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Abstract 
Ubiquitination related genes (URGs) are important biomarkers and therapeutic targets in cancer. However, URG prognostic prediction 
models have not been established in breast cancer (BC) before. Our study aimed to identify URGs to serve as potential prognostic 
indicators in patients with BC.The URGs were downloaded from the ubiquitin and ubiquitin-like conjugation database. GSE42568 
and The Cancer Genome Atlas were exploited to screen differentially expressed URGs in BC. The univariate Cox proportional 
hazards regression analysis, least absolute shrinkage and selection operator analysis, and multivariate Cox proportional hazards 
regression analysis were employed to construct multi-URG signature in the training set (GSE42568). Kaplan–Meier curve and log-
rank method analysis, and ROC curve were applied to validate the predictive ability of the multi-URG signature in BC. Next, we 
validated the signature in test set (GSE20685). Finally, we performed GSEA analysis to explore the mechanism.We developed a 
4-URG (CDC20, PCGF2, UBE2S, and SOCS2) signature with good performance for patients with BC. According to this signature, 
BC patients can be classified into a high-risk and a low-risk group with significantly different overall survival. The predictive ability of 
this signature was favorable in the test set. Univariate and multivariate Cox regression analysis showed that the 4-URG signature 
was independent risk factor for BC patients. GSEA analysis showed that the 4-URG signature may related to the function of DNA 
replication, DNA repair, and cell cycle.Our study developed a novel 4-URG signature as a potential indicator for BC.

Abbreviations: AUC = area under the curve, BC = breast cancer, GEO = gene expression Omnibus, GSEA = gene set 
enrichment analysis, HR = hazard ratio, LASSO = least absolute shrinkage and selection operator, OS = overall survival, ROC = 
receiver operating characteristic, TCGA = The Cancer Genome Atlas, URG = ubiquitination related gene.
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1. Introduction

Breast cancer (BC) ranks first in terms of incidence among 
all cancers according to statistics from International Agency 
for Research on Cancer.[1] Although novel therapies includ-
ing targeted therapy and immune therapy are implemented 
in clinical practice and clinical trial design, clinical outcomes 
for BC remain unsatisfactory. There are also promising treat-
ments of medical plants with less toxicity.[2] The anticancer 
mechanism of medical plant is versatile such as stimulation of 
death, promotion of cell cycle arrest, inhibition of cell inva-
sion and migration and so on, but it needs time and large 
clinical trial for these medical plants be widely used. With 
advances in cancer biology, it is possible to develope com-
pounds anchoring small molecules to macromolecules that act 
with specific mechanism such as DNA activation, or tubulin 
polymerization.[3] Nevertheless, these compounds are lacked. 

Tailored treatment based on molecules which are involved in 
the growth, progression and metastasis of BC is meaningful 
for improving the outcomes. However, these molecules are 
limited. Thus, it is of vital importance to identify novel mol-
ecules contribute to risk stratification and clinical-decision 
making.

Ubiquitination is one of the most common and important 
posttranslational modifications. Ubiquitin preoteasome sys-
tem is a highly-specific, adenosine triphosphate-dependent 
pathway regulating specific proteins degradation in eucary-
ote. Ubiquitination is a reversible process, which was medi-
ated by 3 types of enzymes, E1 ubiquitin activating enzyme, 
E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase.[4] 
E1 activates ubiquitin and transfer it to its activate site Cys 
in the adenosine triphosphate-dependent manner. E2 trans-
ports ubiquitin to E2 itself by binding E1. E3 recognizes sub-
strate proteins and catalyzes ubiquitin transfer from E2 to 
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the substrate. Proteins labeled with ubiquitin are finally taken 
to the proteasome for degradation. There are other ubiqui-
tin-like modifications, including SUMOylation, Pupylation, 
and ISGlation.[5] The process can be reversed by deubiquiti-
nating enzymes to cleave ubiquitin and ubiquitin-like from 
the substrate. In addition, the ubiquitin also has many non-
degradative functions.[6] As reported by other studies,[7,8] 
ubiquitination plays important roles in many cell signaling 
pathways and biological processes, such as protein activation 
and transactivation, DNA replication and repair, cell cycle, 
chromatin dynamics, transcription signaling transduction, 
autophagy, and immune response, suggesting them as import-
ant biomarkers and therapeutic targets. However, ubiquitina-
tion related gene (URG) prognostic prediction models have 
not been established in BC before.

In the present study, we exploited gene expression Omnibus 
(GEO) database and The Cancer Genome Atlas (TCGA) to 
screen differentially expressed prognostic URGs. Based on 
these prognostic URGs, we identified a 4-URG signature with 
good performance for patients with BC. Our analysis suggests 
URGs play important roles in BC and were potential prognostic 
biomarkers.

2. Materials and Methods

2.1. Data collection and processing

We applied GEO database[9] (http://www.ncbi.nlm.nih.
gov/geo/) (GSE42568 and GSE20685) to acquire the gene 
expression quantification data and corresponding clinic data 
of patients with BC. We applied GEO2R[10] to identify dif-
ferentially expressed genes in GSE42568 dataset[11] (104 BC 
samples and 17 normal samples) according to the threshold 
|log2 fold change (log2FC)| > 1 and adjust P < .05. RNA-
seq data of patients with BC were retrieved from the TCGA 
(http://portal.gdc.cancer.gov) (112 adjacent normal samples 
and 1089 primary solid tumor samples). We applied limma 

package[12] to identify differentially expressed genes based 
on the same threshold. The volcano plots were plotted to 
visualize differentially expressed genes in GSE42568 dataset 
and TCGA. The URGs were downloaded from the ubiqui-
tin and ubiquitin-like conjugation database[13] (http://uucd.
biocuckoo.org). We merged the URGs and differentially 
expressed genes in GSE42568 dataset and TCGA to acquire 
differentially expressed URGs expression. 327 BC patients 
in GSE20685[14] with gene expression data and baseline data 
were included as validation set. The univariate Cox pro-
portional hazards regression analysis was used to explore 
the association of differentially expressed URGs with BC 
patients’ overall survival (OS) and OS time in the training 
set (GSE42568). Those URGs with P value < .05 were con-
sidered prognostic URGs.

2.2. Construction, evaluation, and validation of URG 
signature in BC

The prognostic URGs were entered into the least absolute 
shrinkage and selection operator (LASSO) method analysis 
to select the best candidates in the training set (GSE42568) 
by using glmnet package[15] in R. Then, we conducted mul-
tivariate Cox proportional hazards regression analysis to 
develop the multi-URG signature using the candidates result-
ing from LASSO analysis. Based on the corresponding coef-
ficients and expression of selected genes, the URG signature 
was constructed as follows: risk score = (β1*Gene1Exp + β2* 
Gene2Exp + β3* Gene3Exp + ··· + βn* GenenExp). In this for-
mula, β represents the coefficients in the multivariate Cox 
regression analysis. Next, we calculated the risk score for 
each BC patients and classified BC patients into a high-risk 
and low-risk group according to the median risk score. The 
Kaplan–Meier curve and log-rank method were performed 
to evaluate the OS difference between the high-risk and 
low-risk group. We used time-dependent receiver operating 

Figure 1. The workflow of the present study. BC = breast cancer, GSEA = gene set enrichment analysis, ROC = receiver operating characteristic, TCGA = The 
Cancer Genome Atlas, URGs = ubiquitination related genes, UUCD = ubiquitin and ubiquitin-like conjugation database.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://portal.gdc.cancer.gov
http://uucd.biocuckoo.org
http://uucd.biocuckoo.org


3

Zheng et al. • Medicine (2022) 101:37 www.md-journal.com

characteristic (ROC) curve to assessed the sensitivity and 
specificity of the URG signature by calculating the area under 
the curve (AUC).[16,17] We applied the multi-URG signature in 
the test set (GSE20685) to verify the reliability.

2.3. Independence of UGR signature in BC and correlation 
of URG with clinicopathological factors

To verify the independence of the prognostic value of the 
multi-URG signature based risk score and clinicopathologi-
cal factors (including age, grade, tumor size, lymph node sta-
tus, and metastasis status), univariate and multivariate Cox 
regression analyses were performed to explore their asso-
ciations with OS of BC patients. Factors with P value <.05 
in the multivariate Cox regression analysis were considered 
independent factors. We also evaluated the association of 
URGs in the multi-URG signature with clinicopathological 
factors.

2.4. Functional enrichment analysis

In order to reveal the heterogeneity between high-risk group 
and low-risk group patients, we performed gene set enrichment 
analysis (GSEA).[18] Gene Ontology and the Kyoto Encyclopedia 
of Genes and Genomes pathway[19] gene sets were selected as the 
reference gene sets. The results of GSEA were visualized using 
enrichplot package[20] in R language.

2.5. Statistical methods

All statistical analyses were performed by R software (version 
4.1.3). Wilcoxon rank-sum test was used to compare the differ-
ence between the 2 groups, Kruskal–Wallis test was performed 
to compare the difference of 3 or more groups. Kaplan–Meier 
curve and log-rank method were performed to evaluate the OS 
difference between groups. The ROC curves were plotted to 
assessed the sensitivity and specificity of the URG signature. A 
2-tailed P value <.05 was considered statistically significant.

Figure 2. Identification of differentially expressed URGs in breast cancer. (A) Volcano plot of differentially expressed genes in TCGA. (B) Volcano plot of differen-
tially expressed genes in GSE42568 dataset. (C) Venn plot of URGs and differentially expressed genes. (D) Univariate Cox hazards regression analysis of URGs 
with OS of breast cancer patients. OS = overall survival, TCGA = The Cancer Genome Atlas, URG = ubiquitination related gene.
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Figure 3. Construction and evaluation of prognostic URG signature for breast cancer patients. (A) LASSO coefficient profiles of differentially expressed URGs. 
(B) “Leave-one-out-cross-validation” for parameter selection in the LASSO model. (C, E) Kaplan–Meier curve of breast cancer patients according to the 4-URG 
signature in the training set and test set. (D, F) ROC curve of the 4-URG signature for predicting 3-year OS, and 5-year OS of BC patients in the training set 
and test set. LASSO = least absolute shrinkage and selection operator, OS = overall survival, ROC = receiver operating characteristic, URG = ubiquitination 
related gene.
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3. Results

3.1. Identification of prognostic URGs in BC

The workflow of the present study is presented in Figure 1. As 
Figure  2 showed, a total of 61 differentially expressed URGs 
in TCGA (Fig.  2A), and 97 differentially expressed URGs in 
GSE42568 (Fig. 2B) were identified. As a result, we acquired 31 
common differentially expressed URGs in both datasets (Fig. 2C). 
These URGs were further assessed for their association with the 
survival of BC in the training group (GSE42568). 13 URGs were 
found to be significantly associated with OS of BC by univariate 
Cox proportional hazards regression analysis (Fig. 2D). Among 
these 13 URGs, SOCS2 and USP53 were found to be protective 
factors of BC patients (hazard ratio < 1), and the remaining 11 
URGs were risk factors of BC patients (hazard ratio > 1).

3.2. Construction, evaluation, and validation of URG 
signature in BC

A total 13 prognostic URGs were fitted into a LASSO Cox 
analysis to identify the optimal prognostic URGs in the training 
set. We recognized 5 URGs (CDC20, KLHL13, PCGF2, SOCS2 
and UBE2S) using LASSO Cox analysis (Fig.  3A, B). Next, 
we applied multivariate Cox proportional hazards regression 
analysis to identify optimal URGs. We identified 4 URGs and 
constructed a prognostic signature by integrating the 4 URGs 
expression profiles and corresponding Cox regression coeffi-
cient. We calculated the risk score for each patient in the train-
ing group and ranked them into a high-risk group (n = 52) and 
a low-risk group (n = 52) according to the median of risk score. 
The Kaplan–Meier curve showed patients in high-risk group 
have significantly worse OS than patients in low-risk group 
(P < .001, Fig. 3C). The prognostic power of the 4-URG signa-
ture was evaluated by calculating the AUC. The results showed 
that the AUC of 4-URG signature for predicting 3-year survival, 
and 5-year survival of BC patients was 0.729, and 0.817, respec-
tively, which indicated good performance (Fig.  3D). To verify 
the reliability of this 4-URG signature in BC, we applied this sig-
nature in the test set (GSE20685). We calculated the risk score 
for each patient in the test set and ranked them into a high-risk 
group (n = 164) and a low-risk group (n = 163). As presented in 
Figure 3E, patients in high-risk group have significantly worse 
OS than patients in low-risk group (P = .005). The AUC of the 
4-URG signature for predicting 3-year survival, and 5-year sur-
vival in the test set was 0.656, and 0.659 respectively (Fig. 3F).

3.3. Independence of the 4-URG signature in BC

In the training test, univariate Cox regression analysis sug-
gested that the 4-URG signature based risk score, lymph node 

status, and grade were significantly associated with patients’ 
survival (Fig.  4A). We further preformed multivariate Cox 
regression analysis using these factors. The results revealed 
that the 4-URG signature and lymph node status were related 
with the OS of BC patients (Fig. 4B). Univariate and multivar-
iate Cox regression analyses in the test set also indicated the 
4-URG signature was an independent risk factors for predicting 
prognosis of BC patients (see Figure S1, Supplemental Digital 
Content 1, http://links.lww.com/MD/H329). As displayed in 
Figure 5, BC patients with grade 3 tend to have higher expres-
sion of CDC20 and UBE2S than patients with grade 2 and 
grade 1. Compared with T1 stage BC patients, T2 stage BC 
patients tend to have higher expression of CDC20 and UBE2S 
(Fig. 5A and Figure S2, Supplemental Digital Content 2, http://
links.lww.com/MD/H330).

3.4. Gene set enrichment analysis between high-risk group 
and low-risk group patients

To explore the difference of biological characteristics between 
high-risk and low-risk group patients, we performed GSEA 
analysis. The GSEA results were presented in Figure 6. Biological 
process of DNA repair, DNA replication, chromosome separa-
tion, and cell cycle checkpoint were enriched in high-risk group 
(Fig.  6A). As to Kyoto Encyclopedia of Genes and Genomes 
pathways, cell cycle, DNA replication, oxidative phosphoryla-
tion and base excision repair were the mainly enriched path-
ways in high-risk group (Fig. 6B).

4. Discussion
In the present study, we developed a 4-URG signature with good 
performance for patients with BC. According to the 4-URG sig-
nature, BC patients can be classified into a high-risk and low-
risk group with significantly different OS. The 4-URG signature 
was validated in the test set (GSE20685). Univariate and mul-
tivariate Cox regression analyses showed that this signature 
was an independent risk factor for BC patients. GSEA analysis 
revealed that the 4-URG signature may related to the function 
of DNA replication, and cell cycle.

Conventional clinicopatholgic predictors such as age, gender, 
and TNM staging system are insufficient to predict the progno-
sis of breast patients due to molecules complexity and biological 
heterogeneity of BC. To provide a quantitative tool for predict-
ing the survival rate of TNBC patients, we constructed a 4-URG 
signature based risk score. ROC curve suggested the signature is 
a stable and reliable predictor for OS of BC patients.

Of the 4 URGs, CDC20, PCGF2, and UBE2S are risk fac-
tors of BC, and SOCS2 is protective factor of BC. We further 
discussed the functions of these URGs. The factor CDC20, 

Figure 4. Forest plots of the 4-URG signature and clinicopathological factors for predicting prognosis of patients with breast cancer. (A) Univariate Cox regres-
sion analysis. (B) Multivariate Cox regression analysis. URG = ubiquitination related gene.

http://links.lww.com/MD/H329
http://links.lww.com/MD/H330
http://links.lww.com/MD/H330
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cell division cycle 20, acts as a regulatory protein interact-
ing with several other proteins at multiple points in the cell 
cycle. The study by Song et al[21] found that knockdown of 
CDC20 reduced triple-negative BC cell growth and migration. 
In addition, CDC20, as a substrate receptor of ubiquitin ligase 

Anaphase-Promoting Complex/Cyclosome, mediated degrada-
tion of SMAR1 and promoted cell migration and invasion in BC 
cell lines.[22] The results of our study indicated the expression 
of CDC20 was higher in high stage and grade BC. Our study 
supports the evidence that CDC20 is an oncogene of BC and 

Figure 5. The correlation of 4 URGs with clinicopathological factors of breast cancer. Heatmap of the expression of 4 URGs with clinicopathological factors of 
breast cancer (A) T stage, (B) N stage, (C) different grade. URGs = ubiquitination related genes. *P < .05; ***P < .001.
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promotes tumor growth and metastasis. PCGF2, also named as 
MEL-18, encoded protein containing a ring finger motif. The 
role of PCGF2 in BC is controversial. Silva et al[23] measured 
the expression PCGF2 and other polycomb group members 
in a series of 134 BC samples. They found PCGF2 expression 
correlated with the cell cycle regulators, but they did not ana-
lyze the prognostic role of PCGF2 in BC. Lee et al[24–27] con-
ducted a series of studies about the role of PCGF2 in BC. They 
found that PCGF2 prevent trastuzumab resistance in HER2 
positive BC.[26] Besides, they found that PCGF2 mediated Akt 
phosphorylation, and further promoted cyclin D1 expression 
and p27 phosphorylation in BC cell lines, through which BC 
cell growth was attenuated and G(1)-S phase transition was 

decelerated.[27] In addition, they reported that PCGF2 inhib-
ited epithelial-mesenchymal transition of BC cells, the number 
and self-renewal activity of BC stem cells.[24,25] The study by 
Guo et al[28] indicated that PCGF2 repressed Akt activity in 
BC cells. Guo et al[29] concluded that PCGF2 was conversely 
correlated with the pathological classifications and served as 
a protective factor for BC. However, Mai et al[30] found that 
AKT1 directly phosphorylated PCGF2 and promoted malig-
nant behaviors in BC. Therefore, PCGF2 may have versatile 
roles in BC. In our study, we found that PCGF2 is upregulated 
in BC tissues and functions as a risk factor for BC. We specu-
late that PCGF2 may play a tumor suppressing role or act as 
an oncogene by affecting the ubiquitination levels of different 

Figure 6. Gene set enrichment analysis in high-risk group. (A) Biological process enriched in high-risk group. (B) KEGG pathways enriched in high-risk group. 
KEGG = Kyoto Encyclopedia of Genes and Genomes.
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substrate proteins. The functions of PCGF2 in BC require fur-
ther study. UBE2S may regulate cell cycle by cooperating with 
CDC20, and Anaphase-Promoting Complex/Cyclosome to 
build K11-linked ubiquitin chains on substrates to target them 
for proteasomal degradation.[31] However, the role of UBE2S 
in BC has not been fully characterized. Our study revealed 
that UBE2S was higher in grade3 than in grade1 and grade2. 
Moreover, UBE2S was negatively related to OS of BC. Taken 
together, UBE2S may act as an oncogene in BC and require 
further research. SOCS2 is a member of the suppressor of 
cytokine signaling family.[32] SOCS2 was reported to inversely 
correlate with histopathological grade of BC and acted as a 
suppressor,[33,34] which confirms the reliability of our results.

We conducted GSEA analysis to explore the mechanism 
of OS difference between high-risk and low-risk group. Cell 
cycle, DNA repair, and DNA replication related biological pro-
cess and pathways were the mainly enriched items in high-risk 
group. DNA replication is one of the fundamental biological 
processes in which dysregulation can cause genome instabil-
ity and contribute to cancer etiology.[35] DNA damage repair 
processes are formed by cells to maintain genome stability. 
Defects in the DNA damage repair processes may cause can-
cer.[36] Moreover, impaired DNA damage repair may affect the 
sensitivity of BC cells to certain drugs including chemotherapy 
drugs, targeted therapy drugs, and immunotherapy drugs.[37] 
As is known, deregulation of the cell cycle is a hallmark of 
cancer that enables limitless cell division. Deregulation of the 
cell cycle is frequently observed in BC.[38] Therapeutic targeting 
of the cell cycle for BC has emerged as a promising anticancer 
strategy.

Admittedly, our study has some limitations because it was 
based on the public database and data analysis only. The roles 
of these prognostic URGs deserve further in vitro and in vivo 
studies because of their strong relevance with prognosis of BC.

5. Conclusions
In conclusion, we identified a novel 4-URG signature with good 
performance for patients with BC. Moreover, GSEA analysis 
showed that the 4-URG signature may related to the function 
of DNA replication, DNA repair, and cell cycle. Our analysis 
suggests URGs play important roles in BC and were potential 
prognostic biomarkers.

Author contributions
YZ and WL performed the research, analyzed and interpreted 
data, and drafted the manuscript. BC participated in data anal-
ysis. KZ participated in research design.
Conceptualization: Kankan Zhao.
Data curation: Yuan Zheng, Bo Chen.
Formal analysis: Yuan Zheng, Wenliang Lu.
Supervision: Kankan Zhao.
Validation: Wenliang Lu, Bo Chen.
Visualization: Yuan Zheng, Wenliang Lu.
Writing – original draft: Yuan Zheng.
Writing – review & editing: Kankan Zhao.

References
 [1] Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA 

Cancer J Clin. 2021;71:7–33.
 [2] Galucio NCDR, Moysés DDA, Pina JRS, et al. Antiproliferative, 

genotoxic activities and quantification of extracts and cucurbita-
cin B obtained from Luffa operculata (L.) Cogn. Arab J Chem. 
2022;15:103589.

 [3] Neto R, Santos C, Henriques S, et al. Novel chalcones derivatives with 
potential antineoplastic activity investigated by docking and molecular 
dynamics simulations. J Biomol Struct Dyn. 2022;40:2204–16.

 [4] Scheffner M, Nuber U, Huibregtse JM. Protein ubiquitination 
involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature. 
1995;373:81–3.

 [5] Hochstrasser M. Origin and function of ubiquitin-like proteins. Nature. 
2009;458:422–9.

 [6] Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signal-
ing. Mol Cell. 2009;33:275–86.

 [7] Berndsen CE, Wolberger C. New insights into ubiquitin E3 ligase mech-
anism. Nat Struct Mol Biol. 2014;21:301–7.

 [8] Ulrich HD, Walden H. Ubiquitin signalling in DNA replication and 
repair. Nat Rev Mol Cell Biol. 2010;11:479–89.

 [9] Clough E, Barrett T. The Gene Expression Omnibus Database. Methods 
Mol Biol. 2016;1418:93–110.

 [10] Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional 
genomics data sets – update. Nucleic Acids Res. 2013;41:D991–5.

 [11] Clarke C, Madden SF, Doolan P, et al. Correlating transcriptional net-
works to breast cancer survival: a large-scale coexpression analysis. 
Carcinogenesis. 2013;34:2300–8.

 [12] Ritchie ME, Phipson B, Wu D, et al. limma powers differential expres-
sion analyses for RNA-sequencing and microarray studies. Nucleic 
Acids Res. 2015;43:e47.

 [13] Gao T, Liu Z, Wang Y, et al. UUCD: a family-based database 
of ubiquitin and ubiquitin-like conjugation. Nucleic Acids Res. 
2013;41:D445–51.

 [14] Kao KJ, Chang KM, Hsu HC, Huang AT. Correlation of microar-
ray-based breast cancer molecular subtypes and clinical outcomes: 
implications for treatment optimization. BMC Cancer. 2011;11:143.

 [15] Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized 
linear models via coordinate descent. J Stat Softw. 2010;33:1–22.

 [16] Blanche P, Dartigues JF, Jacqmin-Gadda H. Estimating and com-
paring time-dependent areas under receiver operating characteris-
tic curves for censored event times with competing risks. Stat Med. 
2013;32:5381–97.

 [17] Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves 
for censored survival data and a diagnostic marker. Biometrics. 
2000;56:337–44.

 [18] Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment 
analysis: a knowledge-based approach for interpreting genome-wide 
expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

 [19] Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for inte-
gration and interpretation of large-scale molecular data sets. Nucleic 
Acids Res. 2012;40:D109–14.

 [20] Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for com-
paring biological themes among gene clusters. Omics. 2012;16:284–7.

 [21] Song C, Lowe VJ, Lee S. Inhibition of Cdc20 suppresses the metas-
tasis in triple negative breast cancer (TNBC). Breast Cancer Tokyo. 
2021;28:1073–86.

 [22] Paul D, Ghorai S, Dinesh US, Shetty P, Chattopadhyay S, Santra MK. 
Cdc20 directs proteasome-mediated degradation of the tumor suppres-
sor SMAR1 in higher grades of cancer through the anaphase promoting 
complex. Cell Death Dis. 2017;8:e2882.

 [23] Silva J, García JM, Peña C, et al. Implication of polycomb members 
Bmi-1, Mel-18, and Hpc-2 in the regulation of p16INK4a, p14ARF, 
h-TERT, and c-Myc expression in primary breast carcinomas. Clin 
Cancer Res. 2006;12:6929–36.

 [24] Won HY, Lee JY, Shin DH, et al. Loss of Mel-18 enhances breast 
cancer stem cell activity and tumorigenicity through activating 
Notch signaling mediated by the Wnt/TCF pathway. FASEB J. 
2012;26:5002–13.

 [25] Lee JY, Park MK, Park JH, et al. Loss of the polycomb protein Mel-
18 enhances the epithelial-mesenchymal transition by ZEB1 and ZEB2 
expression through the downregulation of miR-205 in breast cancer. 
Oncogene. 2014;33:1325–35.

 [26] Lee JY, Joo HS, Choi HJ, et al. Role of MEL-18 amplification in anti-
HER2 therapy of breast cancer. J Natl Cancer Inst. 2019;111:609–19.

 [27] Lee JY, Jang KS, Shin DH, et al. Mel-18 negatively regulates INK4a/
ARF-independent cell cycle progression via Akt inactivation in breast 
cancer. Cancer Res. 2008;68:4201–9.

 [28] Guo WJ, Zeng MS, Yadav A, et al. Mel-18 acts as a tumor suppressor 
by repressing Bmi-1 expression and down-regulating Akt activity in 
breast cancer cells. Cancer Res. 2007;67:5083–9.

 [29] Guo BH, Zhang X, Zhang HZ, et al. Low expression of Mel-18 
predicts poor prognosis in patients with breast cancer. Ann Oncol. 
2010;21:2361–9.

 [30] Mai J, Peng XD, Tang J, et al. AKT-mediated regulation of chroma-
tin ubiquitylation and tumorigenesis through Mel18 phosphorylation. 
Oncogene. 2021;40:2422–36.



9

Zheng et al. • Medicine (2022) 101:37 www.md-journal.com

 [31] Bonacci T, Emanuele MJ. Impressionist portraits of mitotic exit: APC/C, 
K11-linked ubiquitin chains and Cezanne. Cell Cycle. 2019;18:652–60.

 [32] Letellier E, Haan S. SOCS2: physiological and pathological functions. 
Front Biosci (Elite Ed). 2016;8:189–204.

 [33] Haffner MC, Petridou B, Peyrat JP, et al. Favorable prognostic value of 
SOCS2 and IGF-I in breast cancer. BMC Cancer. 2007;7:136.

 [34] Farabegoli F, Ceccarelli C, Santini D, Taffurelli M. Suppressor of cyto-
kine signalling 2 (SOCS-2) expression in breast carcinoma. J Clin 
Pathol. 2005;58:1046–50.

 [35] Kitao H, Iimori M, Kataoka Y, et al. DNA replication stress and cancer 
chemotherapy. Cancer Sci. 2018;109:264–71.

 [36] He C, Kawaguchi K, Toi M. DNA damage repair functions and targeted 
treatment in breast cancer. Breast Cancer Tokyo. 2020;27:355–62.

 [37] Aktas BY, Guner G, Guven DC, Arslan C, Dizdar O. Exploiting DNA 
repair defects in breast cancer: from chemotherapy to immunotherapy. 
Expert Rev Anticancer Ther. 2019;19:589–601.

 [38] Thu KL, Soria-Bretones I, Mak TW, Cescon DW. Targeting the cell cycle 
in breast cancer: towards the next phase. Cell Cycle. 2018;17:1871–85.


