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ABSTRACT

Objectives Trajectories of estimated glomerular filtration
rate (eGFR) decline vary highly among patients with
chronic kidney disease (CKD). It is clinically important to
identify patients who have high risk for eGFR decline. We
aimed to identify clusters of patients with extremely rapid
eGFR decline and develop a prediction model using a
machine learning approach.

Design Retrospective single-centre cohort study.
Settings Tertiary referral university hospital in Toyoake
city, Japan.

Participants A total of 5657 patients with CKD with
baseline eGFR of 30 mL/min/1.73m? and eGFR decline

of >30% within 2 years.

Primary outcome Our main outcome was extremely rapid
eGFR decline. To study-complicated eGFR behaviours,

we first applied a variation of group-based trajectory
model, which can find trajectory clusters according to

the slope of eGFR decline. Our model identified high-level
trajectory groups according to baseline eGFR values and
simultaneous trajectory clusters. For each group, we
developed prediction models that classified the steepest
eGFR decline, defined as extremely rapid eGFR decline
compared with others in the same group, where we used
the random forest algorithm with clinical parameters.
Results Our clustering model first identified three high-
level groups according to the baseline eGFR (G1, high GFR,
99.7+19.0; G2, intermediate GFR, 62.9+10.3 and G3, low
GFR, 43.7+7.8); our model simultaneously found three
eGFR trajectory clusters for each group, resulting in nine
clusters with different slopes of eGFR decline. The areas
under the curve for classifying the extremely rapid eGFR
declines in the G1, G2 and G3 groups were 0.69 (95% Cl,
0.63 0 0.76), 0.71 (95% CI 0.69 to 0.74) and 0.79 (95%
Cl 0.75 to 0.83), respectively. The random forest model
identified haemoglobin, albumin and C reactive protein as
important characteristics.

Conclusions The random forest model could be useful in
identifying patients with extremely rapid eGFR decline.

," Hiroki Hayashi,? Ryosuke Yanagiya,® Akira Koseki,’
Toshiya Iwamori,* Michiharu Kudo,* Shingo Fukuma

° Yukio Yuzawa®

STRENGTHS AND LIMITATIONS OF THIS STUDY

= We also adapted a unique and novel approach for
clustering using the hierarchy of curve steepness
and trajectory, which makes the algorithm efficient
and fast.

= A key limitation is that training of our model only
relies on electronic health record data we have, and,
thus, even though our data were collected from a
large hospital and we use fair algorithms, our re-
sultant models may incur inherent bias in the data
if existing.

= We adopted an intriguing design of prediction mod-
el using machine learning, which differentiates the
rapid decline group from the other groups using
subject’s covariates with such groups, which are
clustered by the shape of estimated glomerular
filtration rate declines using a novel and practical
automatic trajectory clustering algorithm.

Trial registration UMIN 000037476; This study was
registered with the UMIN Clinical Trials Registry.

INTRODUCTION

The number of patients with chronic kidney
disease (CKD) is increasing worldwide,
resulting in an increased number of patients
requiring dialysis and kidney transplanta-
tion and suffering from cardiovascular (CV)
events." *According to the Global Burden
Disease study data, the incidence, prevalence
and mortality rate of CKD increased by 89%,
87% and 98%, respectively, between 1990 and
2016.° However, many patients with CKD are
asymptomatic until the kidney function dete-
riorates. Therefore, a diagnosis of CKD at an
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earlier stage is required. However, trajectories of glomer-
ular filtration rate (GFR) vary between patients and are
reported to depend on the primary kidney disease, blood
pressure and proteinuria.”® We believe that it would be
useful if we could accurately predict the extremely rapid
estimated GFR (eGFR) decline before the deterioration
begins to determine the causes of deterioration, avoid
renotoxicities and provide earlier treatment with reno-
protective drugs. In addition, there may be crucial causes
such as incidence of rapidly progressing glomerulone-
phritis accompanying original kidney diseases especially
in patients with extremely rapid eGFR decline. If causes
of kidney function deterioration are identified earlier, we
could treat the patient appropriately.

Artificial intelligence (AI) has been in development
since the 1980s, and investigations using machine learning
have been progressing in various fields, including medi-
cine.”" Machine learning can identify irregularities in
data and deal with large data sets with complex variables
and relationships (ie, ‘big data’). Therefore, machine
learning can often be used for the prediction of asso-
ciated phenomena from big data in healthcare.'*® In
nephrology, for instance, Al has enabled a more precise
equation for eGFR.'"®

Our hospital has maintained a large database of more
than 900000 patients who were treated and followed up
for various diseases since 2004. We previously demon-
strated a prediction model for patients with an eGFR
decline of >30% within 2years using machine learning."
However, we realised that the patterns of eGFR decline
varied even among those patients. A more detailed
prediction is crucial in the real-world clinical settings
because of higher risks of progression to end-stage kidney
disease and the incidence of CV disease. Therefore, we
focused on extremely rapid eGFR declines and analysed
a much larger population data of 914280 patients from
the single-centre database than in the previous model. In
addition, the purpose of the present study was to adopt
an intriguing design of prediction model using a novel
and practical automatic trajectory clustering algorithm.
To the best of our knowledge, no Al-based methods have
been proposed to create a prediction model related to
the trajectories of eGFR, especially among patients with
extremely rapid eGFR decline. Therefore, we aimed to
create a model for extremely rapid eGFR decline among
patients with CKD with an eGFR decline of 230% within
2years based on a large database and using machine
learning.

METHODS

Data set and samples

We used a database of 914280 patients from the Fujita
Health University Hospital between June 2004 and July
2019. Medical data were available for 286 494 patients with
eGFR, of which the findings in 29466 patients included
the following CKD criteria: an eGFR <60 mL/min/1.73
m” and/or urine protein >1+ on a dipstick for >90 days.

Patients of <20 years of age and those who had undergone
kidney transplantation were excluded. When measuring
eGFR, we used the average eGFR measurements over the
preceding 90 days to avoid temporal spikes in measure-
ments. On detection of different and distinct spans of GFR
decline in the same patient, we included the first value
in the analyses. Patients with CKD with an eGFR decline
of 230% within 2years, defined as rapid eGFR decline
according to previous reports, were enrolled.”’™ Overall,
there were 7315 such samples in the study. Of these, we
only included samples with an initial eGFR of >30mL/
min/1.73 m? because we aimed to detect patients with
extremely rapid eGFR decline at an earlier stage. In addi-
tion, many patients with eGFR <30 mL/min/1.73 m? have
a clinical course of extremely rapid eGFR decline within a
short period because the lower the initial eGFR, the more
rapid is the eGFR decline, in general. Hence, we excluded
patients with advanced kidney dysfunction. Finally, 5657
unique samples of GFR decline were analysed.

Clustering eGFR decline curves
To automatically cluster the eGFR decline curves, we
used an expansion of the group-based trajectory model
posited by Nagin.”” The original algorithm was modified
as follows: the curves were hierarchically grouped by the
initial eGFR values and curve steepness. We used a single
response variable for the eGFR. We sampled 10 points
with equal time intervals after applying linear interpo-
lation to the response variables to obtain 10 points with
equal time intervals for each patient. To obtain such 10
points by sampling for the entire population, we applied
linear interpolation of the response variables on all of
them. We also did not assume that those points were on
the specific function of the elapsed times.

To modify the existing method for hierarchical
grouping, we used the following equation:

M K
) = 21 ;pmpm,kfy (YCi=m C=k),

where m indicates the groups of initial eGFR values and %
indicates the groups of curve steepness. The notation yis the
response variable consisting of 10 points on the eGFR curve,
while the probability that y belongs to class mis denoted by p ,
and to class m and k is denoted by p, . Note that we hierar-
chically grouped the curves using p and p, ,, which are both
estimated from the data as model parameters. The notations
Mand K are the total number of those classes. The function
J, OlG=m,C, = k) is the conditional density of the observed
data, m is the initial eGFR value of class C, and kis the curve
steepness of class C,.

To form the conditional density function, j; (yIC=m,C,
= k), we assumed that each point in y is generated from
the Gaussian distribution:

Hmkdiy = Bmpata ford=2,...,7T,
tm = Bm

YU =m, Gy =k~ N(u 2), ford=2,..., T,

m,k,d,14,0
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Pmkdiy = Bmkala, ford=2, ... T,

where £ is the estimated distribution parameter. In this
study, we did not estimate the variance in the distribution,
. In our model, y' was determined only based on the
initial eGFR class of m, whereas the latter points of y were
determined by m and k and the timestamp ¢ Note that,
unlike the original model, we assumed that each point is
independently generated from the Gaussian distribution.

In our experiments, we used 3 for m and 3 for k, which
are set to give a similar number of trajectory groups as
Nagin reported.”

Samples for classification

For each type of high-eGFR, middle-eGFR and low-eGFR
decline curve, we classified the most acute curves. In the
low-GFR decline group, which included 2437 samples,
curves were categorised in detail as mild, moderate
and acute; we identified 222 positive samples of acute
curves and 2215 negative samples of mild and moderate
curves. In the middle-GFR decline group, which included
2652 samples, the curves were categorised as mild and
moderate (n=2139) and acute (n=513). In the high-GFR
decline group, which included 568 samples, acute curves
included 103 samples, while moderate and severe curves
included 465 samples.

Features used for the classification model

With the aforementioned positive and negative samples
of eGFR decline, we extracted the laboratory values,
including 15 longitudinal data as well as 5 static data,
The former includes transferrin saturation, blood urea
nitrogen, serum uric acid, haemoglobin, haemoglobin
Alc, ferritin, eGFR, systolic and diastolic blood pres-
sures, C reactive protein (CRP); body mass index, serum
total cholesterol, serum creatinine, serum albumin and
urine protein. The latter includes sex, age, comorbidity
of diabetes mellitus, history of acute kidney injury and
prescription of renin-angiotensin system inhibitors.
Summarising these longitudinal data to form explanatory
variables in the prediction model, we used the average
and SD for each variable over 90, 180, 360 days to the
beginning of the eGFR decline and the exponentially
smoothed average (ESA) of all available past data. The
methods are shown in online supplemental table 1).
These nine summarisation methods are then applied to
all longitudinal data, respectively, and, thus, we have 135
longitudinal features. By adding static data, we use 140
features in total as inputs to our classification models.

Model solving

We used logistic regression and random forest algorithm
for classification. To evaluate the proposed model, we
tuned hyperparameters, including the number of trees in
the forest, the minimum number of samples required at a
leaf node and the minimum number of samples required
to split an internal node, for example, random forest. To
identify the best parameters in the inner four-hold cross-
validation, we evaluated the random forest and logistic

regression models using outer five-fold cross-validation.
Note that we found the best hyper parameters only using
the training data of each fold of the cross-validation, not
using the test data. By solving the model, we can compute
the probability of a patient to be classified in the group
of the most acute curves. The following is the formula to
compute the probability on using logistic regression:
probability = 1

— i ai(xifmcani)/stdi
Lre 0 : .
is a feature value indexed by i

where «; is trained
parameters, x,

mean;, std; are the mean and SD for ith feature values,
and n is the number of features. Actual values for «;,
mean; and std; are shown in online supplemental table
2, online supplemental table 3 and online supple-
mental table 4 to compute the probability. We omitted
the computation while using random forest to avoid
complexity but the probability can be computed by
averaging the results of each decision tree used in the
algorithm. We then used the area under the curve
(AUC) of the receiver operating characteristic (ROC)
curve as representative performance metrics, which is
computed as the mean of the results of fivefold. In our
experiment setting, validation data sets were created
from the data that were not used in training for each
fold, which is a common and practical method when
evaluating the model even using one cohort. Other
statistical parameters (such as sensitivity and spec-
ificity) were computed using the fold, which has a
median AUC out of five folds. The best cut-off was
found at a point of the ROC curve at the minimum
distance from the top left corner, which is commonly
used when determining the cut-off as well as Youden
index, taking the AUC into account.** We should note
that such derivation of ‘best cut-off’ could lead to
bias ** * where bias reduction such as using smoothed
ROC curve and others is discussed.” In this study, we
mostly use AUC for comparing and evaluating predic-
tion performance as suggested in a previous report.*®
For examining the importance of features, the contri-
butions to the eGFR decline were examined according
to the weight of each variable in logistic regression
and by Gini impurity in random forest model.

In this study, we applied logistic regression and random
forest using the Python code with scikitlearn library
(https://scikit-learn.org/) as well as for classification
model solving. For solving the clustering model, we used
PyStan (https://pystan.readthedocs.io/en/latest/),
which is the Python interface of Stan (https://mc-stan.
org/). Stan is a general statistical modelling platform
where we declaratively depicted our probabilistic models
as we explained before. Note that we used the Markov
chain Monte Carlo algorithm to estimate model parame-
ters including p_, p,, . B, and B_, .

Statistical analysis
We compared the all-cause mortality among the nine
subgroups. The data on the outcome were obtained
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Figure 1 Patterns of eGFR decline classified using machine
learning. eGFR, estimated glomerular filtration rate.

from the medical records. All-cause mortality rates were
compared using log rank test with Kaplan-Meier curves.

Patient and public involvement
Patients were not involved at any stage of this research.

RESULTS

Patterns of eGFR decline classified by machine learning

The patients were automatically classified into three
groups according to eGFR at the reference points (G1:
high; G2: middle and G3: low) and further divided into
nine subgroups according to the rate of eGFR decline
using machine learning (Gl-1, G2-1, G3-1: lowrate
decline in each group; GI1-2, G2-2, G3-2: intermediate-
rate decline in each group and GI1-3, G2-3, G3-3: high-
rate decline in each group) (figure 1). The G1-3, G2-3
and G3-3 subgroups were defined as those with extremely
rapid eGFR decline.

Comparison of patient characteristics and laboratory data at
reference points between the groups

Table 1 summarises the comparisons of patient character-
istics and laboratory data at the reference points between
the subgroups with high and other rates of eGFR decline.
Patients with extremely rapid eGFR decline were signifi-
cantly older than those in the other groups in G1 and
G2. Blood haemoglobin and serum total cholesterol and
albumin levels were significantly lower in the extremely
rapid eGFR decline subgroups in each group. Serum CRP
levels were significantly higher in the extremely rapid
eGFR decline subgroups in each group.

Comparison of cumulative all-cause survival rate between the
subgroups

We compared the cumulative survival rate among the nine
groups. Significant differences were observed between
them (log-rank test: p<0.001).

AUC and calibration plot in each group

Figure 2 illustrates the ROC curves and calibration plots
with its slope and intercept for prediction of extremely
rapid eGFR decline in each group according to the
random forest-based model. Table 2 summarises the
AUC of the logistic regression and the random forest
models for prediction of extremely rapid eGFR decline.

The AUCGs of the G1, G2 and G3 groups according to the
logistic regression model were 0.682, 0.647 and 0.754,
respectively, and those according to the random forest-
based model were 0.694, 0.712 and 0.788, respectively. We
conducted the same analysis without including the serum
creatinine level because we considered multicollinearity
between eGFR and serum creatinine level. Subsequently,
the AUGs of the Gl, G2 and G3 groups according to
the random forest-based model were 0.687, 0.705 and
0.789, respectively. The calibration plot of G1 indicated
that the predicted probabilities of the machine learning
model were close to the actual probabilities. Meanwhile,
in G2 and G3, the higher the predicted probabilities, the
higher were the actual probabilities compared with the
predicted probabilities.

Features affecting the prediction in the three groups

Online supplemental figure 3 illustrates the heatmap for
features that affected the random forest-based model.
The redder a column, the higher is its effect on extremely
rapid eGFR decline; in contrast, the greener a column,
the lesser is its effect. Kidney function including eGFR;
age; diastolic blood pressure and albumin, cholesterol,
haemoglobin and uric acid levels were demonstrated as
features potentially useful for distinguishing G3 from
G1 and G2. Figure 3 summarises the ranking of the top
10 features in the random forest model. Except for the
features of kidney function, including eGFR and creat-
inine levels, the features related to haemoglobin and
cholesterol were ranked high in GI, those related to
albumin and haemoglobin were ranked high in G2, and
those related to CRP and albumin were ranked high in
G3.

DISCUSSION

The prediction model that we created could detect
patients with CKD with extremely rapid decline in eGFR
using machine learning. The results of the present study
have three features. First, the patient data of the present
study were obtained from a large-scale database. There
have been some reports concerning CKD by analysing big
data.?™ However, most of the studies in this field have
included the general population. We believe that the
present study is significant, as it examined a large number
of patients with various diseases. Second, we used Al to
analyse and create different prediction models, including
random forests. Al-based disease prediction is progressing
in many fields. Electronic medical record systems have
been in use for >10 years in many hospitals in Japan. There-
fore, a large amount of information, including laboratory
data, can be analysed using Al. Machine learning enables
the addition of an exponential smoothing average for
different variables from a large amount of data. Third, we
found that the variables that affect the pattern of eGFR
decline vary according to the kidney function at baseline.
We were able to classify into three groups automatically
according to eGFR at the reference points.
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Figure 2 Receiver-operating characteristic (ROC) curves and calibration plots in each group using random forest-based

model. (A) G1, (B) G2, (C) G3.

In general, kidney function in patients with CKD grad-
ually worsens. However, patterns of eGFR decline, which
are called trajectories of eGFR, vary between patients.” A
report from six large-scale, randomised controlled trials
revealed that more cases presented with non-linear eGFR
decline among diabetes patients.”’ Many reports have
demonstrated risk factors related to the decline in eGFR.
The Chronic Renal Insufficiency Cohort study, which
was conducted in the USA, clarified many factors asso-
ciated with CKD progression in patients with pre-dialysis
CKD. %% These risk factors included proteinuria, the
presence of inflammatory cytokines and elevated serum
uric acid levels. In Japan, the Chronic Kidney Disease
Japan Cohort revealed that anaemia, blood pressure
and albuminuria were independent risk factors of CKD

progression.”® The eGFR of the patients enrolled in the
two representative cohorts ranged from 10 mL/min/1.73
m? to 70mL,/min/1.73 m?. Meanwhile, we decided that
an eGFR >30mL/min/ m? at baseline was the cut-off in
the present study because the period before initiating
renal replacement therapy was extremely short to classify
the patterns of eGFR decline. Furthermore, patients with
an eGFR of >90mL/min/ m? at baseline were enrolled.
We created a prediction model for identifying patients
with rapid eGFR decline among those with CKD in our
previous study.' However, we could not adjust the models
and stratify them according to eGFR. Machine learning
enables the classification of trajectories of eGFR decline
into nine patterns using eGFR at baseline and the rate
of eGFR decline. Interestingly, we found that different

Table 2 Ability of prediction models (with serum creatinine)

Outcome Group AUC Sensitivity Specificity PPV NPV PLR NLR
Logistic regression G1 0.76 0.62 0.75 0.20 0.95 2.44 0.51
(0.72-0.80) (0.48-0.76) (0.70t00.79) (0.13-0.26) (0.93-0.97) (1.85-3.22) (0.35-0.74)
G2 0.65 0.52 0.70 0.29 0.86 1.72 0.69
(0.62-0.68) (0.42-0.62) (0.661t00.74) (0.23-0.36) (0.82-0.90) (1.36-2.18) (0.56-0.85)
G3 0.67 0.67 0.73 0.36 0.91 2.48 0.46
(0.61-0.73) (0.47-0.87) (0.641t00.82) (0.21-0.51) (0.84-0.97) (1.58-3.90) (0.25-0.85)
Random forest G1 0.69 0.68 0.65 0.32 0.90 1.96 0.49
(0.63-0.76) (0.49-0.88) (0.561t00.75) (0.19-0.45) (0.82-0.97) (1.31-2.92) (0.26-0.92)
G2 0.71 0.60 0.74 0.33 0.90 2.33 0.53
(0.69-0.74) (0.50-0.71) (0.70t0 0.78) (0.26-0.40) (0.87-0.93) (1.85-2.93) (0.41-0.69)
G3 0.79 0.67 0.77 0.26 0.95 2.90 0.43
(0.75-0.83) (0.55-0.80) (0.73to0 0.81) (0.18-0.33) (0.93-0.97) (2.25-3.74) (0.29-0.63)
AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood
ratio.
6 Inaguma D, et al. BMJ Open 2022;12:¢058833. doi:10.1136/bmjopen-2021-058833
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Figure 3 Variable importance for random forest model in each group. (A) G1, (B) G2, (C) G3. eGFR, estimated glomerular

filtration rate; ESA, exponentially smoothed average.

clinical parameters, including haemoglobin and CRP
levels, were more important in predicting an extremely
rapid eGFR decline according to the baseline kidney
function. Some prediction models for eGFR decline
based on Al have been reported.”” Raynaud et al recently
demonstrated that the donor age, eGFR, proteinuria
and pathological findings of the transplanted kidney
predicted progression to end-stage kidney disease in
kidney transplanted patients who were classified into
eight groups.37 Meanwhile, our model included features
that we used as variables, including haemoglobin and
CRP levels, which were not used in other models. Factors
related to anaemia, such as haemoglobin ESA7 and the
90-day and 180-day averages, were associated with trajec-
tories of eGFR in patients with an eGFR of approximately
90 mL/min/mQ. Anaemia is often accompanied by CKD
because the reduction of functional kidney mass leads to
a decrease in the production and secretion of erythropoi-
etin. However, renal anaemia usually develops at an eGFR
of <30mL,/min/1.73 m>. In the present study, we defined
anaemia as a haemoglobin level below its lower normal
limit. In other words, anaemia might be detected more
strictly in the study than in a clinical setting. Therefore,
we found that the management of renal anaemia may
be vital in patients in earlier stages of CKD. In contrast,
the factors related to serum albumin were associated
with the trajectories of eGFR in patients with an eGFR
of approximately 60 mL/min/ m? and 40 mlL/min/
m®. We believe that the progression of CKD causes not
only an increase in the amount of proteinuria but also

malnutrition. Interestingly, the serum CRP level ranked
high in patients with an eGFR of only 40 mL/min/m?,
which suggested that inflammation might be more signif-
icant in patients in advanced CKD stages. Additionally,
eGFR starts decreasing closer to critical points, and larger
changes in variables can be observed. It is possible that
the predicted probability increases by adding an expo-
nential smoothing average for different variables. We
showed good calibration for the G1 group and lesser for
the G2 and G3 groups. If nephrologists estimate higher
risk in patients in G2 and G3 from the present predic-
tion model, practices for renal protection such as use
of renin-angiotensin system blockers, sodium glucose
cotransporter-2  inhibitors, erythropoiesis-stimulating
agents and protein restriction can be changed. Many
studies have indicated that proteinuria or albuminuria is
crucial risk factors for a decline in kidney function, inci-
dence of CV disease and all-cause mortality. Contrary to
expectations, proteinuria did not significantly influence
the prediction, as opposed to our previous report on a
prediction model for rapid eGFR decline."” We believe
that this was because patients with extremely rapid eGFR
decline who were at a higher risk were enrolled. A rela-
tively high amount of proteinuria was already recogni