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Standardizing human brain 
parcellations
Ross M. Lawrence1 ✉, Eric W. Bridgeford1, Patrick E. Myers1, Ganesh C. Arvapalli1, 
Sandhya C. Ramachandran1, Derek A. Pisner2, Paige F. Frank1, Allison D. Lemmer1, 
Aki Nikolaidis3 & Joshua T. Vogelstein   1

Using brain atlases to localize regions of interest is a requirement for making neuroscientifically valid 
statistical inferences. These atlases, represented in volumetric or surface coordinate spaces, can 
describe brain topology from a variety of perspectives. Although many human brain atlases have 
circulated the field over the past fifty years, limited effort has been devoted to their standardization. 
Standardization can facilitate consistency and transparency with respect to orientation, resolution, 
labeling scheme, file storage format, and coordinate space designation. Our group has worked to 
consolidate an extensive selection of popular human brain atlases into a single, curated, open-source 
library, where they are stored following a standardized protocol with accompanying metadata, which 
can serve as the basis for future atlases. The repository containing the atlases, the specification, as well 
as relevant transformation functions is available in the neuroparc OSF registered repository or https://
github.com/neurodata/neuroparc.

Introduction
Understanding the brain’s organization is one of the key challenges in human neuroscience1 and is critical for 
clinical translation2. Parcellation of the brain into functionally and structurally distinct regions has seen impres-
sive advances in recent years3, and has grown the field of network neuroscience4,5. Through a range of techniques 
such as clustering6–9, multivariate decomposition10,11, gradient based connectivity1,12–16, and multimodal neuro-
imaging1, parcellations have enabled fundamental insights into the brain’s topological organization and network 
properties17. In turn, these properties have allowed researchers to investigate brain-behavioral associations with 
developmental18,19, cognitive20,21, and clinical phenotypes22–24.

More recently, researchers interested in understanding brain organization are presented with a variety of brain 
atlases that can be used to define nodes of network-based analyses25. While this variety is a boon to researchers, 
the use of different parcellations across studies makes assessing reproducibility of brain-behavior relationships 
difficult (e.g. comparing across parcellations with different organizations and numbers of nodes5). Amalgamating 
multiple brain parcellations into a single, standardized, curated list would offer researchers a valuable resource for 
evaluating replication of neuroimaging studies.

Some efforts to consolidate these atlases is already underway. For example, Nilearn is a popular Python pack-
age that provides machine-learning and informatics tools for neuroimaging26. Nilearn provides several single line 
command line interface functions to ‘fetch’ both atlases and datasets. Nilearn includes twelve anatomically and 
functionally defined atlases, such as the Harvard-Oxford27 and Automated Anatomical Labeling (AAL)28 parcel-
lation. Although a promising prototype, Nilearn’s current atlas collection represent a limited range of available 
atlases, and the more recent gradient based, surface based, and multimodal parcellations have yet to be included 
into any central repository. More importantly, existing atlas repositories have not attempted to systematically 
standardize their collections following a single specification. Without well-established standards, the investigator 
is faced with limited information about each atlas, so connecting neuroscientific findings to the organization of 
the atlas becomes more difficult. Moreover, if the investigator requires a comparison across atlases, some form 
of metadata must be available that describes the similarities and differences between them. Neuroparc mitigates 
these issues by providing: (1) a detailed atlas specification which will enable researchers to both easily understand 
existing atlases and generate new atlases compliant with this specification, (2) a repository of the most commonly 
used atlases in neuroimaging, all stored in that specification, and (3) a set of functions for transforming, com-
paring, and visualizing these atlases. The Neuroparc package presented here includes 46 different adult human 
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brain parcellations—including surface-based and volume-based. Here, we provide an overview of the relationship 
between these parcellations via comparison of the spatial similarity between atlases, as measured by Dice coeffi-
cient and adjusted mutual information. To facilitate replication and extension of this work, all the data and code are 
available from a the registered OSF repository29 or the github repository https://github.com/neurodata/neuroparc.

Results
Atlases.  Through the use of the python scripts provided in Neuroparc, 46 atlases were resampled to either 
1 mm3, 2 mm3, or 4 mm3 and registered to the Montreal Neurological Institute 152 Nonlinear 6th generation 
reference brain (MNI). Each atlas had a accompanying JSON file containing the relevant metadata described 
in Methods. Of the 46 atlases, 17 lost at least one ROI from the resampling and registration process, which is 
recorded in the JSON files. This phenomenon was more common with atlases containing a greater amount of 
ROIs due to the smaller average ROI size. The smaller the ROI, the greater the chance it is overwritten by sur-
rounding larger ROIs when down-sampled or registered. Visualizations of a variety of atlases at 1 mm³ resolution 
are shown in Fig. 1. The number of ROIs present at each voxel size is recorded in Table 1

Dice coefficient.  A python script, provided in Neuroparc using functions from both AFNI30 and FSL31, was 
used to calculate the Dice Coefficients between pairs of atlases. See the Dice Coefficient section in Methods for 
more information about the calculation. Dice Score Maps, such as Fig. 2, for each of the pairs of atlases can be 
found on the Neuroparc OSF registered repository29. The purpose of these maps are to both reinforce the differ-
ences between each parcellation and what they represent, as well as serve as comparative metric for ROIs across 
atlases. Access to these values allow for easy cross-parcellation analysis, a useful tool to anyone using Neuroparc. 
On inspection, each Dice Coefficient Map was accurate in its representation of overlap present between ROIs of 
two different atlases.

Adjusted mutual information.  Using another python script, provided in Neuroparc GitHub repository, 
the Adjusted Mutual Information (AMI) between atlases was calculated. See the Adjusted Mutual Information 
section in Methods for more information about the calculation. The results, displayed in Fig. 3, affirm the neces-
sity for having access to multiple different parcellation methods during data analysis. Each atlas was created using 
different reference data and designed to track specific structure or functionality present in the brain. If atlases 
were similar to the point of being interchangeable, this wide variety of AMI scores would not exist, along with 
the reason for having a repository of atlases. The AMI amongst the Schaefer atlas set32, DS atlas set33, and Slab34 
atlases was consistently greater than 0.8, an expected result due to their creation using the same methodologies 
with different parameters and tolerances.

Both the JHU35 and Princeton36 atlases displayed a consistently low (<0.3) AMI value for the majority of other 
atlases. This can be explained by the fact that both atlases only relate to anatomical sub-structures, such as the 
visual cortex for JHU and hippocampal region for Princeton. Their limited coverage of the brain results in less 
mutual information with the other surface-based or volume-based atlases.

Discussion
Why use neuroparc?  The purpose of the Neuroparc atlas collection and metadata formatting method is 
two fold: (1) to provide a repository of standardized parcellations that can be used interchangeably without any 
additional effort, and (2) to document all relevant information about each parcellation for easy use in research. 
Neuroparc succeeds in both of these aspects, as well as enabling a new level of comparison between atlases. Using 
the formatting method proposed in this paper, any user of the repository has the ability to find where each atlas 
came from, how many different ROIs exist in the atlas, the location and size of each of each ROI, how the seg-
mentation of an atlas compares to others, and whether there is a significant correlation between areas covered by 
ROIs from different atlases. The formatting method also allows for constant improvement and refinement of atlas 
metadata, discussed below in Future Development. By standardizing the atlases, researchers can easily analyze 
MRI data in MNI space using a variety of atlases without additional processing. Metrics provided by Neuroparc, 
such as adjusted mutual information and the dice coefficient, also inform users as to how the atlases are related.

Potential issues.  The method used to generate the atlases for Neuroparc can result in the loss of ROIs due 
to down-sampling and registration. The chance of this occurring inversely correlates with the average size of 
ROIs in a given atlas. The ROIs that are lost are still cataloged in the corresponding JSON file, with a value of 
“null” being given for the center coordinates and size. While there do exist ways to attempt to prevent this loss 
of information, excessive manipulation of a given atlas depending on the voxel size potentially compromises any 
conclusions derived using said atlas. As such, the parcellations in Neuroparc do not incorporate these additional 
methods and it us on the user to decide how best to resample the corresponding 1 mm voxel parcellation to fit 
their unique needs.

Future development.  With the current iteration of Neuroparc there are several routes for improvement. 
The most apparent is the expansion of the atlas collection. Our proposed methodology for standardizing new 
atlases and tracking metadata makes this task a simple one. With the emphasis on clear and concise information, 
approval of any new set of atlases is a quick and simple process. There also exists the ability to standardize all 
atlases to other spaces besides MNI, allowing for atlases offered in both different voxel sizes and standardized 
spaces. Another route for growth of Neuroparc is the anatomical labeling of atlases whose ROIs do not have 
clearly defined anatomical boundaries. The anatomical labels currently in Neuroparc are taken from the pub-
lished work where they were first made. To keep the rational of the original authors, very little was done to the 
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labels provided, mainly rewording for clarity and to follow the largest structure to smallest structure method. Due 
to subjective nature of labeling the atlases, an agreed upon anatomical labeling reference would first have to be 
made. From there, anatomical labeling could be assigned pragmatically.

The methodology proposed in this paper, as well as the atlas repository in Neuroparc, attempt to address the 
lack of standardization and centralization for brain atlases. We believe that Neuroparc exemplifies the first steps 
towards solving this issue. We call on other researchers to utilize the resources contained within and encourage 
everyone to contribute.

Atlas #ROIs 1 mm3 #ROIs 2 mm3 #ROIs 4 mm3 Anatomical Labels

AAL28 116 116 116 ✓

AICHA55 384 384 384 ✓

Brodmann52 41 41 41 ✓

CAPRSC13 333 333 333 ✗
CPAC20053 200 200 200 ✗
Desikan39 70 70 70 ✓

DesikanKlein39 96 93 93 ✓

Destrieux56 75 75 75 ✓

DKT57 83 83 83 ✓

Glasser1 180 180 180 ✓

Hammersmith58 83 83 83 ✓

HOC27 48 48 48 ✓

HOS27 21 21 21 ✓

HOSL27 21 21 21 ✓

Hemispheric 2 2 2 ✓

JHU35 48 48 48 ✓

Juelich59 103 103 103 ✓

MICCAI60 136 134 133 ✗
Princeton36 49 49 43 ✓

Slab90734 907 907 907 ✗
Slab106834 1068 1068 1068 ✗
Talairach37 1105 959 744 ✓

Tissue 3 3 3 ✓

Schaefer-20032 200 200 200 ✓

Schaefer-30032 300 300 300 ✓

Schaefer-40032 400 400 400 ✓

Schaefer-100032 1000 1000 1000 ✓

Yeo-738 7 7 7 ✓

Yeo-7-Liberal38 7 7 7 ✓

Yeo-1738 17 17 17 ✓

Yeo-17-Liberal38 17 17 17 ✓

DS0007133 70 68 67 ✗
DS0009633 95 93 88 ✗
DS0010833 107 107 102 ✗
DS0014033 139 133 127 ✗
DS0019533 194 188 180 ✗
DS0027833 277 272 254 ✗
DS0035033 349 340 316 ✗
DS0044633 445 430 407 ✗
DS0058333 582 578 553 ✗
DS0083333 832 808 773 ✗
DS0121633 1215 1177 1108 ✗
DS0187633 1875 1821 1729 ✗
DS0323133 3230 3145 2926 ✗
DS0648133 6480 6272 5903 ✗
DS1678433 16783 16281 15251 ✗

Table 1.  This table contains the atlases included in Neuroparc and the number of ROIs per voxel size, showing 
the number of ROIs lost during resampling and registration. Which atlases have anatomical labeling metadata is 
also noted.
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Methods
Data compilation.  The atlases contained in Neuroparc were collected from a variety of locations. As pre-
viously noted, there is no current standard for atlas storage, so all gathered datasets are converted into a single 
format. Collected atlases were re-sampled using AFNI’s 3dresample30 to either 1 mm3, 2 mm3, or 4 mm3 voxel 
resolution and then registered to a reference T1-weighted image described below. The sources and additional 
information for each of the atlases can be found in the README file in the GitHub repository.

Reference brain.  To allow direct comparison between different atlases, a standard reference brain must be 
used for all involved atlases. Within Neuroparc, a single reference brain is provided and multiple resolutions, 
yielding a consistent coordinate space. Neuroparc uses Montreal Neurological Institute 152 Nonlinear 6th gener-
ation reference brain, abbreviated MNI152NLin6 in the file naming structure37. While there are a symmetric and 
asymmetric version of the MNI152NLin6 T1-weighted image, Neuroparc atlases are registered to the symmetric 
version, which is used by both FSL 5.031 and new versions of SPM. However, code provided in Neuroparc allows 
for the registering of any atlas to any reference brain the user chooses.

This image is stored in a GNU-zipped NIfTI file format of a T1-weighted MRI and is available in Neuroparc 
at three resolutions (1 mm3, 2 mm3, and 4 mm3) for easy use when registering. The naming convention for these 
files clearly displays their source and resolution as: MNI152NLin6_res-<resolution>_T1w.nii.gz. For example, 
the format of the resolution input would be “1 × 1 × 1” for the 1 mm3 resolution.

Atlas images and processing.  The atlas images compiled in Neuroparc were stored in the form of 
GNU-zipped NifTi files containing the parcellated atlas. In these files, each region of interest (ROI) within the par-
cellated image is denoted by a unique integer ranging from 1 to n, where n is the total number of ROIs. Atlases 
were resampled to the desired voxel resolution through the use of AFNI’s 3dresample30 and then registered to the 
MNI image of the same resolution using FSL’s flirt function31. The naming convention for the resulting atlas was: 
<atlas_name>_space-MNI152NLin6_res-<resolution>.nii.gz. The atlas_name field is unique for each atlas image, 
ideally no more than two words long without a space in between (e.g. Yeo-1738, Princetonvisual36, HarvardOxford27).

Atlas metadata.  Using a Python script in Neuroparc, a JSON file containing relevant meta-data was gen-
erated for each of the atlases. This file was split into two sections: region-wide and atlas-wide information. The 

Fig. 1  A comparison of the regions present in the major atlases available in Neuroparc. These visualizations 
were made using MIPAV tri-planar views on the same slice numbers. Each atlas shows a cross-section in each of 
the canonical orthogonal planes (H = Horizontal, S = Sagittal, C = Coronal). For most atlases, the slice numbers 
were (90, 108, 90). There are a few exceptions for visualization purposes: JHU: (90, 108, 109), Slab907: (95, 104, 
95), Slab1068: (93, 105, 93)1,27,28,32,35,36,38,39,52–54.
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Fig. 2  Dice Score Map between the Yeo-17 Networks atlas and the 300 parcellation Schaefer atlas. In a Dice 
Score Map, the larger the Dice score, the larger the percentage of overlap. Due to Schaefer’s larger quantity of 
ROIs, several different ROIs overlap a single Yeo-17 ROI. In this Dice Map, the 0 ROI for Yeo-17 represents the 
background of the image, or the empty space in the image. This ROI not having a Dice value of 0 indicates that 
both atlases don’t cover the same amount of brain volume.

Fig. 3  The adjusted mutual information between atlases contained within Neuroparc. Atlases that were 
generated from the same algorithm using different parameters, such as Yeo, Slab, Schaefer, and DS have an 
expected high amount of mutual information.
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naming convention of the JSON file follows that of the atlas image, with an atlas with 1 mm3 voxel size being 
named <atlas name>_space-MNI152NLin6_res-1 × 1 × 1 .json.

The term “region-wide” refers to information unique to each region of interest (ROI) in said atlas. This infor-
mation includes the voxel value for that ROI in the atlas, an anatomical label (if possible), the coordinates of the 
center of the ROI, and the number of voxels that make up that region. The center and size can be calculated using 
provided code in the scripts directory of Neuroparc.

Although the label must be specified, this information is not relevant for all atlases. For example, atlases that are 
generated using algorithmic means, like Slab34, have ROIs that do not strongly correlate to individual anatomical 
regions. In that case, NULL should be used for the labels of the regions. For ROIs that do have anatomical signifi-
cance, the naming should follow a hierarchical format in order of largest region to smallest with an underscore in 
between each name. Modifiers, such as “Superior” or “Medial” can be placed before the anatomical region. An exam-
ple of this is in the Desikan atlas39, which contains the region with label “L _rostral _anterior _cingulate_cortex”.  
The main purpose of labeling is to clearly convey the location of an ROI and any anatomical significance it may 
have. The avoidance of unique abbreviations or terminology that is not widely used helps with the ease of use for 
individuals new to MRI analysis. Figure 4 shows an example json file.

Optional fields in the region-wide data include description and color. Description can be used to provide 
more information than the region label if necessary. An example of this use is in the Yeo-7 Networks atlas38. The 
label for this atlas is in the form ‘7Networks _2’, but the description for that label is the corresponding functional 
network, ‘Somatomotor’ in this case. The color field must be given in the form [R, G, B] and is only used if the user 
wants to specify the colors of the regions upon visualization.

Brain-wide data must include the name, description, native coordinate space, and source of the atlas. The 
name field allows for more elaboration than in the name of the file. The description is more flexible, allowing the 
creator of an atlas to briefly describe important information for users of their atlas. The intended use case or the 
method of generation are examples of information provided in this field. Since all atlases in Neuroparc are stored 
in the same coordinate space, the coordinate space used during the creation of the atlas must be specified.

Finally, the publication detailing the atlas should be included in the source field so users can have a more full 
understanding of the atlas being used. Optional fields for brain-wide data can all be calculated, including the 
number of regions, the average volume per region, whether the segmented regions are hierarchical, and if the 
atlas is symmetrical.

The full description and format of the atlas specification is available within Neuroparc at https://github.com/
neurodata/neuroparc/tree/master/atlases/atlas_spec.md.

Dice coefficient.  As a way to compare the different atlases to each other, since each has been registered to 
MNI space, we calculated the Dice Coefficient between atlases. The Dice coefficient is a measure of similarity 
between two sets40. Specifically, it measures a coincidence index (CI) between two sets, normalized by the size 
of the sets. Let h be the number of points overlapping in the sets A and B, and a and b are the sizes of their corre-
sponding sets. If the two sets are labelled regions in segmented images, then the Dice coefficient between any pair 
of regions between the images is given by

=
+

CI
h

a b
2

(1)
ij

ij

i j

Fig. 4  An example JSON file rubric for storing atlas metadata. Metadata stored in brackets (“color”, 
“description”, etc.) is optional but encouraged.
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where i is the region in image 1 and j is the region in image 2. The result is a similarity matrix, as shown in Fig. 2. 
Since this map visualizes similarity between two regions in two atlases, the information provided by the Dice map 
can be used quantify which regions in a given atlas are most similar to regions in another atlas. This method has 
proven valuable for performing inference with parcellations lacking anatomical annotation, as it allows conclu-
sions realized at the parcel level to be inferred at the anatomical level41.

Adjusted mutual information.  Adjusted mutual information is another measure of the similarity of two 
labelled sets, quantifying how well a particular point can be identified as belonging to a region given another 
region. It differs from the Dice coefficient in that it tends to be more sensitive to region size and position relative 
to other measures42.

Similar to the Dice coefficient, Adjusted mutual information is not dependent on a region’s label43. Volumes 
that share many points are likely to be have a higher mutual information score all else being equal44.

To assure that all atlas comparisons were on the same scale, Neuroparc computes the adjusted mutual infor-
mation score. Let H(·) denote entropy, N be the number of elements (voxels) in total, and E(MIAB) denote the 
expected mutual information for sets of size a and b. Here, PA(i) is the probability that a point chosen randomly 
from the set A will belong to region i45.
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as provided in46.
Figure 3 shows the adjusted mutual information between all pairs of atlases. The information provided for 

this score is atlas-wide, while the Dice score was computed per region to generate a map. The similarity between 
groups of atlases, such as the various Schaefer atlases, the Yeo liberal atlases, and the DS atlases, is immedi-
ately apparent. Recent work highlighting the complementary information provided by disparate parcellations 
stresses the importance of the availability and ease-of-use of a collection of parcellations from heterogeneous 
sources41,47–49.

Data availability
All atlases and scripts described in this paper are available through a Github repository https://github.com/
neurodata/neuroparc. A more extensive repository can be found in the neuroparc OSF registered repository1, 
which also contains all Dice and AMI figures and adjacency matrix results.

Code availability
Code for processing is publicly available and can be found on GitHub under the scripts folder (https://github.
com/neurodata/neuroparc). Examples of useful functions include resampling parcellations to a desired voxel size, 
the ability to register parcellations to any given reference image, and center calculation for regions of interest for 
3D parcellations. Jupyter notebook tutorials are also available for learning how to prepare atlases for being added 
to Neuroparc. All code is provided under the Apache 2.0 License.

Visualizations are generated using both MIPAV 8.0.2 and FSLeyes 5.0.10 to view the brain volumes in 2D and 
3D spaces50,51. Figure 1 can be created using MIPAV triplanar views of each atlases with a striped LUT.
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