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ABSTRACT
Objectives  Trajectories of estimated glomerular filtration 
rate (eGFR) decline vary highly among patients with 
chronic kidney disease (CKD). It is clinically important to 
identify patients who have high risk for eGFR decline. We 
aimed to identify clusters of patients with extremely rapid 
eGFR decline and develop a prediction model using a 
machine learning approach.
Design  Retrospective single-centre cohort study.
Settings  Tertiary referral university hospital in Toyoake 
city, Japan.
Participants  A total of 5657 patients with CKD with 
baseline eGFR of 30 mL/min/1.73 m2 and eGFR decline 
of ≥30% within 2 years.
Primary outcome  Our main outcome was extremely rapid 
eGFR decline. To study-complicated eGFR behaviours, 
we first applied a variation of group-based trajectory 
model, which can find trajectory clusters according to 
the slope of eGFR decline. Our model identified high-level 
trajectory groups according to baseline eGFR values and 
simultaneous trajectory clusters. For each group, we 
developed prediction models that classified the steepest 
eGFR decline, defined as extremely rapid eGFR decline 
compared with others in the same group, where we used 
the random forest algorithm with clinical parameters.
Results  Our clustering model first identified three high-
level groups according to the baseline eGFR (G1, high GFR, 
99.7±19.0; G2, intermediate GFR, 62.9±10.3 and G3, low 
GFR, 43.7±7.8); our model simultaneously found three 
eGFR trajectory clusters for each group, resulting in nine 
clusters with different slopes of eGFR decline. The areas 
under the curve for classifying the extremely rapid eGFR 
declines in the G1, G2 and G3 groups were 0.69 (95% CI, 
0.63 to 0.76), 0.71 (95% CI 0.69 to 0.74) and 0.79 (95% 
CI 0.75 to 0.83), respectively. The random forest model 
identified haemoglobin, albumin and C reactive protein as 
important characteristics.
Conclusions  The random forest model could be useful in 
identifying patients with extremely rapid eGFR decline.

Trial registration  UMIN 000037476; This study was 
registered with the UMIN Clinical Trials Registry.

INTRODUCTION
The number of patients with chronic kidney 
disease (CKD) is increasing worldwide, 
resulting in an increased number of patients 
requiring dialysis and kidney transplanta-
tion and suffering from cardiovascular (CV) 
events.1–4According to the Global Burden 
Disease study data, the incidence, prevalence 
and mortality rate of CKD increased by 89%, 
87% and 98%, respectively, between 1990 and 
2016.5 However, many patients with CKD are 
asymptomatic until the kidney function dete-
riorates. Therefore, a diagnosis of CKD at an 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ We also adapted a unique and novel approach for 
clustering using the hierarchy of curve steepness 
and trajectory, which makes the algorithm efficient 
and fast.

	⇒ A key limitation is that training of our model only 
relies on electronic health record data we have, and, 
thus, even though our data were collected from a 
large hospital and we use fair algorithms, our re-
sultant models may incur inherent bias in the data 
if existing.

	⇒ We adopted an intriguing design of prediction mod-
el using machine learning, which differentiates the 
rapid decline group from the other groups using 
subject’s covariates with such groups, which are 
clustered by the shape of estimated glomerular 
filtration rate declines using a novel and practical 
automatic trajectory clustering algorithm.
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earlier stage is required. However, trajectories of glomer-
ular filtration rate (GFR) vary between patients and are 
reported to depend on the primary kidney disease, blood 
pressure and proteinuria.6–8 We believe that it would be 
useful if we could accurately predict the extremely rapid 
estimated GFR (eGFR) decline before the deterioration 
begins to determine the causes of deterioration, avoid 
renotoxicities and provide earlier treatment with reno-
protective drugs. In addition, there may be crucial causes 
such as incidence of rapidly progressing glomerulone-
phritis accompanying original kidney diseases especially 
in patients with extremely rapid eGFR decline. If causes 
of kidney function deterioration are identified earlier, we 
could treat the patient appropriately.

Artificial intelligence (AI) has been in development 
since the 1980s, and investigations using machine learning 
have been progressing in various fields, including medi-
cine.9–13 Machine learning can identify irregularities in 
data and deal with large data sets with complex variables 
and relationships (ie, ‘big data’). Therefore, machine 
learning can often be used for the prediction of asso-
ciated phenomena from big data in healthcare.14–16 In 
nephrology, for instance, AI has enabled a more precise 
equation for eGFR.17 18

Our hospital has maintained a large database of more 
than 900 000 patients who were treated and followed up 
for various diseases since 2004. We previously demon-
strated a prediction model for patients with an eGFR 
decline of ≥30% within 2 years using machine learning.19 
However, we realised that the patterns of eGFR decline 
varied even among those patients. A more detailed 
prediction is crucial in the real-world clinical settings 
because of higher risks of progression to end-stage kidney 
disease and the incidence of CV disease. Therefore, we 
focused on extremely rapid eGFR declines and analysed 
a much larger population data of 914 280 patients from 
the single-centre database than in the previous model. In 
addition, the purpose of the present study was to adopt 
an intriguing design of prediction model using a novel 
and practical automatic trajectory clustering algorithm. 
To the best of our knowledge, no AI-based methods have 
been proposed to create a prediction model related to 
the trajectories of eGFR, especially among patients with 
extremely rapid eGFR decline. Therefore, we aimed to 
create a model for extremely rapid eGFR decline among 
patients with CKD with an eGFR decline of ≥30% within 
2 years based on a large database and using machine 
learning.

METHODS
Data set and samples
We used a database of 914 280 patients from the Fujita 
Health University Hospital between June 2004 and July 
2019. Medical data were available for 286 494 patients with 
eGFR, of which the findings in 29 466 patients included 
the following CKD criteria: an eGFR  <60 mL/min/1.73 
m2 and/or urine protein ≥1+ on a dipstick for >90 days. 

Patients of <20 years of age and those who had undergone 
kidney transplantation were excluded. When measuring 
eGFR, we used the average eGFR measurements over the 
preceding 90 days to avoid temporal spikes in measure-
ments. On detection of different and distinct spans of GFR 
decline in the same patient, we included the first value 
in the analyses. Patients with CKD with an eGFR decline 
of  ≥30% within 2 years, defined as rapid eGFR decline 
according to previous reports, were enrolled.20–22 Overall, 
there were 7315 such samples in the study. Of these, we 
only included samples with an initial eGFR of ≥30 mL/
min/1.73 m2 because we aimed to detect patients with 
extremely rapid eGFR decline at an earlier stage. In addi-
tion, many patients with eGFR <30 mL/min/1.73 m2 have 
a clinical course of extremely rapid eGFR decline within a 
short period because the lower the initial eGFR, the more 
rapid is the eGFR decline, in general. Hence, we excluded 
patients with advanced kidney dysfunction. Finally, 5657 
unique samples of GFR decline were analysed.

Clustering eGFR decline curves
To automatically cluster the eGFR decline curves, we 
used an expansion of the group-based trajectory model 
posited by Nagin.23 The original algorithm was modified 
as follows: the curves were hierarchically grouped by the 
initial eGFR values and curve steepness. We used a single 
response variable for the eGFR. We sampled 10 points 
with equal time intervals after applying linear interpo-
lation to the response variables to obtain 10 points with 
equal time intervals for each patient. To obtain such 10 
points by sampling for the entire population, we applied 
linear interpolation of the response variables on all of 
them. We also did not assume that those points were on 
the specific function of the elapsed times.

To modify the existing method for hierarchical 
grouping, we used the following equation:

	﻿‍
f
(
y
)

=
M∑

m=1

K∑
k=1

pmpm,kfy
(
y|C1 = m, C2 = k

)
,
‍�

where m indicates the groups of initial eGFR values and k 
indicates the groups of curve steepness. The notation y is the 
response variable consisting of 10 points on the eGFR curve, 
while the probability that y belongs to class m is denoted by pm, 
and to class m and k is denoted by pm, k. Note that we hierar-
chically grouped the curves using pm and pm, k, which are both 
estimated from the data as model parameters. The notations 
M and K are the total number of those classes. The function 
fy (y|C1=m,C2 = k) is the conditional density of the observed 
data, m is the initial eGFR value of class C1 and k is the curve 
steepness of class C2.

To form the conditional density function, fy (y|C1=m,C2 
= k), we assumed that each point in y is generated from 
the Gaussian distribution:

	﻿‍ µm,k,d,td = βm,k,dtd, for d = 2, . . . , T,‍�

	﻿‍ µm = βm ‍�

	﻿‍
yd|C1 = m, C2 = k ∼ N(µm,k,d,td,σ2

d
), for d = 2, ..., T,
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‍µm,k,d,td = βm,k,dtd, for d = 2, ..., T,‍
where β is the estimated distribution parameter. In this 

study, we did not estimate the variance in the distribution, 
‍σ‍. In our model, y1 was determined only based on the 
initial eGFR class of m, whereas the latter points of y were 
determined by m and k and the timestamp t. Note that, 
unlike the original model, we assumed that each point is 
independently generated from the Gaussian distribution.

In our experiments, we used 3 for m and 3 for k, which 
are set to give a similar number of trajectory groups as 
Nagin reported.23

Samples for classification
For each type of high-eGFR, middle-eGFR and low-eGFR 
decline curve, we classified the most acute curves. In the 
low-GFR decline group, which included 2437 samples, 
curves were categorised in detail as mild, moderate 
and acute; we identified 222 positive samples of acute 
curves and 2215 negative samples of mild and moderate 
curves. In the middle-GFR decline group, which included 
2652 samples, the curves were categorised as mild and 
moderate (n=2139) and acute (n=513). In the high-GFR 
decline group, which included 568 samples, acute curves 
included 103 samples, while moderate and severe curves 
included 465 samples.

Features used for the classification model
With the aforementioned positive and negative samples 
of eGFR decline, we extracted the laboratory values, 
including 15 longitudinal data as well as 5 static data, 
The former includes transferrin saturation, blood urea 
nitrogen, serum uric acid, haemoglobin, haemoglobin 
A1c, ferritin, eGFR, systolic and diastolic blood pres-
sures, C reactive protein (CRP); body mass index, serum 
total cholesterol, serum creatinine, serum albumin and 
urine protein. The latter includes sex, age, comorbidity 
of diabetes mellitus, history of acute kidney injury and 
prescription of renin–angiotensin system inhibitors. 
Summarising these longitudinal data to form explanatory 
variables in the prediction model, we used the average 
and SD for each variable over 90, 180, 360 days to the 
beginning of the eGFR decline and the exponentially 
smoothed average (ESA) of all available past data. The 
methods are shown in online supplemental table 1). 
These nine summarisation methods are then applied to 
all longitudinal data, respectively, and, thus, we have 135 
longitudinal features. By adding static data, we use 140 
features in total as inputs to our classification models.

Model solving
We used logistic regression and random forest algorithm 
for classification. To evaluate the proposed model, we 
tuned hyperparameters, including the number of trees in 
the forest, the minimum number of samples required at a 
leaf node and the minimum number of samples required 
to split an internal node, for example, random forest. To 
identify the best parameters in the inner four-hold cross-
validation, we evaluated the random forest and logistic 

regression models using outer five-fold cross-validation. 
Note that we found the best hyper parameters only using 
the training data of each fold of the cross-validation, not 
using the test data. By solving the model, we can compute 
the probability of a patient to be classified in the group 
of the most acute curves. The following is the formula to 
compute the probability on using logistic regression:

‍

probability = 1

1+e
−

n∑
i=0

αi
(

xi−meani
)

/stdi
‍

where ‍αi ‍ is trained 

parameters, xi is a feature value indexed by i, 

‍meani, stdi ‍ are the mean and SD for ith feature values, 
and n is the number of features. Actual values for ‍αi ‍, 
‍meani ‍ and ‍stdi ‍ are shown in online supplemental table 
2, online supplemental table 3 and online supple-
mental table 4 to compute the probability. We omitted 
the computation while using random forest to avoid 
complexity but the probability can be computed by 
averaging the results of each decision tree used in the 
algorithm. We then used the area under the curve 
(AUC) of the receiver operating characteristic (ROC) 
curve as representative performance metrics, which is 
computed as the mean of the results of fivefold. In our 
experiment setting, validation data sets were created 
from the data that were not used in training for each 
fold, which is a common and practical method when 
evaluating the model even using one cohort. Other 
statistical parameters (such as sensitivity and spec-
ificity) were computed using the fold, which has a 
median AUC out of five folds. The best cut-off was 
found at a point of the ROC curve at the minimum 
distance from the top left corner, which is commonly 
used when determining the cut-off as well as Youden 
index, taking the AUC into account.24 We should note 
that such derivation of ‘best cut-off’ could lead to 
bias 25 26 where bias reduction such as using smoothed 
ROC curve and others is discussed.25 In this study, we 
mostly use AUC for comparing and evaluating predic-
tion performance as suggested in a previous report.26 
For examining the importance of features, the contri-
butions to the eGFR decline were examined according 
to the weight of each variable in logistic regression 
and by Gini impurity in random forest model.

In this study, we applied logistic regression and random 
forest using the Python code with scikit-learn library 
(https://scikit-learn.org/) as well as for classification 
model solving. For solving the clustering model, we used 
PyStan (https://pystan.readthedocs.io/en/latest/), 
which is the Python interface of Stan (https://mc-stan.​
org/). Stan is a general statistical modelling platform 
where we declaratively depicted our probabilistic models 
as we explained before. Note that we used the Markov 
chain Monte Carlo algorithm to estimate model parame-
ters including pm, pm, k, βm and βm, k, d.

Statistical analysis
We compared the all-cause mortality among the nine 
subgroups. The data on the outcome were obtained 

https://dx.doi.org/10.1136/bmjopen-2021-058833
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https://dx.doi.org/10.1136/bmjopen-2021-058833
https://scikit-learn.org/
https://pystan.readthedocs.io/en/latest/
https://mc-stan.org/
https://mc-stan.org/
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from the medical records. All-cause mortality rates were 
compared using log rank test with Kaplan-Meier curves.

Patient and public involvement
Patients were not involved at any stage of this research.

RESULTS
Patterns of eGFR decline classified by machine learning
The patients were automatically classified into three 
groups according to eGFR at the reference points (G1: 
high; G2: middle and G3: low) and further divided into 
nine subgroups according to the rate of eGFR decline 
using machine learning (G1-1, G2-1, G3-1: low-rate 
decline in each group; G1-2, G2-2, G3-2: intermediate-
rate decline in each group and G1-3, G2-3, G3-3: high-
rate decline in each group) (figure  1). The G1-3, G2-3 
and G3-3 subgroups were defined as those with extremely 
rapid eGFR decline.

Comparison of patient characteristics and laboratory data at 
reference points between the groups
Table 1 summarises the comparisons of patient character-
istics and laboratory data at the reference points between 
the subgroups with high and other rates of eGFR decline. 
Patients with extremely rapid eGFR decline were signifi-
cantly older than those in the other groups in G1 and 
G2. Blood haemoglobin and serum total cholesterol and 
albumin levels were significantly lower in the extremely 
rapid eGFR decline subgroups in each group. Serum CRP 
levels were significantly higher in the extremely rapid 
eGFR decline subgroups in each group.

Comparison of cumulative all-cause survival rate between the 
subgroups
We compared the cumulative survival rate among the nine 
groups. Significant differences were observed between 
them (log-rank test: p<0.001).

AUC and calibration plot in each group
Figure 2 illustrates the ROC curves and calibration plots 
with its slope and intercept for prediction of extremely 
rapid eGFR decline in each group according to the 
random forest-based model. Table  2 summarises the 
AUC of the logistic regression and the random forest 
models for prediction of extremely rapid eGFR decline. 

The AUCs of the G1, G2 and G3 groups according to the 
logistic regression model were 0.682, 0.647 and 0.754, 
respectively, and those according to the random forest-
based model were 0.694, 0.712 and 0.788, respectively. We 
conducted the same analysis without including the serum 
creatinine level because we considered multicollinearity 
between eGFR and serum creatinine level. Subsequently, 
the AUCs of the G1, G2 and G3 groups according to 
the random forest-based model were 0.687, 0.705 and 
0.789, respectively. The calibration plot of G1 indicated 
that the predicted probabilities of the machine learning 
model were close to the actual probabilities. Meanwhile, 
in G2 and G3, the higher the predicted probabilities, the 
higher were the actual probabilities compared with the 
predicted probabilities.

Features affecting the prediction in the three groups
Online supplemental figure 3 illustrates the heatmap for 
features that affected the random forest-based model. 
The redder a column, the higher is its effect on extremely 
rapid eGFR decline; in contrast, the greener a column, 
the lesser is its effect. Kidney function including eGFR; 
age; diastolic blood pressure and albumin, cholesterol, 
haemoglobin and uric acid levels were demonstrated as 
features potentially useful for distinguishing G3 from 
G1 and G2. Figure 3 summarises the ranking of the top 
10 features in the random forest model. Except for the 
features of kidney function, including eGFR and creat-
inine levels, the features related to haemoglobin and 
cholesterol were ranked high in G1, those related to 
albumin and haemoglobin were ranked high in G2, and 
those related to CRP and albumin were ranked high in 
G3.

DISCUSSION
The prediction model that we created could detect 
patients with CKD with extremely rapid decline in eGFR 
using machine learning. The results of the present study 
have three features. First, the patient data of the present 
study were obtained from a large-scale database. There 
have been some reports concerning CKD by analysing big 
data.27–29 However, most of the studies in this field have 
included the general population. We believe that the 
present study is significant, as it examined a large number 
of patients with various diseases. Second, we used AI to 
analyse and create different prediction models, including 
random forests. AI-based disease prediction is progressing 
in many fields. Electronic medical record systems have 
been in use for >10 years in many hospitals in Japan. There-
fore, a large amount of information, including laboratory 
data, can be analysed using AI. Machine learning enables 
the addition of an exponential smoothing average for 
different variables from a large amount of data. Third, we 
found that the variables that affect the pattern of eGFR 
decline vary according to the kidney function at baseline. 
We were able to classify into three groups automatically 
according to eGFR at the reference points.

Figure 1  Patterns of eGFR decline classified using machine 
learning. eGFR, estimated glomerular filtration rate.

https://dx.doi.org/10.1136/bmjopen-2021-058833
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In general, kidney function in patients with CKD grad-
ually worsens. However, patterns of eGFR decline, which 
are called trajectories of eGFR, vary between patients.30 A 
report from six large-scale, randomised controlled trials 
revealed that more cases presented with non-linear eGFR 
decline among diabetes patients.31 Many reports have 
demonstrated risk factors related to the decline in eGFR. 
The Chronic Renal Insufficiency Cohort study, which 
was conducted in the USA, clarified many factors asso-
ciated with CKD progression in patients with pre-dialysis 
CKD. 32–35 These risk factors included proteinuria, the 
presence of inflammatory cytokines and elevated serum 
uric acid levels. In Japan, the Chronic Kidney Disease 
Japan Cohort revealed that anaemia, blood pressure 
and albuminuria were independent risk factors of CKD 

progression.36 The eGFR of the patients enrolled in the 
two representative cohorts ranged from 10 mL/min/1.73 
m2 to 70 mL/min/1.73 m2. Meanwhile, we decided that 
an eGFR ≥30 mL/min/m2 at baseline was the cut-off in 
the present study because the period before initiating 
renal replacement therapy was extremely short to classify 
the patterns of eGFR decline. Furthermore, patients with 
an eGFR of ≥90 mL/min/m2 at baseline were enrolled. 
We created a prediction model for identifying patients 
with rapid eGFR decline among those with CKD in our 
previous study.19 However, we could not adjust the models 
and stratify them according to eGFR. Machine learning 
enables the classification of trajectories of eGFR decline 
into nine patterns using eGFR at baseline and the rate 
of eGFR decline. Interestingly, we found that different 

Figure 2  Receiver-operating characteristic (ROC) curves and calibration plots in each group using random forest-based 
model. (A) G1, (B) G2, (C) G3.

Table 2  Ability of prediction models (with serum creatinine)

Outcome Group AUC Sensitivity Specificity PPV NPV PLR NLR

Logistic regression G1 0.76
(0.72–0.80)

0.62
(0.48–0.76)

0.75
(0.70 to 0.79)

0.20
(0.13–0.26)

0.95
(0.93–0.97)

2.44
(1.85–3.22)

0.51
(0.35–0.74)

G2 0.65
(0.62–0.68)

0.52
(0.42–0.62)

0.70
(0.66 to 0.74)

0.29
(0.23–0.36)

0.86
(0.82–0.90)

1.72
(1.36–2.18)

0.69
(0.56–0.85)

G3 0.67
(0.61–0.73)

0.67
(0.47–0.87)

0.73
(0.64 to 0.82)

0.36
(0.21–0.51)

0.91
(0.84–0.97)

2.48
(1.58–3.90)

0.46
(0.25–0.85)

Random forest G1 0.69
(0.63–0.76)

0.68
(0.49–0.88)

0.65
(0.56 to 0.75)

0.32
(0.19–0.45)

0.90
(0.82–0.97)

1.96
(1.31–2.92)

0.49
(0.26–0.92)

G2 0.71
(0.69–0.74)

0.60
(0.50–0.71)

0.74
(0.70 to 0.78)

0.33
(0.26–0.40)

0.90
(0.87–0.93)

2.33
(1.85–2.93)

0.53
(0.41–0.69)

G3 0.79
(0.75–0.83)

0.67
(0.55–0.80)

0.77
(0.73 to 0.81)

0.26
(0.18–0.33)

0.95
(0.93–0.97)

2.90
(2.25–3.74)

0.43
(0.29–0.63)

AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood 
ratio.
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clinical parameters, including haemoglobin and CRP 
levels, were more important in predicting an extremely 
rapid eGFR decline according to the baseline kidney 
function. Some prediction models for eGFR decline 
based on AI have been reported.27 Raynaud et al recently 
demonstrated that the donor age, eGFR, proteinuria 
and pathological findings of the transplanted kidney 
predicted progression to end-stage kidney disease in 
kidney transplanted patients who were classified into 
eight groups.37 Meanwhile, our model included features 
that we used as variables, including haemoglobin and 
CRP levels, which were not used in other models. Factors 
related to anaemia, such as haemoglobin ESA7 and the 
90-day and 180-day averages, were associated with trajec-
tories of eGFR in patients with an eGFR of approximately 
90 mL/min/m2. Anaemia is often accompanied by CKD 
because the reduction of functional kidney mass leads to 
a decrease in the production and secretion of erythropoi-
etin. However, renal anaemia usually develops at an eGFR 
of <30 mL/min/1.73 m2. In the present study, we defined 
anaemia as a haemoglobin level below its lower normal 
limit. In other words, anaemia might be detected more 
strictly in the study than in a clinical setting. Therefore, 
we found that the management of renal anaemia may 
be vital in patients in earlier stages of CKD. In contrast, 
the factors related to serum albumin were associated 
with the trajectories of eGFR in patients with an eGFR 
of approximately 60 mL/min/m2 and 40 mL/min/
m2. We believe that the progression of CKD causes not 
only an increase in the amount of proteinuria but also 

malnutrition. Interestingly, the serum CRP level ranked 
high in patients with an eGFR of only 40 mL/min/m2, 
which suggested that inflammation might be more signif-
icant in patients in advanced CKD stages. Additionally, 
eGFR starts decreasing closer to critical points, and larger 
changes in variables can be observed. It is possible that 
the predicted probability increases by adding an expo-
nential smoothing average for different variables. We 
showed good calibration for the G1 group and lesser for 
the G2 and G3 groups. If nephrologists estimate higher 
risk in patients in G2 and G3 from the present predic-
tion model, practices for renal protection such as use 
of renin–angiotensin system blockers, sodium glucose 
cotransporter-2 inhibitors, erythropoiesis-stimulating 
agents and protein restriction can be changed. Many 
studies have indicated that proteinuria or albuminuria is 
crucial risk factors for a decline in kidney function, inci-
dence of CV disease and all-cause mortality. Contrary to 
expectations, proteinuria did not significantly influence 
the prediction, as opposed to our previous report on a 
prediction model for rapid eGFR decline.19 We believe 
that this was because patients with extremely rapid eGFR 
decline who were at a higher risk were enrolled. A rela-
tively high amount of proteinuria was already recognised 
in the patients in this study. Some clinical variables have 
been reported to be risk factors of eGFR decline.38–43 To 
create a more precise prediction model for trajectory of 
eGFR decline, more variables related to kidney function 
should be considered. To accomplish that, it is necessary 
to conduct a prospective study in the future.

Figure 3  Variable importance for random forest model in each group. (A) G1, (B) G2, (C) G3. eGFR, estimated glomerular 
filtration rate; ESA, exponentially smoothed average.
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The present study has some limitations. First, the partic-
ipants might have suffered from not only kidney diseases 
but also other diseases. Therefore, the results may not 
always apply to the general population. Unfortunately, 
we could not get detailed information about the diseases 
that the patients suffered from because items included in 
the data were huge and complicated. We considered that 
underlying diseases might be an independent risk factor. 
Second, the intervals between the frequency of examina-
tions, including blood tests, differed between patients. 
Therefore, we used the average values over periods of 90, 
180 and 360 days prior to the reference points. Third, 
the results of the calibration plots were different among 
the three groups. This could be because the criteria for 
CKD in G1 differed from that in G2 and G3. Most patients 
in G1 were defined to have CKD with only proteinuria 
because the eGFR values at the start of the decline were 
approximately 90 mL/min/1.73 m2; therefore, eGFR 
values of <60 mL/min/1.73 m2, which is one of the condi-
tions for CKD, were rare. However, in both G2 and G3, 
most patients were diagnosed with CKD using both eGFR 
and proteinuria because the eGFR values at the start of 
the rapid decline were approximately 60 and 40 mL/
min/1.73 m2, respectively. Additionally, in both G2 and 
G3, the actual observation probabilities were higher than 
the predicted probabilities by approximately 0.3. There-
fore, we may need to estimate the risk of decline in eGFR 
than the predicted probabilities in patients with relatively 
high predicted probabilities.

CONCLUSION
We have created a prediction model for extremely rapid 
eGFR decline using machine learning to identify patients 
at a high risk. Further statistical research includes 
exploiting recent deep learning algorithms, which could 
enable to use more complex and multimodal features 
and to provide higher classification and calibration 
performance. Recent generative approaches using deep 
learning also has the potential to directly predict the 
shape of eGFR decline curves even in a non-parametric 
approach. To use this model in a real-world clinical setting 
in the future, we could intervene by preventing eGFR 
decline. A typical usage is, thus, by inputting patient’s 
features to the model, showing whether a patient is in 
the group of the extremely rapid eGFR decline, and also 
exhibiting the typical shape of eGFR decline. Such an 
application can be provided by being connected to the 
electronic health record system of a hospital to obtain 
features and showing the model results via a personal 
computer or mobile interfaces.

To this end, validations using external datasets are 
needed because our models are created from one hospital 
data as well as prospective studies to confirm the accuracy 
of the present results.
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