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Although it is well known that hypoxia incites unleashed cellular inflammation, the
mechanisms of exaggerated cellular inflammation in hypoxic conditions are not known.
We observed augmented proliferation of hematopoietic stem and progenitor cells (HSPC),
precursors of inflammatory leukocytes, in mice under hypoxia. Consistently, a
transcriptomic analysis of human HSPC exposed to hypoxic conditions revealed
elevated expression of genes involved in progenitor proliferation and differentiation.
Additionally, bone marrow cells in mice expressed high amount of vascular endothelial
growth factor (VEGF), and HSPC elevated VEGF receptor 1 (VEGFr1) and its target genes
in hypoxic conditions. In line with this, VEGFr1 blockade in vivo and in vitro decreased
HSPC proliferation and attenuated inflammation. In silico and ChIP experiments
demonstrated that HIF-1a binds to the promoter region of VEGFR1. Correspondingly,
HIF1a silencing decreased VEGFr1 expression in HSPC and diminished their proliferation.
These results indicate that VEGF signaling in HSPC is an important mediator of their
proliferation and differentiation in hypoxia-induced inflammation and represents a potential
therapeutic target to prevent aberrant inflammation in hypoxia-associated diseases.

Keywords: VEGFR1, hematopoietic progenitor, intermittent hypoxia, inflammation, innate immune cell
INTRODUCTION

Diseases characterized by alveolar hypoxia, such as chronic obstructive pulmonary disease (COPD) and
obstructive sleep apnea (OSA), are highly prevalent and contribute to significant morbidity and
mortality around the world (1–5). Hypoxia-associated diseases bear high comorbidities including
metabolic, cardiovascular, neoplastic and neurologic disease, which a growing body of literature
attributes to systemic inflammation (1, 6–8). To date, studies of alveolar hypoxia induced inflammation
have focused primarily on the role of resident macrophages, and their interaction with alveolar
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endothelial cells mediating production of inflammatory cytokines
(9–12). Monocyte chemoattractant protein 1 (MCP-1), c-reactive
protein, tumor necrosis factor alpha (TNFa), IL-1, IL-6 and IL-8
are increased in hypoxic lung diseases and generally correlate with
severity of disease (11, 13, 14). While there is strong evidence that
local and systemic inflammation are key components of hypoxic
diseases, the mechanisms of exaggerated cellular inflammation in
hypoxic conditions have yet to be defined.

Mounting evidence has demonstrated key inflammatory cells
involved in the pathogenesis of various diseases including insulin
resistance and atherosclerosis (4, 15–17). These cells have been
proposed to originate from hematopoietic stem and progenitor
cells (HSPC) in the bone marrow and spleen (18–21). Patients
with hypoxic lung disease exhibit elevated inflammation and
leukocytosis. The leukocytosis observed in chronic inflammation
likely represents production of inflammatory leukocytes by their
progenitors. However, a direct link between hypoxia induced
systemic inflammation and proliferation of HSPC has not been
established. Furthermore, the mechanisms of HSPC proliferation
and differentiation in hypoxia have not been studied.

Vascular endothelial growth factor (VEGF) has been identified
as an important regulator of neovascularization by encouraging
endothelial cell proliferation in various diseases such as age-related
macular degeneration and neoplastic diseases (22–25). Several
recent studies have demonstrated elevated VEGF concentrations
in peripheral blood of patients with hypoxic lung disease, which
closely correlated with severity of disease (26–31). However, the
role of VEGF in HSC proliferation and inflammatory leukocyte
production is not known.

We used two independent mouse models of hypoxia to
understand the effect of hypoxia in HSPC proliferation:
C57BL/6 mice exposed to A) 10% O2 for three weeks, an
established mouse model of chronic hypoxia (32–34) and B)
cigarette smoke for six months, a COPD mouse model (35, 36).
Mice under chronic hypoxic conditions and exposed to cigarette
smoke had elevated numbers of neutrophils, monocytes and
macrophages in the blood and lungs suggesting augmented
hematopoiesis. In line with this, a whole genome RNA
sequencing analysis of human HSPC cultured under hypoxic
conditions showed increased expression of the genes involved in
hematopoiesis. The number and proliferation of HSPC were
increased when mice were exposed to hypoxia or cigarette
smoke. Concomitantly, we measured increased expression of
VEGFr1 in these activated progenitors indicating a possible role
of VEGFr1 in hematopoiesis. Indeed, VEGFr1 blockade in vitro
and in vivo diminished HSPC proliferation and their
differentiation into myeloid cells, resulting in attenuated
inflammation in hypoxic conditions. Mechanistically, we
observed that HIF-1a binds to the VEGFr1 promoter and
increases its expression in HSPC under hypoxic conditions.
HIF1a silencing reduced HSPC proliferation and their
differentiation into inflammatory leukocytes.

As a whole, the present study describes a role of the VEGFr1
in the activation of hematopoietic progenitors and the
production of inflammatory myeloid cells in hypoxia.
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Additionally, this work proposes the VEGFr1 as a possible
therapeutic target to attenuate inflammatory burden in patients
with hypoxia.
METHODS

Animals
All animal experiments were conducted following NIH and
ARRIVE (Animal Research: Reporting of In Vivo Experiments,
https://arriveguidelines.org) guidelines under protocols
approved by the Institutional Animal Care and Use Committee
of the University of Pittsburgh. Ten to twelve-week-old
C57BL/6J male mice were exposed to normobaric hypoxic–
10% oxygen, which represents 50% of the normal amount of
oxygen, or normoxic conditions for 3 weeks. This oxygen
concentration resulted in increased right ventricular systolic
pressure, Fulton index and pulmonary vascular remodeling
(37, 38). Of note, we have observed a very high mortality when
we further decreased O2 concentration. After 21 days in hypoxic
chamber, mice underwent right ventricular catheterization,
followed by tissue and blood collection. The mice were
anesthetized with ketamine/xylazine and ventilated through a
transtracheal catheter.

Flow Cytometry
C57BL/6 mice were anesthetized, and a small volume of
peripheral blood was collected by cardiac puncture, followed
by transcardial perfusion with 15mL of ice-cold PBS. One lobe
of the lung was harvested, minced and digested with
collagenase I, collagenase XI, and hyaluronidase for one
hour at 37C. After incubation, a single cell suspension was
prepared by passing the digested lung tissue through a 70 mm
nylon strainer, followed by washing with 0.5% bovine serum
albumin in PBS (FACS buffer). The filtrate was washed with 10
mL of FACS buffer and centrifuged at 4°C for 7 minutes at 350
g. The supernatant was discarded, and the samples were re-
suspended and labeled with 600-fold diluted antibody mixture
with the following antibodies: anti-CD45.2 (BD Biosciences
clone 104, cat#560693), CD11b (BD Biosciences, clone M1/70,
cat#557657), CD115 (BD Biosciences, clone T38-320, cat#
565249), Ly6G (BD Biosciences, clone 1A8, cat#564979) and
CD64 (BD Biosciences, clone X54-5/7.1, cat#558455). B and T
cells were identified as CD45+, CD11b-, and CD19+ or CD3+,
respectively. Monocytes were identified as CD45+, CD11b+,
CDLy-6G- and CD115+. Neutrophils were considered as
CD45+, CD11b+, CD115- and Ly6G+. For bone marrow
hematopoietic stem and progenitor cells analyses, cells were
stained with biotin conjugated antibodies against lineage
markers including B220 (Biolegend, clone RA3-6B2, cat#
103203), CD4 (GK1.5, BD Biosciences, cat# 555345), CD8a
(53-6.7, BD Biosciences, cat# 555365), NK1.1 (PK136,
Biolegend, cat# 109704), CD11b (M1/70, Biolegend, cat#
101204), CD11c (N418, Biolegend, cat# 117304), Gr-1
(Biolegend, clone RB6-8C5, cat# 108403) and, Ter119 (TER-
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119, Biolegend, cat# 116204) followed by streptavidin APC/
Cy7 conjugation, and antibodies against c- Kit (2B8,
Biolegend, cat# 105822), Sca-1 (D7, Biolegend, cat# 108120),
IL7Ra (SB/199, BDBiosciences, cat# 565490), CD16/32
(2.4G2, Biolegend, cat# 101318), CD34 (RAM34, BD
Biosciences, cat# 553733), CD48 (HM48-1, Biolegend, cat#
103418) and CD150 (TC15-12F12.2, Biolegend, 115918).
Hematopoietic stem cells (HSC) were identified as Lin- c-
Kit+ Sca-1+ CD48- CD150+, and LSK were deemed to be Lin-
c-Kit+ Sca-1+. Granulocyte-macrophage progenitors (GMP)
were identified as Lin- c-Kit+ Sca-1- CD16/32+ CD34+.
Samples were incubated on ice for 1 hour. Cell numbers per
femur were calculated by multiplying total cell counts using a
hemocytometer by cell subset frequencies obtained from flow
cytometry analysis. Murine Vegfr1 expression was assessed
using a Vegfr1 antibody (Thermofisher Scientific, clone 3A6,
cat # BSM-52338R). A Fortessa Flow Cytometer (BD) was
used to acquire data. Data were analyzed with FlowJo software
(Tree Star).

Biochemical Assays
Concentrations of cytokines in plasma and parenchymal tissues
were quantified by enzyme-linked immunosorbent assay
(ELISA). IL-6 levels were quantified in lung tissue from
hypoxic and normoxic conditions using a mouse IL-6 capture
ELISA kit following the manufacturer instructions (Invitrogen,
Cat # BMS603-2). Comparisons between conditions were
performed using Graphpad Prism, and absolute concentration
was calculated based on a lyophilized standard included in
the kit.

RT PCR
Lungs were harvested and immediately snap frozen in liquid
nitrogen until they could be processed. RNA extraction was
performed using the PicoPure RNA isolation kit (Applied
BioSystems, Cat # KIT0204) without modification to the
manufacturer protocol. Total RNA was quantified using a
NanoDrop spectrophotometer. Complementary DNA was
generated from 100 ng of mRNA per sample using the high
capacity cDNA Reverse Transcription kit (Applied BioSystems,
Cat # 4368814). Relative gene expression was determined by
qPCR with the PowerUp SYBR Green reporter (Applied
BioSystems, Cat # A25742) and primers supplied by IDT; gene
expression was represented as DCt normalized to beta-
actin expression.

Whole Mount Imaging
Freshly dissected sternums from C57BL/6 mice exposed to
normoxic or hypoxic conditions were fixed in cold 4%
paraformaldehyde (PFA, ThermoFisher Scientific, Cat # 28908)
in PBS for 25 minutes without agitation. The bones were washed
in PBS three times with 15-minute incubations before incubating
with common lineage biotinylated antibodies, including anti-
TER119 (Biolegend, clone TER-119, cat#116204), CD11b (BD
Biosciences, clone M1/70, cat#553309), CD11c (Biolegend, clone
N418, cat#117304), CD45R/B220 (Biolegend, clone RA3-6B2,
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cat#103204), NK1.1 (Biolegend, clone PK136, cat#108704), GR-1
(Biolegend, clone RB6-8C5, cat#108404), CD4 (Biolegend, clone
GK1.5, cat#100404), CD8 (Biolegend, clone 53-6.7, cat#100704)
and CD127 (Biolegend, clone A7R34, cat#135006). Samples were
incubated for 24 hours at 4° C, then washed three times with 1%
FBS in PBS with 15-minute incubations, then labeled with
streptavidin FITC antibody, followed by overnight incubation at
4°C. The samples were sequentially labeled with anti-VE Cadherin
(BD Biosciences, clone 11D4.1, cat# 562242) and anti-CD31 APC
antibodies (BD Biosciences, clone MEC 13.3, cat# 551262),
followed by rabbit anti-mouse CD150 then rat anti-rabbit Cy3
(Invitrogen) with three wash steps between primary and
secondary antibody overnight incubations. Lastly, the samples
were washed three times and imaged on a Nikon A1 confocal
microscope; Images were analyzed using ImageJ software.

Human Whole Blood data
All human data were collected in accordance with a University of
Pittsburgh Independent Review Board approved protocol.
Patients with intermittent hypoxia, defined by an apnea
hypoxia index (AHI) > 5, were eligible for inclusion in the
obstructive sleep apnea group, and matched controls with AHI
less than 5 were eligible for inclusion in the control group.
Patients with pulmonary function testing (PFT) confirmed
chronic obstructive lung disease were eligible for inclusion in
the COPD group. Patients with concurrent conditions known to
cause leukocytosis were excluded, including known history of
CVD, dyslipidemia, diabetes mellitus, allergic, pulmonary or
hematological disease, malignancy, recent injury or surgery,
recent systemic steroid use, current infection or any systemic
medication use (e.g. hypolipidemic or anti-platelet agents).
Complete blood cell count laboratory data were collected prior
to medical interventions.

HSPC Cell Culture
Hematopoietic stem and progenitor cells were enriched by
negative magnetic-activated cell sorting from vertebral, femoral
and tibial bone marrow (StemCell Technologies, Cat # 17665).
Briefly, we crushed the bones and filtered the cells through a
40mm mesh filter. The cells were then spun down and
resuspended in 1mL of FACS buffer. They were then stained
with biotin-conjugated lineage antibodies (B220, TER119, Ly6G,
CD4, CD8, CD11b, CD11c, and IL7R) at 1:300 dilution for 20
minutes on ice. The cells were spun down and resuspended in 2
ml of buffer (DPBS+2%FBS+1mM EDTA), and 100 ul of biotin
selection cocktail was added for 15 minutes at room temperature.
Another 50 mL of magnetic nanoparticles was added to the mix
for 10 minutes at room temperature. The cells were then placed
in a FACS tube in an EasySep magnet (Stem Cell Technologies,
Cat# 18000). After 6-7 minutes, the unbound cells were collected.
Cells were then cultured in the presence of G-CSF on 96 well
round-bottom cell culture plates with 10, 50, or 100 nM
concentrations of Sugen (SU5416, MedChem Express), or with
siRNA control (siCtl, IDT) or against Vegfr1 (siVegfr1, IDT), for
72 hours prior to hypoxia challenge. Samples were exposed to
normobaric hypoxic conditions (10% O2) for 24 hours prior to
RNA extraction and flow cytometry analysis.
May 2022 | Volume 13 | Article 882484
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RNA Sequencing
Publicly available differentially expressed genes from HSPC
exposed to hypoxic conditions (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE54663) were assessed for genes of
interest including VEFGA and VEGFr1, and heatmap
representations of the data were prepared. Enriched pathways
were discerned using Ingenuity Pathway Analysis.

ChIP Sequencing
To assess the interaction between HIF-1a and VEGFr1, we first
located the promoter region of VEGFr1 using the UCSC genome
browser (University of California Santa Cruz). Then, we looked
for potential HIF-1-alpha binding sites onto the promoter region
of VEGFr1 using Transfac software (GeneXplain). The primers
for each HIF-1a binding site were designed using NCBI Primer-
BLAST. Murine HSPC were harvested from the bone marrow of
C57BL/6 mice. Cells were resuspended in complete SFEM media
and plated onto 10 cm dishes. Cells were incubated for 24 hours
in normoxia or hypoxia. Cells were then harvested and
resuspended in PBS at a concentration 106 cells/mL. Cells were
then fixed, and DNA was extracted and immunoprecipitated by a
ChIP grade HIF-1a antibody (Rb polyclonal, Novusbio, Cat #
NB100-479SS) as previously described (39). Finally, real time
PCR was run to quantify the amount ofHIF1A bound to VEGFr1
promoter region in each condition.

Adoptive Transfer Experiment
C57BL/6 mice were placed under either normoxic or hypoxic
conditions (10% O2) for 10 days. At day 7 of hypoxia, bone
marrow HSPC from KIkGR+ (Kikume Green Red) mice were
negatively enriched using a magnetic separation method and
retro-orbitally injected into either normoxic or hypoxic C57BL/6
mice at a concentration of 20 million cell/mL. Mice were
sacrificed, and lungs, bone marrow, spleen and blood were
harvested at day 10 of hypoxia. The percentages of progenies
derived from the adoptively transferred cells were measured by
flow cytometry.

Statistical Analysis
Data were compiled using Prism (GraphPad). Statistics were
generated and are presented as the mean ± SEM. Statistical
significance between two categories of analyzed samples was
calculated using two-tailed Student’s t tests. For multiple
category comparisons, one-way ANOVA was used with a post
hoc Bonferroni test. Differences with P values <0.05 were
considered statistically significant.
RESULTS

Hypoxic Mice Have Elevated Numbers of
Inflammatory Leukocytes in the Blood
Various diseases associated with intermittent or chronic hypoxia
are characterized by exaggerated systemic inflammation (5, 6, 16,
17, 40–43). Leukocytes, primarily myeloid cells, play a major role
Frontiers in Immunology | www.frontiersin.org 4
in inflammatory diseases including atherosclerosis and diabetes
(15, 42). To study alteration in hematopoietic progenitors and
their lineage output, we used two established mouse models of
hypoxia- mice housed in hypoxic chambers containing 10%
oxygen for three weeks and mice exposed to cigarette smoke
for six months (35, 36). Mice exposed to cigarette smoke
contained significantly heightened numbers of lymphocytes,
such as B and T cells, in the bone marrow while myeloid cell
content decreased (Supplementary Figures 1A, B). In contrast,
splenic lymphocyte numbers were unaltered (Supplementary
Figure 1C), and myeloid cells were more numerous in smoke-
exposed mice compared to the control group (Supplementary
Figure 1C). Additionally, we found that the cytokine expression
increased in the lungs of cigarette smoke-exposed mice
compared to air-exposed mice (Supplementary Figure 1D).
Although these data suggest differentiation of bone marrow
progenitors into hematopoietic cells after smoke exposure, we
cannot rule out decreased apoptosis of these cells after smoke
exposure. Furthermore, the data suggest a preferential egress of
myeloid cells from the bone marrow after smoke exposure.

To further delineate the contributions of hypoxia in systemic
inflammation, we used a mouse model of chronic hypoxia (10%
oxygen). We quantified inflammatory cytokines and leukocytes
in mice exposed to hypoxic conditions compared to normoxic
controls. We observed increased expression of Il-1b, Il-6, Il-18
and Tnfa in the lungs of hypoxic mice (Figure 1A). Consistent
with this heightened expression of the inflammatory cytokine
genes, we found elevated concentrations of Il-6, TNF-a and IL-
1b in lung parenchyma (Figure 1B). Furthermore, we found that
mice in chronic hypoxic conditions had increased numbers of
monocytes, neutrophils, and B and T lymphocytes in the blood
compared to normoxic control mice (Figure 1C and
Supplementary Figures 2A, B). Similarly, the lungs of hypoxic
mice harbored augmented numbers of inflammatory cells,
including interst it ial macrophages (Figure 1D and
Supplementary Figure 2C), which are reported to have
pathologic roles in pulmonary diseases characterized by
hypoxia (44–46). The frequency of bone marrow monocytes
and neutrophils increased after hypoxia exposures
(Supplementary Figures 2C, D). Additionally, we evaluated
leukocyte populations in the spleen of normoxic v. hypoxic
mice. We found increased numbers of monocytes and B cells,
decreased number of T cells and unchanged numbers of
neutrophils (Supplementary Figure 2E). We also measured
the ratio of blood/BM leukocyte numbers and noticed a
significant increase in this ratio for monocytes and neutrophils
suggesting an active egress from the BM to the blood of these
cells (Supplementary Figure 2F). Altogether, these data
demonstrate leukocytosis in patients and mice with hypoxia.

Hypoxia Increases Proliferation of
Hematopoietic Stem and Progenitor Cells
Increased leukocyte numbers in the blood of hypoxic mice may
indicate two underlying mechanisms: A) accelerated egress of
bone marrow leukocyte into the blood and B) escalated
May 2022 | Volume 13 | Article 882484
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production of leukocytes by hematopoietic stem and progenitor
cells (HSPC) in the bone marrow. To determine whether the
observed hypoxia-induced leukocytosis represents increased
production of mature leukocytes, we assessed the number and
proliferation of bone marrow HSPC, which consist of
hematopoietic stem cells (HSC), lineage- Sca-1+ c-Kit+ (LSK or
HSPC) cells and granulocyte macrophage progenitors (GMP)
(Supplementary Figure 3A). Flow cytometry analysis revealed
that hypoxia expanded the numbers of HSC, LSK and GMP in the
femur and tibia (Figure 2A). Confocal microscopy confirmed a
higher density of HSPC in the bone marrow of hypoxic mice
compared to the normoxic control (Figure 2B). In line with
augmented leukocyte and HSPC numbers, mice in hypoxic
conditions had higher proportions of proliferating HSC, LSK
and GMP (Figures 2C–E). Studies have shown that
chemotherapy and inflammatory cytokines can induce
phenotypic shift in Sca-1 surface expression, which may lead to
contamination of the phenotypic HSC gate with non-HSC cell
types (47–49). To assess if hypoxia alters Sca-1 expression on long
term and short term HSC, HSPC, and GMP in the bone marrow,
we measured mean fluorescent intensity (MFI) of Sca-1 in these
Frontiers in Immunology | www.frontiersin.org 5
cells by flow cytometry. We did not observe any statistical
difference in the expression of Sca-1 in the progenitors between
the two groups (Supplementary Figure 3B). Additionally, we
isolated HSPC and GMPs from mice kept under either normoxic
or hypoxic conditions for three weeks. qPCR for the cell cycle
genes revealed that the progenitors expressed higher levels of these
genes in hypoxic conditions (Supplementary Figure 4A). HSPC
proliferation is prerequisite for their differentiation into
leukocytes. To understand if HSPC expansion in hypoxic
conditions can result in their higher differentiation, we analyzed
a whole genome transcriptome data comparing human CD34+

HSPC cultured under hypoxic vs. normoxic conditions (50). A
pathway analysis revealed that the genes involved in differentiation
of stem cell, cell cycle and stimulation of cells were enriched in
HSPC in hypoxic conditions (Supplementary Figures 4B, 5–7).
To discern if hypoxia accelerates HSPC differentiation, we
adoptively transferred GFP+ HSPC into mice housed under
normoxic and hypoxic conditions, and enumerated progenies by
flow cytometry. The bone marrow, blood and lungs of hypoxic
mice contained augmented percentages of donor-derived
differentiated leukocytes, lymphocytes, monocytes and
A

B

C D

FIGURE 1 | Hypoxia induces inflammation. C57BL/6 mice were placed under either normoxic or hypoxic conditions for 21 days. Lungs, blood and bone marrow
were collected. (A) Il1b, Il6, Il18 and Tnfa expression was assessed by RT-qPCR.(B) Il-6, TNF-a and IL1-b protein expression was evaluated in the whole lung and
serum by ELISA. (C) The numbers of blood monocytes, neutrophils, B and T cells in hypoxic versus normoxic mice were determined by flow cytometry. (D) The
numbers of lung infiltrating neutrophils and interstitial macrophages in these mice were quantified by flow cytometry. n = 5 mice per condition. Data are shown as
mean ± s.e.m. *P < 0.05, **P < 0.01, ****P < 0.001.
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neutrophils (Figure 2F and Supplementary Figure 8A). This
difference of unleashed leukocyte production could not be
attributed to higher engraftment of GFP+ HSPC under hypoxia
(Supplementary Figure 8B). In summary, these data indicate that
hypoxia drives HSPC into the cell cycle and increases their
differentiation into inflammatory cells.
Frontiers in Immunology | www.frontiersin.org 6
VEGFr1 Expression Is Increased in
Progenitor Cells Following
Hypoxia Exposure
The role of VEGF/VEGFr1 in hypoxia-induced angiogenesis is
well-documented (29, 51, 52). To investigate the possible role of
VEGF-A/VEGFr1 in hypoxia-mediated HSPC proliferation, we
A

B

D

F

C

E

FIGURE 2 | Hypoxia drives HSPC into the cell cycle. C57BL/6 mice were placed under either normoxic or hypoxic conditions for 21 days. Bone marrow was
collected. The frequencies and numbers of the hematopoietic progenitors in the bone marrow were determined by flow cytometry (A) and whole mount confocal
microscopy (B). The frequencies of HSC (C), LSK (D) and GMP (E) in the cell cycle stages were assessed using intracellular staining of Ki-67 and PI. (F) KikGR-
GFP+ (Kikume Green Red) HSPC were adoptively transferred into mice housed in either normoxic or hypoxic conditions for seven days. GFP+ progenies were
quantified four days later. n = 5 mice per condition. Data are shown as mean ± s.e.m. *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 0.001.
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A

D

F

G

J

IH

E

B C

FIGURE 3 | VEGFr1 expression is increased in HSPC in hypoxia. (A–C) C57BL/6 mice were placed under either normoxic or hypoxic conditions for 21 days.
Bone marrow was collected. (A) Vegfa and Vegfr 1 expression in the whole bone marrow was assessed by RT-qPCR. B–C) Vegfr 1 expression was measured in
bone marrow LSK and HSC in normoxic conditions (B) and GMP in normoxic and hypoxic conditions (C) by flow cytometry. The results are represented as
mean fluorescent intensity (MFI). (D) Vegfr 1 gene expression was measured in sorted GMP by RT-qPCR. (E–G) HSPC were sorted from bone marrow of
C57BL/6 mice and cultured in complete SFEM media in either normoxic or hypoxic conditions. (E) Heatmap representing expression of the genes downstream
to Vegf/Vegfr 1 in HSPC cultured under normoxic and hypoxic conditions. (F) Schematic depicting HIF-1a binding sites on both murine and human VEGFr 1
promoter regions. (G) Confirmation of the binding of HIF-1a to the murine Vegfr 1 promoter region assessed by ChIP qPCR. (H, I) VEGFr 1 expression assessed
in human (H) and murine (I) HSPC transfected with either siCTL or siHIF1A in hypoxic conditions. (J) Heatmap showing the expression of the cell cycle genes in
HSPC transfected with either siCtl or siHif1a in hypoxic conditions. n = 5 mice per condition (A–D), 5 replicates per condition (E–J). Data are shown as mean ±
s.e.m. *P < 0.05, **P < 0.01, ****P < 0.001.
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first assessed RNA expression of these genes in the whole bone
marrow of hypoxic mice. The expression of Vegfa, but not
Vegfr1, was increased in bone marrow cells of hypoxic mice
compared to their normoxic counterparts (Figure 3A). We
observed that LSK and HSC express Vegfr1 in the steady state
(Figure 3B). Additionally, the expression of Vegfr1 mRNA and
protein in bone marrow GMP increased in hypoxia
(Figures 3C, D). In line with these results, we observed that
mice exposed to cigarette smoke harbored higher frequency of
Vegfr1+ HSPC (Supplementary Figure 9A). VEGFR1
expression in the progenitors also increased (Supplementary
Figure 9B). Next, we identified the genes downstream to the
VEGFr1 signaling using Ingenuity Pathway Analysis
(Supplementary Figure 9C). The expression of these genes
was elevated in HSPC cultured under hypoxic conditions
(Figure 3E). These data indicate that hypoxia increases
VEGFr1 signaling in HSPC. Hypoxia-inducible factor 1a (HIF-
1a), a key transcription factor increased in hypoxia, binds to
several genes, and increases their expression (53–56). We
observed increased Hif1a expression in BM HSPC and GMP of
hypoxic mice (Supplementary Figure 9D). Flow cytometry
revealed increased numbers of Hif-1a+ HSPC and GMP in
hypoxic mice (Supplementary Figure 9E). Additionally, we
confirmed decreased expression of prolyl-2 hydroxylase, which
accelerates ubiquitination and lysosomal degradation of Hif-1a,
in HSPC of hypoxic mice (Supplementary Figure 9F).
Corresponding to the fact that Hif-1a increases glycolysis, we
observed elevated expression of glycolytic genes in bone marrow
HSPC of hypoxic mice (Supplementary Figure 9G). To decipher
the mechanisms of increased Vegfr1 expression in hypoxia, we
ascertained if the VEGFR1 promoter region has HIF-1a binding
sites. Our in silico analysis revealed that HIF-1a has several
binding sites on the VEGFr1 promoters in both humans and
mice (Figure 3F). Chromatin immunoprecipitation experiments
confirmed that HIF-1a binds to the Vegfr1 promoter in mouse
HSPC (Figure 3G). HIF-1a inhibition significantly diminished
hypoxia-mediated expression of VEGFr1 in human (Figure 3H)
and mouse (Figure 3I) HSPC. To delineate the role of HIF-1a in
hypoxia-induced HSPC proliferation, we silenced this
transcription factor in mouse HSPC and observed significant
downregulation of the genes involved in cell cycle progression
(Figure 3J) as well as the genes downstream to the VEGFr1
signaling (Supplementary Figure 9H). In aggregate, these data
indicate that HIF-1a directly binds to the VEGFr1 promoter in
HSPC, increases VEGFr1 expression and augments
h em a t o p o i e t i c p r o g e n i t o r p r o l i f e r a t i o n u n d e r
hypoxic conditions.

VEGFr Inhibition Decreases
HSPC Proliferation
The role of the VEGF signaling is well documented in
angiogenesis in different diseases such as cancer and age-
related macular degeneration (23–25, 52, 57). However, the
contribution of VEGFr in HSPC proliferation is not well
studied. To understand the role of VEGFr in hypoxia-mediated
Frontiers in Immunology | www.frontiersin.org 8
HSPC proliferation, we cultured HSPC sorted from mouse bone
marrow with SU5416, a VEGFr inhibitor (58, 59), under hypoxic
and normoxic conditions. VEGFr inhibition significantly
decreased the expression of cell cycle genes responsible for
HSPC proliferation (Figure 4A and Supplementary
Figure 10A). However, SU5416 inhibits both Vegfr1 and
Vegfr2. To ascertain if Vegfrr2 is also important in hypoxia-
mediated HSC proliferation, we measured Vegfr2 expression in
bone marrow cells of normoxic and hypoxic mice by qPCR. We
did not observe any significant difference in Vegfr2 expression in
bone marrow cells between these two groups of mice
(Supplementary Figure 10B). To evaluate the importance of
Vegfr2 in HSC proliferation, we have knocked down Vegfr2 in
HSPC isolated from B6 mice using siCtl and siVegfr2 and have
measured their proliferation. Vegfr2 does not have any
significant effect on progenitor proliferation (Supplementary
Figures 10C–F). To further examine the role of VEGFr
signaling in proliferation of HSPC, we assessed proliferation of
GMP in hypoxic mice injected with the VEGFr inhibitor.
Compared to untreated controls, VEGFr inhibitor-injected
mice had lower proportions of GMPs in the S-G2-M cell cycles
(Figures 4B, C). These mice had increased numbers of quiescent
cells in the G0 phase. Interestingly, VEGFr1 inhibition also
increased the frequency of GMP in the G1 phase, indicating a
G1 to S-G2M arrest in the absence of VEGFr signaling.
Additionally, there was a significant reduction in GMP
numbers in the bone marrow of hypoxic mice after VEGFr
inhibition (Figure 4D).

VEGFr Inhibition Decreased Inflammation
and Inflammatory Cell Numbers
We wanted to evaluate whether the decreased proliferation of
HSPC after VEGFr inhibition would have an impact on
inflammatory leukocyte generation. To this end, we
differentiated HSPC isolated from mouse bone marrow in
presence of the VEGFr inhibitor in hypoxic and normoxic
conditions. VEGFr inhibition in hypoxic and normoxic HSPC
significantly suppressed their differentiation into lymphoid cells,
myeloid cells, B cells, monocytes and neutrophils (Figure 5A and
Supplementary Figure 11A). Next, we investigated if VEGFr
inhibition decreases hypoxia-induced leukocytosis in vivo.
Compared to untreated control mice, VEGFr inhibitor-treated
mice had decreased percentages and numbers of monocytes and
neutrophils in peripheral blood and bone marrow
(Supplementary Figures 11B, C and Figures 5B, C).
Additionally, we utilized an additional loss of function
approach since SU5416 is not specific for VEGFr1. We
silenced Vegfr1 in sorted murine HSPC placed in hypoxia for
24 hours. We found that the ability of HSPC to differentiate into
mature leukocytes, especially B cells, myeloid cells, monocytes
and neutrophils, was reduced in HSPC treated with siVegfr1
compared to siCtl (Supplementary Figure 12A). Additionally,
we found decreased expression of the cell cycle check point genes
such as Cdk3, Cdk4, and Mki67 after Vegfr1 knock down
(Supplementary Figure 12B). Overall, these data indicate the
May 2022 | Volume 13 | Article 882484
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importance of VEGFr1 in the proliferation and differentiation of
HSPC into leukocytes under hypoxic conditions.
Patients With OSA and COPD Recapitulate
the Observations Made in
Hypoxic Animals
To ascertain systemic inflammation in patients with hypoxic lung
diseases, we performed a retrospective chart review of patients
with OSA characterized by intermittent hypoxia and COPD
marked by chronic hypoxia, and age-matched control patients
to enumerate inflammatory cells. The total numbers of
neutrophils, lymphocytes, and monocytes were significantly
increased in the patients with OSA and COPD compared to the
healthy controls (Figure 6 and Supplementary Figure 13A).
Additionally, the oxygen saturation levels of OSA and COPD
patients included in this study were significantly reduced
compared to healthy controls (Supplementary Figure 13B),
indicating hypoxia in these patients.
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DISCUSSION

Patients with hypoxic lung disease, including COPD and OSA,
demonstrate chronic inflammation evidenced by elevated
inflammatory cytokine levels and inflammatory leukocyte
numbers. The degree of systemic inflammation portends
clinical outcomes of hypoxic lung disease as well as severity of
comorbid conditions (6, 11, 41, 60, 61). There is growing
evidence that correction of underlying hypoxia can reduce
systemic inflammation highlighting the importance of hypoxia
in inflammation (62).

Consistent with serum cytokine levels observed in COPD and
OSA, we observed increased levels of IL-1b, IL-6, IL-18, and
TNF-a in peripheral blood of mice exposed to hypoxia. Both
TNF-a and IL-6 have been shown to be independent risk factors
of increased morbidity and mortality in hypoxic lung disease,
particularly in COPD (63). IL-6 has been shown to promote
proliferation of HSC (64), but interestingly, TNF-a has exhibited
a contrasting function regulating hematopoiesis (65). Systemic
inflammation has long been postulated to drive the pathogenesis
A

B

D

C

FIGURE 4 | Vegfr inhibition decreased hematopoietic progenitor proliferation in hypoxia. (A) Heatmap depicting expression of the cell cycle genes in mouse HSPC
treated with increasing amounts of a Vegfr inhibitor (SU5416, 10-100nM) or vehicle. (B-D) C57BL/6 mice were treated with either SU5416 or vehicle diluent and
placed in either normoxia or hypoxia for 21 days. Bone marrow cells were analyzed using flow cytometry to assess GMP proliferation (B, C) and number (D). n = 5
replicates or mice per condition. Data are shown as mean ± s.e.m. *P < 0.05, **P <. 0.01, ***P < 0.001, ****P < 0.001.
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of diseases such as atherosclerosis. The CANTOS trial, assessing
monoclonal antibody inhibition of IL-1b, has clearly
demonstrated a benefit of attenuating inflammation
independent of cholesterol lowering therapies in atherosclerosis
(66). Together, these findings illustrate an important role of
inflammation in hypoxic lung disease-associated comorbidities.

Elevated numbers of leukocytes in peripheral blood has
received recent attention as a marker of inflammation and
independent risk factor for diseases such as atherosclerosis (67,
68) and diabetes (69). Lodge et al. illustrated the role of
neutrophil-mediated lung damage in patients with COPD (70).
Similarly, neutrophilia has been demonstrated as a key feature of
obstructive sleep apnea and postulated to contribute to the
Frontiers in Immunology | www.frontiersin.org 10
pathogenesis of OSA (71). The present study demonstrates a
mechanism of hypoxia-mediated expansion of inflammatory
leukocytes, which likely contribute to the pathogenesis and
comorbid conditions of hypoxic lung diseases.

In response to tissue injury, mature leukocytes may be
mobilized from sequestered sites or generated de novo from
hematopoietic tissues (72, 73). It is reasonable to postulate acute
increase in recruitment of mature leukocytes from hematopoietic
sites contributes to a relative paucity of leukocytes in the bone
marrow and abundance in peripheral circulation. In contrast,
under chronic inflammation, expansion of HSPC maintains
reservoirs of leukocytes in hematopoietic tissues (74, 75).
Additionally, studies have shown that HSPC expand profusely
A

B

C

FIGURE 5 | Vegfr inhibition decreased inflammation in hypoxia. (A) Mouse HSPC were treated with increasing amounts of a Vegfr inhibitor (SU5416, 10-
100nM) or vehicle diluent (no treatment). Lineage commitment of HSPC was assessed by flow cytometry. B&C) C57BL/6 mice were treated with either a Vegfr
inhibitor (SU5416) or vehicle diluent and placed in hypoxia for 21 days. Bone marrow and blood leukocytes were analyzed using flow cytometry. Percentages
of blood (B) and bone marrow (C) monocytes and neutrophils were ascertained. n = 5 replicates or mice per condition. Data are shown as mean ± s.e.m. *P
< 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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in hypoxic conditions in vitro (76–78). In line with this, we
observed a symmetric expansion of leukocytes in the peripheral
blood and bone marrow in hypoxic conditions.

VEGFr1 signaling in the proliferation and differentiation of
endothelial cells in angiogenesis, particularly in the development
of cancer (79, 80), has been well documented. However, the role
of VEGF signaling in the proliferation of hematopoietic stem
cells and hematopoiesis is understudied. In line with our
findings, a few other studies have shown that inhibition of
Vegfr1 diminished HSC cell cycling and lineage differentiation
after bone marrow suppression (81), and pharmacological
stabilization of HIF-1a increases HSC quiescence (82). Our
study demonstrates that the proliferation of HSPC and
leukocytosis under hypoxic conditions is mediated by VEGFr1
although the data do not rule out the contribution of VEGFr2 in
this process. Thus, the current study identifies VEGFr1 as a novel
target to dampen inflammation in diseases characterized by
hypoxia. Randomized clinical trials will be required to validate
the therapeutic efficacy of this target.

HIF-1a is an important regulator of VEGFA expression in
local hypoxia, such as tumor microenvironment (83) and on the
development and survival of the hematopoietic system (84, 85).
HIF-1a also regulates VEGFA transcription, and mobilization of
HSPC increases VEGF-A expression (86). Our in silico and
molecular experiments demonstrated that HIF-1a directly
interacts with the VEGFr1 promoters in human and mouse
HSPC under hypoxic conditions contributing to increased
expression of this receptor. The importance of this finding was
further supported by suppression of HSPC proliferation and
leukocyte differentiation afterHif1a silencing in HSPC. However,
we acknowledge that we do not know if higher HSPC
differentiation is due to the direct effect of hypoxia/HIF-1a or
the resulting inflammation. Although our data show that Hif1a
silencing decreased HSPC proliferation, HIF-1a also promotes
inflammation. Congruently, our and other groups have shown
that hypoxia results in systemic inflammation (37, 38, 87).
Frontiers in Immunology | www.frontiersin.org 11
Proinflammatory cytokines can drive HSPC into the cell cycle
and increase their proliferation. Thus, exaggerated inflammation
may increase lineage output from HSPC in hypoxic mice. Future
studies are warranted to understand these mechanisms to reveal
potential molecular targets to reduce inflammation in
hypoxic diseases.
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