a part of RGM and SGM species. The function of UfaA1 in mycolate biosynthesis is not clear [34]. The massiliense cluster has two unique mycolic acid synthesis-associated proteins that are not present in the abscessus or bolletii clusters.

Conclusions

The M. abscessus group is classified as RGM species and consists of three closely related organisms, M. abscessus, M. bolletii and M. massiliense. A comparative analysis based on three clusters in the M. abscessus group revealed that a genomic island MmGI-1 of M. massiliense may be involved in high growth potential with additional lipid metabolism such as putative β-oxidation pathway. Moreover, MmGI-1 is conserved in Actinomycetales, especially Mycobacterium, and horizontal gene transfer or genetic recombination events might have occurred within MmGI-1 among M. massiliense and MAC. Although M. abscessus subspp. is an environmental organism found in soil, water and other ecological niches, the difference of detail ecological niches is still unclear among subspecies-level. Our data suggests that the massiliense cluster unique regions including MmGI-1 might be linked to differences in ecological niches, such as lipid rich environment, of M. massiliense and M. abscessus. Further studies are required to understand the specific genetic features identified in this study.

Materials and Methods

Bacterial strains

We sequenced Mycobacterium massiliense type strain JCM 15300 (CCUG 48898), which was originally isolated from the sputum of a 50 -year-old woman with an 8 year history of bronchiectasis and hemoptysis [35]. This strain was obtained from the Japan Collection of Microorganisms at the Riken BioResource Center (BRCJCM; Saitama, Japan) on September 18, 2009.

Short-read DNA sequencing

An M. massiliense strain DNA library (insert size of $\sim 600 \mathrm{bp}$) was prepared using the Nextera DNA Sample Prep Kit (Illumina-compatible) (EPICENTRE Biotechnologies, Madison, WI). DNA clusters were generated on a slide using the Cluster Generation Kit (ver. 4) on an Illumina Cluster Station (Illumina, San

Fig. 4. Comparison of unique genes and flanking regions in the massiliense cluster. GenBank accession numbers are given in parentheses. The orange arrows indicate the unique genes in the massiliense cluster. BLASTN match scores less than 200 are not shown.

[^2]Diego, CA), according to the manufacturer's instructions. A paired-end sequencing run for 83 mers was performed using an Illumina Genome Analyzer IIx (GA IIx) with the TruSeq SBS Kit v5. Fluorescent images were analyzed using the Illumina RTA1.8/SCS2.8 base-calling pipeline to obtain FASTQ-formatted sequence data.

De novo assembly of short DNA reads and gap-closing
Prior to de novo assembly, the obtained 80 -mer reads were assembled using ABySS-pe v1.2.5 [36] with the following parameters: k60, n60, c68.4, t10, e10 and q20. Predicted gaps were amplified with specific PCR primer pairs followed by Sanger DNA sequencing with the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA).

A

Fig. 5. Prevalence of massiliense cluster unique regions and growth curve analysis in Japanese M. massiliense and \boldsymbol{M}. abscessus isolates. A bar chart showing the prevalence of $\mathrm{MmGl}-1$ and three massiliense cluster unique regions in Japanese M. massiliense and M. abscessus isolates (A). The curves represent in vitro growth (OD at 530 nm) over a period of 21 days at $37^{\circ} \mathrm{C}$ in aerobic (B) and microaerobic (C) conditions. Data represent the means \pm SE from $6 \mathrm{MmGI}-1$ positive M. massiliense, $8 \mathrm{MmGI}-1$ negative M. massiliense and 12 M. abscessus isolates. M. mas and M. abs shows M. massiliense and M. abscessus, respectively. Key: +, positive; -, negative. * $P<0.05$; ** $P<0.01$ (Student's t-test).

Validation of gap closing and sequencing errors by short-read mapping

To determine whether mis-assembled sequences and incorrect gap-closing remained after reference-assisted gap-closing, 40-mer short reads were aligned to the tentative complete chromosomal DNA sequence using Maq software (ver. 0.7.1) with the easyrun Perl command [37]. We then performed a read alignment to validate possible errors using the MapView graphical alignment viewer [38].

Annotation

Gene prediction was performed for the complete genomic sequence with the RAST annotation server [39], followed by InterProScan [40] search and BLASTP search using nr database for validation. Genomic information, such as nucleotide variations and circular representations, was analyzed with gview software [41].

Pairwise alignment of chromosomal sequences

Pairwise alignment was performed by BLASTN and TBLASTN homology searches [42] followed by visualization of the aligned images with the ACT [43] or EMBOSS dottup program [44].

BLAST atlas

A BLAST atlas was generated by a BLASTP homology search [42] using the gview program [41]. The atlas displays BLASTP comparison results. The visualized area shows that the length of similar genes covers at least 80% between M. massiliense JCM 15300 and other Mycobacterium spp.

SNP analysis

To construct simulated paired-end reads from the available genomic sequences of M. abscessus group strains, SimSeq software [45] was used with "SimSeq.jar" and "SamToFastq.jar" commands with the following default parameter modifications: number of pairs of reads, "-read_number 2000000"; mean library insert size, "—insert_size 150"; and paired-end reads length of 120 mer, " $-1120-2120$ ". These parameters indicated that 4 million hypothetical 120-mer reads were generated without mutations or indels from the genomic sequences used for SNP identification. To generate short-read mapping data of all M. abscessus group strains compared with the reference chromosomal sequence of M. massiliense JCM 15300, bwasw [46] and samtools [47] software was used with the default parameters. All SNPs were extracted by VarScan v2.3.4 [48] with the default parameters. All SNPs were concatenated to generate a pseudo sequence for phylogenetic analysis. The DNA maximum-likelihood program (RAxML v7.25) [49] was used for phylogenetic analysis with 1,000 -fold bootstrapping. FigTree v. 1.2.3 software was used to display the generated tree.

Phylogenetic analysis

Nucleotide and amino acid sequences were aligned with mafft v6.86 [50] followed by phylogenetic analysis using the neighbor-joining method or maximumlikelihood method with 1,000-fold bootstrapping in clustalW2 [51] or RAxML v7.25 software [49]. FigTree v. 1.2.3 software was used to display the generated tree.

PCR amplification

The PCR mixture contained approximately 1 ng of template DNA, $1 \times$ PrimeSTAR GXL Buffer (Takara Biochem. Shiga, Japan), $200 \mu \mathrm{M}$ of each dNTP, 200 nM of each primer, and a total of 2.5 unit of PrimeSTAR GXL DNA polymerase (Takara Biochem.). The primer sequences for PCR amplification are shown in S4 Table. PCR was performed in $25 \mu \mathrm{l}$ volumes under the following conditions: at $98^{\circ} \mathrm{C}$ for 20 sec followed by 30 cycles at $98^{\circ} \mathrm{C}$ for $15 \mathrm{sec}, 65^{\circ} \mathrm{C}$ for 15 sec and $68^{\circ} \mathrm{C}$ for 1 min (for below 1.5 kb amplicons) or 5 min (for over 1.5 kb amplicons). Amplified PCR products were electrophoresed in $1.0 \%(\mathrm{w} / \mathrm{v})$ agarose gel at 100 V and detected by staining with GelRed (Biotium Inc. Hayward, CA).

Bacterial culture

The M. abscessus and M. massiliense type strains were cultured at $37^{\circ} \mathrm{C}$ in Middlebrook 7H9 broth (Difco) supplemented with 10% OADC (BD) and 0.05% Tween 80 under aerobic or microaerobic (6% aerobic O_{2} tension) conditions with AnaeroPack (Mitsubishi Gas Chemical Company, Inc., Tokyo, Japan). Growth was monitored by removing aliquots at the indicated time points and measuring the OD at 530 nm .

Statistical analysis

The statistical test between MmGI-1 positive M. massiliense and M. abscessus was calculated by Fisher's Exact Test. Data of bacterial culture are expressed as mean \pm standard error (SE) from $7 \mathrm{MmGI}-1$ positive M. massiliense, $8 \mathrm{MmGI}-1$ negative M. massiliense and 12 M . abscessus isolates. Statistical analysis was performed using the student's t -test. The t -test was used to investigate whether the means of two groups are statistically different from each other. Differences were considered significant with a p-value of <0.05 and 0.01 .

Nucleotide sequence accession numbers

The complete genomic sequence of M. massiliense JCM 15300 has been deposited into the DNA Data Bank of Japan (DDBJ; accession number: AP014547).

Supporting Information

S1 Figure. Comparative analysis between the complete genomic sequence of the M. massiliense JCM 15300 strain and draft genomic sequences of M. massiliense CCUG 48898. The upper dot plot represents synteny between JCM 15300 and CCUG 48898, and the yellow vertical bars indicate gap regions in the draft genome of CCUG 48898. The bottom table shows gaps between contigs in CCUG 48898.
doi:10.1371/journal.pone.0114848.s001 (TIF)
S2 Figure. Genomic comparison and BLAST atlas of $\mathbf{3}$ clusters in the M. abscessus group. Comparative analysis of M. massiliense JCM 15300 and M. abscessus ATCC 19977 using a BLASTN homology search visualized by the ACT program (middle) and a BLAST atlas of M. massiliense JCM 15300 and M. abscessus ATCC 19977. In the comparative analysis, the red and blue bars between chromosomal DNA sequences represent nucleotide matches in the forward and reverse directions, respectively. BLASTN match scores less than 999 are not shown. In the BLAST atlas, the coding regions of JCM 15300 or ATCC 19977 were aligned against those of other M. abscessus group strains using BLASTP, and the results are displayed as colored bars (as in Fig. 1A). The three yellow boxes represent prophages on each chromosome. Specific features are represented by characters: \dagger, unique region in the massiliense cluster; •, unique region in JCM 15300; §, unique region in the abscessus cluster; $\mathbb{\top}$, MmGI-1 (also see blue bars in Fig. 1A). doi:10.1371/journal.pone.0114848.s002 (TIF)
S3 Figure. Visualization for M. abscessus group pan-genomes and core genomes. A. Curve for pan-genomes and core genomes of M. abscessus group. The box plots indicate the pan- or core genome size for each genome comparison. The median values were connected to represent the relationship between genome number and gene cluster number. B. Curve for the new gene cluster number observed with every increase in the number of M. abscessus group genomes. doi:10.1371/journal.pone.0114848.s003 (TIF)

S4 Figure. Phylogenetic tree of mycolic acid cyclopropane synthetase domain (CMAS, pfam02353) proteins in Mycobacterium using the maximum-likelihood method with $\mathbf{1 , 0 0 0}$-fold bootstrapping. The scale indicates that a branch length of 0.3 is 30 times as long as one that would show a 1% difference between the amino acid sequences at the beginning and end of the branch. The number at each branch node represents the bootstrapping value. The proteins in red indicate proteins that are conserved only in the massiliense cluster.
doi:10.1371/journal.pone.0114848.s004 (TIF)
S1 Table. Mutation sites in the complete genomic sequence of M. massiliense JCM 15300 compared with those in draft genomic sequences of M. massiliense CCUG 48898.
doi:10.1371/journal.pone.0114848.s005 (PDF)

S2 Table. The unique gene loci in M. massiliense JCM15300. doi:10.1371/journal.pone.0114848.s006 (PDF)
S3 Table. The deleted genes of massiliense and bolletii clusters among M. abscessus group.
doi:10.1371/journal.pone.0114848.s007 (PDF)
S4 Table. Oligonucleotide primer sequences used in PCR assays and the judging method for presence of MmGI-1 and other M. massiliense unique regions.
doi:10.1371/journal.pone.0114848.s008 (PDF)
S5 Table. Isolates analyzed in the present study and results of conventional PCR based detection against MmGI-1 and other M. massiliense unique regions. doi:10.1371/journal.pone.0114848.s009 (PDF)

Author Contributions

Conceived and designed the experiments: TS M. Kai YH M. Kuroda. Performed the experiments: TS M. Kai KN NN YK SM YH M. Kuroda. Analyzed the data: TS M. Kai M. Kuroda. Contributed reagents/materials/analysis tools: TS M. Kai MM YH M. Kuroda. Wrote the paper: TS M. Kuroda. Performed genomic sequencing: TS M. Kai M. Kuroda.

References

1. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, et al. (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. American journal of respiratory and critical care medicine 175: 367-416.
2. Brown-Elliott BA, Nash KA, Wallace RJ Jr (2012) Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clinical microbiology reviews 25: 545-582.
3. Olivier KN, Weber DJ, Wallace RJ Jr, Faiz AR, Lee JH, et al. (2003) Nontuberculous mycobacteria. I: multicenter prevalence study in cystic fibrosis. American journal of respiratory and critical care medicine 167: 828-834.
4. Bryant JM, Grogono DM, Greaves D, Foweraker J, Roddick I, et al. (2013) Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet 381: 1551-1560.
5. Iseman MD, Marras TK (2008) The importance of nontuberculous mycobacterial lung disease. American journal of respiratory and critical care medicine 178: 999-1000.
6. Chan ED, Bai X, Kartalija M, Orme IM, Ordway DJ (2010) Host immune response to rapidly growing mycobacteria, an emerging cause of chronic lung disease. American journal of respiratory cell and molecular biology 43: 387-393.
7. Falkinham JO 3rd (1996) Epidemiology of infection by nontuberculous mycobacteria. Clinical microbiology reviews 9: 177-215.
8. Primm TP, Lucero CA, Falkinham JO 3rd (2004) Health impacts of environmental mycobacteria. Clinical microbiology reviews 17: 98-106.
9. Bastian S, Veziris N, Roux AL, Brossier F, Gaillard JL, et al. (2011) Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrobial agents and chemotherapy 55: 775-781.
10. Macheras E, Roux AL, Bastian S, Leao SC, Palaci M, et al. (2011) Multilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (sensu lato) strains. Journal of clinical microbiology 49: 491-499.
11. Nakanaga K, Sekizuka T, Fukano H, Sakakibara Y, Takeuchi F, et al. (2014) Discrimination of Mycobacterium abscessus subsp. massiliense from Mycobacterium abscessus subsp. abscessus in Clinical Isolates by Multiplex PCR. Journal of clinical microbiology 52: 251-259.
12. Furuya EY, Paez A, Srinivasan A, Cooksey R, Augenbraun M, et al. (2008) Outbreak of Mycobacterium abscessus wound infections among "lipotourists" from the United States who underwent abdominoplasty in the Dominican Republic. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 46: 1181-1188.
13. Medjahed H, Gaillard JL, Reyrat JM (2010) Mycobacterium abscessus: a new player in the mycobacterial field. Trends in microbiology 18: 117-123.
14. Villanueva A, Calderon RV, Vargas BA, Ruiz F, Aguero S, et al. (1997) Report on an outbreak of postinjection abscesses due to Mycobacterium abscessus, including management with surgery and clarithromycin therapy and comparison of strains by random amplified polymorphic DNA polymerase chain reaction. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 24: 1147-1153.
15. Otsuki T, Izaki S, Nakanaga K, Hoshino Y, Ishii N, et al. (2012) Cutaneous Mycobacterium massiliense infection: a sporadic case in Japan. The Journal of dermatology 39: 569-572.
16. Nakanaga K, Hoshino Y, Era Y, Matsumoto K, Kanazawa Y, et al. (2011) Multiple cases of cutaneous Mycobacterium massiliense infection in a "hot spa" in Japan. Journal of clinical microbiology 49: 613617.
17. Cho YJ, Yi H, Chun J, Cho SN, Daley CL, et al. (2013) The Genome Sequence of 'Mycobacterium massiliense' Strain CIP 108297 Suggests the Independent Taxonomic Status of the Mycobacterium abscessus Complex at the Subspecies Level. PloS one 8: e81560.
18. Ripoll F, Pasek S, Schenowitz C, Dossat C, Barbe V, et al. (2009) Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PloS one 4: e5660.
19. Choo SW, Wee WY, Ngeow YF, Mitchell W, Tan JL, et al. (2014) Genomic reconnaissance of clinical isolates of emerging human pathogen Mycobacterium abscessus reveals high evolutionary potential. Sci Rep 4: 4061.
20. Pawlik A, Garnier G, Orgeur M, Tong P, Lohan A, et al. (2013) Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus. Mol Microbiol 90: 612-629.
21. Joseph J, Rajendran V, Hassan S, Kumar V (2011) Mycobacteriophage genome database. Bioinformation 6: 393-394.
22. Casali N, Riley LW (2007) A phylogenomic analysis of the Actinomycetales mce operons. BMC genomics 8: 60.
23. Arruda S, Bomfim G, Knights R, Huima-Byron T, Riley LW (1993) Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261: 1454-1457.
24. Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proceedings of the National Academy of Sciences of the United States of America 105: 4376-4380.
25. Klepp LI, Forrellad MA, Osella AV, Blanco FC, Stella EJ, et al. (2012) Impact of the deletion of the six mce operons in Mycobacterium smegmatis. Microbes and infection/Institut Pasteur 14: 590-599.
26. Kim SH, Harzman C, Davis JK, Hutcheson R, Broderick JB, et al. (2012) Genome sequence of Desulfitobacterium hafniense DCB-2, a Gram-positive anaerobe capable of dehalogenation and metal reduction. BMC microbiology 12: 21.
27. Suzuki R, Katayama T, Kim BJ, Wakagi T, Shoun H, et al. (2010) Crystal structures of phosphoketolase: thiamine diphosphate-dependent dehydration mechanism. The Journal of biological chemistry 285: 34279-34287.
28. Boes N, Schreiber K, Hartig E, Jaensch L, Schobert M (2006) The Pseudomonas aeruginosa universal stress protein PA4352 is essential for surviving anaerobic energy stress. Journal of bacteriology 188: 6529-6538.
29. Klotz T, Vorreuther R, Heidenreich A, Zumbe J, Engelmann U (1996) Testicular tissue oxygen pressure. The Journal of urology 155: 1488-1491.
30. Shahidi M, Wanek J, Blair NP, Little DM, Wu T (2010) Retinal tissue oxygen tension imaging in the rat. Investigative ophthalmology \& visual science 51: 4766-4770.
31. Wang W, Vadgama P (2004) O2 microsensors for minimally invasive tissue monitoring. Journal of the Royal Society, Interface/the Royal Society 1: 109-117.
32. Ponce LL, Pillai S, Cruz J, Li X, Julia H, et al. (2012) Position of probe determines prognostic information of brain tissue PO2 in severe traumatic brain injury. Neurosurgery 70: 1492-1502; discussion 1502-1493.
33. Barkan D, Rao V, Sukenick GD, Glickman MS (2010) Redundant function of cmaA2 and mmaA2 in Mycobacterium tuberculosis cis cyclopropanation of oxygenated mycolates. Journal of bacteriology 192: 3661-3668.
34. Banerjee R, Vats P, Dahale S, Kasibhatla SM, Joshi R (2011) Comparative genomics of cell envelope components in mycobacteria. PloS one 6: e19280
35. Adekambi T, Reynaud-Gaubert M, Greub G, Gevaudan MJ, La Scola B, et al. (2004) Amoebal coculture of "Mycobacterium massiliense" sp. nov. from the sputum of a patient with hemoptoic pneumonia. Journal of clinical microbiology 42: 5493-5501.
36. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, et al. (2009) ABySS: a parallel assembler for short read sequence data. Genome research 19: 1117-1123.
37. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome research 18: 1851-1858.
38. Bao H, Guo H, Wang J, Zhou R, Lu X, et al. (2009) MapView: visualization of short reads alignment on a desktop computer. Bioinformatics 25: 1554-1555.
39. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. (2008) The RAST Server: rapid annotations using subsystems technology. BMC genomics 9: 75
40. Jones P, Binns D, Chang HY, Fraser M, Li W, et al. (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30: 1236-1240.
41. Petkau A, Stuart-Edwards M, Stothard P, Van Domselaar G (2010) Interactive microbial genome visualization with GView. Bioinformatics 26: 3125-3126.
42. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of molecular biology 215: 403-410.
43. Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, et al. (2005) ACT: the Artemis Comparison Tool. Bioinformatics 21: 3422-3423.
44. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends in genetics: TIG 16: 276-277.
45. Earl D, Bradnam K, St John J, Darling A, Lin D, et al. (2011) Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome research 21: 2224-2241.
46. Li H, Durbin \mathbf{R} (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26: 589-595.
47. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27: 2987-2993.
48. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, et al. (2009) VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25: 2283-2285.
49. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.
50. Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26: 1899-1900.
51. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.

[^0]: doi:10.1371/journal.pone.0114848.g002

[^1]: doi:10.1371/journal.pone.0114848.t001

[^2]: doi:10.1371/journal.pone.0114848.g004

