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The accurate prediction of fetal brain age using magnetic resonance imaging (MRI)
may contribute to the identification of brain abnormalities and the risk of adverse
developmental outcomes. This study aimed to propose a method for predicting fetal
brain age using MRIs from 220 healthy fetuses between 15.9 and 38.7 weeks of
gestational age (GA). We built a 2D single-channel convolutional neural network (CNN)
with multiplanar MRI slices in different orthogonal planes without correction for interslice
motion. In each fetus, multiple age predictions from different slices were generated, and
the brain age was obtained using the mode that determined the most frequent value
among the multiple predictions from the 2D single-channel CNN. We obtained a mean
absolute error (MAE) of 0.125 weeks (0.875 days) between the GA and brain age across
the fetuses. The use of multiplanar slices achieved significantly lower prediction error and
its variance than the use of a single slice and a single MRI stack. Our 2D single-channel
CNN with multiplanar slices yielded a significantly lower stack-wise MAE (0.304 weeks)
than the 2D multi-channel (MAE = 0.979, p < 0.001) and 3D (MAE = 1.114, p < 0.001)
CNNs. The saliency maps from our method indicated that the anatomical information
describing the cortex and ventricles was the primary contributor to brain age prediction.
With the application of the proposed method to external MRIs from 21 healthy fetuses,
we obtained an MAE of 0.508 weeks. Based on the external MRIs, we found that the
stack-wise MAE of the 2D single-channel CNN (0.743 weeks) was significantly lower
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than those of the 2D multi-channel (1.466 weeks, p < 0.001) and 3D (1.241 weeks,
p < 0.001) CNNs. These results demonstrate that our method with multiplanar slices
accurately predicts fetal brain age without the need for increased dimensionality or
complex MRI preprocessing steps.

Keywords: deep learning, fetal MRI, fetal brain, brain age, age prediction

INTRODUCTION

The human brain exhibits lifelong age-related changes under
complex genetic and environmental factors (Rakic, 2004; Kremen
et al., 2010; Rando and Chang, 2012; Alexander-Bloch et al.,
2020). As age-related brain changes are region-specific (Raz
et al., 2005; Yun et al., 2020) and are known to be related
to cognitive and behavioral performances (Olness, 2003; Gale
et al., 2004; Rogne et al., 2015), prediction of brain age using
magnetic resonance imaging (MRI) may be a crucial biomarker
for brain health. Prior studies using structural MRIs have
successfully predicted brain ages in healthy adults and children
(Franke et al., 2012; Cole and Franke, 2017; Aycheh et al., 2018;
Madan and Kensinger, 2018). The brain ages were predicted in
patients with Alzheimer’s disease (Franke and Gaser, 2012; Gaser
et al., 2013), schizophrenia (Koutsouleris et al., 2014; Schnack
et al., 2016), epilepsy (Pardoe et al., 2017), Down syndrome
(Cole et al., 2017a), traumatic brain injury (Cole et al., 2015),
multiple sclerosis (Cole et al., 2020), and preterm birth (Franke
et al., 2012). These studies established age prediction methods
for healthy brain development or senescence from children
to adults and examined individual discrepancies between the
predicted and chronological ages [predicted age difference
(PAD); chronological age – predicted brain age]. Significantly
larger PADs were found in patients, which is considered a
risk factor for altered maturation or aging of the brain, than
healthy subjects. Several longitudinal studies have shown that
large PADs are related to disease severity, cognitive function
decline, and future conversion to Alzheimer’s disease (Franke and
Gaser, 2012; Gaser et al., 2013; Cole et al., 2020). Therefore, the
accurate prediction of brain age can provide clinically relevant
information on brain health to predict future risks and detect
structural abnormalities associated with brain disorders.

The human fetal brain shows dynamic structural changes with
gestational age (GA). Under tight genetic control, quantitative
structural brain features, including brain volume, cortical
gyrification, surface area, curvature, and sulcal depth, were
strongly correlated with GA and small intersubject variations
in typically developing (TD) fetuses (Rajagopalan et al., 2011;
Clouchoux et al., 2013, 2012; Hu et al., 2013; Wright et al.,
2014; Namburete et al., 2015; Wu et al., 2015; Lefèvre et al.,
2016; Andescavage et al., 2017). Moreover, atypical structural
features have been more frequently found in fetuses with
ventriculomegaly, congenital heart disease, and Down syndrome
than in TD fetuses (Clouchoux et al., 2012; Scott et al., 2013;
Kyriakopoulou et al., 2014; Lefèvre et al., 2016; Jaimes et al., 2020;
Tarui et al., 2020; Rollins et al., 2021; Yun et al., 2021). Therefore,
prediction of fetal brain age based on structural MRI features
may be useful for detecting abnormalities in brain development

and the risk of adverse developmental outcomes. Previous
studies have predicted fetal brain age using linear or non-linear
regression models based on quantitative volumetric and surface
features (curvature and sulcal depth) and obtained mean absolute
errors (MAEs, mean absolute PADs) of 0.87 (Namburete et al.,
2015), 0.43 (Wu et al., 2015), and 0.47 (Wright et al., 2014)
weeks of chronological GA. However, complex MRI processing
and manual intervention are required to extract quantitative
fetal brain features. Because of the motion between slices, even
in fast single-shot T2-weighted imaging, multiple sets of fetal
MRI stacks of thick 2D slices in different orthogonal planes are
usually acquired to obtain better diagnostic performance; further,
retrospective interslice motion correction using slice-to-volume
registration techniques has been performed for quantitative fetal
brain analysis (Gholipour et al., 2010; Kim et al., 2010; Kuklisova-
Murgasova et al., 2012; Rousseau et al., 2013; Uus et al., 2020).
Furthermore, accurate brain tissue segmentation is necessary for
many volume- and surface-based analyses, which often require
manual interventions.

Deep learning models have been used over the past few years
for brain age prediction without complex MRI processing or
manual intervention (Cole et al., 2017b; Huang et al., 2017;
Bermudez et al., 2019; Jonsson et al., 2019; Wang J. et al., 2019).
A recent study proposed a fetal brain age prediction method (Shi
et al., 2020) and tested several inputs for an attention-based deep
ensemble model including 3D MRI, multiple transverse slices
(using multi-channel array), and a single transverse slice (center
slice of the brain). The fully 3D approach using MRIs showed
an MAE of 0.998 weeks. The multi-channel approach, which was
trained using seven different channels for different slices (three
slices superior/inferior to the center slice) in section “2D Network
Architecture,” yielded an MAE of 0.974 weeks. The single-slice
model showed a lower MAE (0.767 weeks) than the 3D and
multi-channel models (Shi et al., 2020). As mentioned above,
interslice motion in fetal MRIs may cause noisy information
of brain structures and disrupt precise brain age prediction
when using 3D and multi-channel approaches. Another reason
for the low prediction performance of 3D and multi-channel
approaches may be related to an increase in the dimensionality
of the data. Although the third dimension allows the use of more
information, it requires more parameters and a larger sample
size to obtain robust prediction performance (Fu et al., 2019;
Bashyam et al., 2020). Thus, 3D and multi-channel approaches
have limitations in accurately predicting brain age using fetal
MRIs. However, using a 2D single transverse slice per fetus may
also have some limitations in accurately predicting brain age
owing to the lack of sufficient brain anatomical information and
the risk of selecting a bad slice with motion artifacts, non-uniform
signal, or low signal to noise.
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In this study, we aimed to propose a new method for fetal
brain age prediction in an attempt to overcome the limitations
of previous approaches. Our method employs a 2D single-
channel convolutional neural network (CNN) with multiplanar
slices that utilizes 3D brain structural information and reduces
the risk of error without interslice motion or an increase in
dimensionality. Multiplanar slices from MRI stacks in different
orthogonal directions were used as inputs for our CNN, and
multiple age prediction results were generated for each fetus.
For the aggregation of the multiple predictions, we used three
measures of central tendency (mean, median, and mode) and
compared their age prediction performances to determine the
most appropriate measure. To validate the proposed method, we
performed several experiments. First, we statistically evaluated
the advantage of using multiplanar slices in age prediction and
compared it to that of using a single slice and a single stack.
Second, we tested the effects of different inputs on age prediction
accuracy. Multi-channel and 3D approaches were implemented,
and their prediction performances were compared with those of
our 2D single-channel CNN with multiplanar slices. Third, we
generated saliency maps in individual brains to identify regions
that significantly contribute to fetal brain age prediction. Lastly,
we performed the same experiments on an external MRI dataset
acquired from a different site and magnetic field strength.

MATERIALS AND METHODS

Subjects and Image Acquisition
The use of fetal MRIs was approved by the institutional
review board of Boston Children’s Hospital (BCH). Fetuses were
collected by (1) prior prospective recruitment studies at BCH
and (2) clinical fetal MRIs that were obtained to screen for fetal
brain abnormalities but were clinically interpreted as normal
by two board-certified radiologists experienced in fetal MRI.
TD fetuses with maternal age between 18 and 45 years were
included in this study. The exclusion criteria were multiple
gestation pregnancies, dysmorphic features on ultrasound (US)
examination, brain malformations/lesions or other identified
organ anomalies on US examination, known chromosomal
abnormalities, known congenital infections, and any clinically
significant abnormality on visual inspection of the fetal MRI.
After excluding 45 fetuses according to the exclusion criteria,
we finally included 220 TD fetuses {GA: 29.1 ± 5.23 weeks
[mean ± standard deviation (SD)], range: 15.9–38.7 weeks; sex:
109/86/25 (male/female/unknown)}.

Gestational age was estimated on the basis of the
recommendations from American College of Obstetricians
and Gynecologists and Committee on Obstetric Practice (2017).
In the first trimester (<14 weeks of gestation), the crown rump
length (CRL) and first day of the last menstrual period (LMP)
were used. If they disagreed or LMP was uncertain, only CRL
was used. Other US biometry measures, such as biparietal
diameter, head circumference, abdominal circumference, and
femur length, were used for those without estimated GAs in the
first trimester.

Fetal brain MRIs were acquired on a Siemens 3T Skyra scanner
using a T2-weighted half-fourier acquisition single-shot turbo
spin-echo (HASTE) sequence with an in-plane resolution of 0.8–
1.5 mm, a field of view (FOV) of 256 × 204, 256 × 256, or
320 × 320, a repetition time of 1.4–2.0 s, an echo time of 100–
120 ms, and slice thickness of 2–4 mm depending on fetal size,
fetal motion, and signal to noise. In each fetus, the MRI stacks
were acquired multiple times in different orthogonal planes
(usually 9–15 times); thus, a total of 2,765 multiplanar MRI stacks
from 220 fetuses were included in this study. The number of
fetuses in each GA is shown in Supplementary Figure 1.

To test the performance of the method on unseen data, we
also included an external fetal MRI dataset from Tufts Medical
Center (TMC). The use of the external dataset was approved
by the institutional review board of TMC. Fetal MRIs were
screened by a board-certified radiologist and a child neurologist
with fetal neurology training at the obstetric clinic at TMC.
The inclusion/exclusion criteria for the TD fetuses from TMC
were the same as those from BCH. We included 21 TD fetuses
[GA: 25.8 ± 4.97 weeks (mean ± SD), range: 19.7–33.3 weeks;
sex: 9/10/2 (male/female/unknown)] acquired on a Phillips 1.5T
scanner using a T2-weighted single-shot turbo spin-echo (SSTSE)
sequence with an in-plane resolution of 1 mm, an FOV of
256 mm, a repetition time of 12.5 s, an echo time of 180 ms, and
a slice thickness of 2–4 mm. After localizing the fetal brain, we
acquired 4–10 SSTSE scans in three orthogonal orientations.

Magnetic Resonance Imaging
Processing
Non-brain tissues were removed from the fetal MRIs using our
in-house tool based on 2D U-Net deep learning architecture.1

A total of 15,682 2D multiplanar slices from 397 MRIs with
manually drawn masks [81 TD fetuses (28.0 ± 4.30 weeks of
GA): a subset of our 220 fetuses for brain age prediction] were
used for training the 2D U-Net architecture for automatic brain
masking (Ronneberger et al., 2015). The average Dice coefficient
between the manual and automatic brain masks was 0.9328,
indicating the high accuracy of our in-house automatic brain
masking tool. After brain extraction, we cropped the fetal MRI
and had 12–60 slices in each cropped MRI stack. To correct
intensity inhomogeneity, we applied N4 bias field correction to
the masked brain region (Tustison et al., 2010). Thereafter, the
noise was removed using a non-local mean denoising algorithm
(Coupé et al., 2006), and the in-plane voxel size was resampled to
1 × 1 mm2. Finally, the resampled slices were unified using zero
padding for use as an input to a deep learning network.

2D Network Architecture
To build a 2D single-channel CNN for brain age prediction, we
modified ResNet101V2 (He et al., 2016; Figure 1A). We used the
original version of the ResNet101V2 model as the layers before
the last pooling. We replaced the last pooling of ResNet101V2
with the global average pooling to reduce model complexity
and overfitting owing to the large number of layers used in
our network model. Thereafter, a dropout layer (rate = 0.3)

1https://github.com/FNNDSC/fetal-brain-segmentation
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FIGURE 1 | Architecture of our 2D single-channel convolutional neural
network (CNN). (A) Architecture of the ResNet101V2 model. The size and
number of the feature maps used in each step are listed at the bottom of the
block (width × height × number of feature maps). Global average pooling
compresses the final feature maps to a 2048 one-dimensional array. The
dense layer was used to make a single regression output (brain age).
(B) Residual block with batch normalization (BN), rectified linear unit (ReLU),
and convolution (Conv).

was created to prevent overfitting (Srivastava et al., 2014), and
a dense layer was added to obtain the final prediction value.
The convolutional layers created feature maps that reduced the
size of the 2D slice from 138 × 176 to 5 × 6. The global
average pooling and dense layer reduced the feature maps to age
regression. The residual block comprised a combination of batch
normalization, rectified linear unit (ReLU), and convolution
(Figure 1B; Nair and Hinton, 2010; Ioffe and Szegedy, 2015).
This pre-activation unit had a regularization effect because the
inputs to all weight layers were normalized (He et al., 2016). The
implementation details and hyperparameters were the same as
those of the original ResNet101V2 (He et al., 2016). The batch
size was set to 80, and the weights were initialized using a robust
method proposed in a previous study (He et al., 2015), and Adam
(learning rate = 0.1, decay = 0.001) was used as the optimizer
(Kingma and Ba, 2015).

Test-Time Augmentation
The test-time augmentation (TTA) technique was adopted to
reduce the prediction error by combining multiple predictions
generated by augmentation (Matsunaga et al., 2017; Jin et al.,
2018). Using TTA, we created and averaged multiple predicted
brain ages in each slice (Figure 2A); the formula is described as
follows:

pTTAs,v =
1

NTTA

NTTA∑
t

ps,v,t

where ps,v,t is the predicted age in s-th slice from the v-th
MRI stack in the t-th augmentation, and pTTA

s,v is the average
of multiple brain ages from the total number of augmentation

(NTTA). Augmentation included the vertical flip, horizontal flip,
width shift range (0.2), height shift range (0.2), rotation range
(0–360), and intensity shift (0.5–1.0). TTA can eliminate the
effects of arbitrary brain orientation, position, and random errors
from a single prediction. To determine the optimal number of
TTAs for brain age prediction, we obtained the MAE of each
slice by changing the number of TTAs (1, 5, 10, 15, 20, 25, and
30). The MAE was expected to decrease as the number of TTAs
increased until a specific number was reached. We found the
specific number and used it as the optimal number of TTAs in
this study.

Central Tendency for Multiple Age
Predictions
Previous deep learning studies have shown that the aggregation
of the results from multiple predictions of 3D MRIs improved
segmentation accuracy (Roy et al., 2019; Hong et al., 2020).
In our study, the multiplanar slices had their own brain ages
predicted by our 2D single-channel CNN after TTA (Figure 2B).
We tested various strategies for aggregation of multiple brain age
predictions. We obtained the brain age using the mean value of
multiple predictions. We also calculated the median value of the
multiple predictions to eliminate outliers among the predicted
brain ages from noisy slices. Furthermore, we used a mode
that aims to identify the value that occurs most frequently in a
series. For the continuous variables, the mode of the predicted
brain ages (M) was calculated using the following equation
(Pearson, 1895):

M = L+ i · (f1 − f0)/(2 · f1 − f0 − f2)

where L represents the lower limit of the modal class (most
frequent class); f 1 is the frequency of the modal class; f 0 is the
frequency of the pre-model class; f 2 is the post-modal class; and i
is the class interval. In situations with two or more modal classes,
the mode is calculated by three medians – two means of the
predicted brain ages.

Training Strategy
Our study was conducted using 2,765 MRI stacks obtained
from 220 fetuses via 10-fold cross-validation. For our 2D single-
channel CNN with multiplanar slices, we selected four nearest
slices from the center of the brain in each stack. Therefore,
11,060 slices were used. In each training session, we selected 10%
of our fetuses and their slices as the test dataset and used the
rest of the fetuses/slices as the training dataset for our network
model. In the training dataset, 10% of the fetuses and their
slices were used as the validation dataset. The stratified sampling
method was used to match the GA distribution between the
training and test datasets, and oversampling was applied to the
training and validation datasets for a balanced distribution of
GA. To increase the number of training data, we applied a data
augmentation technique using the same strategy described in
section “Test-Time Augmentation.” Huber loss (L) was used as
the loss function because it is less sensitive to outliers in the data
(Huber, 1964). It selects the MAE or mean squared error (MSE)
by a parameter (δ) of the absolute difference between the ground
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FIGURE 2 | Illustration of test-time augmentation (TTA) and brain age prediction using multiplanar slices. (A) TTA creates multiple predictions by augmentation of a
single slice and averages them to improve accuracy. (B) Multiplanar slices in orthogonal directions are used to predict brain ages. The measures of central tendency
for multiple predictions from the multiplanar slices were calculated after TTA.

truth (y) and predicted value [f (x)] to reduce sensitivity and to
determine the minima effectively:

L(y, f (x) ) =

{
1
2
(
y−f (x)

)2
, if

∣∣y−f (x)∣∣<δ
δ
∣∣y−f(x)∣∣− 1

2δ
2, otherwise

In this study, we selected a δ of 1.0. Optimal network weights
on each fold were set by an early stopping and checkpoint
callback function that monitored the MAE of the validation
datasets across all epochs until it no longer improved over the
last 150 epochs.

Implementation of 2D Multi-Channel and
3D Deep Learning Approaches
We implemented 2D multi-channel and 3D networks for
different inputs for brain age prediction. Using the same network
described in section “2D Network Architecture,” we trained
multiple channels (multi-channel approach) with four slices

selected by the same criteria used for the 2D single-channel
network (Figure 3A). A 3D ResNet was employed to train a
3D network using the entire stack (3D approach) (Figure 3B).
For the 3D network architecture, we adopted the same weights
and depth as in the 2D CNN (Figure 1) and changed the 2D
convolutional layers to 3D. However, owing to limited graphics
processing unit (GPU) memory, we reduced the number of
batches during the training from 80 (2D network) to 9. For both
2D multi-channel and 3D approaches, we used the same MRI
preprocessing steps, TTA, and training strategy, including loss
function and data augmentation described in the sections above.
Similar to 2D data augmentation, only in-plane rotation was
performed to minimize interpolation and resampling artifacts
from the large slice thickness of the fetal MRI.

Statistical Analyses
To evaluate the accuracy of the brain age predictions using
different measures of central tendency (mean, median, and
mode), we calculated the PAD of each measure by subtracting

FIGURE 3 | Schematic representation of the input strategies. (A) 2D multi-channel. (B) 3D volume approaches.
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the predicted brain age from the chronological GA, and the MAE
across the fetuses was computed. For the mode, we employed
10 different class intervals (0.1–1.0 week) and selected the one
with the lowest MAE. We then compared the absolute PADs
among the measures of central tendency using the Friedman
test (Friedman, 1937) and post hoc Wilcoxon signed-rank test
(Wilcoxon, 1945). We obtained the R2 value of the linear
regression between the predicted brain age and chronological GA
for the most accurate measure. To determine the difference in the
prediction accuracy across GAs, we classified the fetuses into nine
groups based on their chronological GAs. Fetuses under 23 weeks
of gestation were grouped together, and the remaining fetuses
were grouped in 2-week periods. A total of nine age groups were
generated, and their absolute PADs were compared using the
Kruskal–Wallis test (Kruskal and Wallis, 1952).

The effects of using multiplanar slices on brain age prediction
were evaluated by comparing the distributions of the mean
and SD of the absolute PADs of a single slice and a single
stack. In each fetus, a single slice and a single stack were
randomly selected, and their brain ages were obtained. For
a single stack, the brain age was calculated by averaging the
predictions of the four nearest slices from the center of the
brain. Using the predicted brain ages from a single slice and a
single stack, we calculated the MAEs by averaging the absolute
PADs across the subjects and generated the distribution of the
MAEs after 10,000 times of random selections. The SD of the
absolute PADs across the subjects and its distribution were
also examined to evaluate the variance of errors. We counted
the number of test statistics with lower MAEs or SDs other
than those from our method and calculated the p-value of the
random selection tests using the proportion of the number of
cases out of 10,000.

We statistically compared the performance in brain age
prediction among the different input strategies in the deep
learning networks (2D single-channel, 2D multi-channel, and 3D
approaches). The input of the 3D approach was the entire MRI
stack and generated the predicted brain age in a stack. The 2D
multi-channel approach treated four slices from a stack as the
channels and generated a predicted brain age in a stack. Unlike
the 2D multi-channel and 3D approaches, the 2D single-channel
CNN generated a predicted brain age in each of the multiple
slices. Thus, to correctly compare the prediction performance
among these approaches, we averaged four predictions using
our single-channel CNN to obtain the predicted brain age in
each stack. We then measured the absolute PADs for each stack
of all subjects and compared them between our single-channel
CNN and other approaches using the Wilcoxon signed-rank test
(Wilcoxon, 1945).

The brain ages of the external TD fetuses were predicted
using our 2D single-channel CNN. Using different aggregation
strategies, we obtained the MAEs and R2 values of linear
regression between the predicted brain age and GA from the
external TD fetuses. From the external dataset, the distributions
of the mean and SD of the absolute PADs of a single slice and
a single stack after 10,000 random selections were generated
to evaluate the effects of using multiplanar slices. We also
compared the absolute PADs of our single-channel CNN to those

TABLE 1 | Prediction performances using different measures of central tendency
for multiple age predictions.

Measure MAE (weeks) ± SD

Mean 0.236 ± 0.246

Median 0.152 ± 0.162

Mode Class intervals (weeks)

0.1 0.126 ± 0.148

0.2 0.125 ± 0.141†

0.3 0.130 ± 0.166

0.4 0.142 ± 0.183

0.5 0.144 ± 0.154

0.6 0.162 ± 0.191

0.7 0.179 ± 0.144

0.8 0.191 ± 0.152

0.9 0.207 ± 0.144

1 0.220 ± 0.183

†Lowest mean absolute error (MAE) ± standard deviation (SD). The mode
with 0.2 weeks of class interval showed a significantly lower MAE than the
mean and median.

of the 2D multi-channel and 3D approaches using the Wilcoxon
signed-rank test.

Visualization of the Age Prediction Model
and Evaluation of the Brain Size Effect
The saliency visualization method was employed to approximate
the brain regions that significantly influence the prediction of
brain age (Simonyan et al., 2013; Oh et al., 2019). The saliency in
this study was calculated using backpropagation to track the brain
regions connected to large weights. To obtain the explainable
visualization map, we applied Gaussian smoothing [sigma = (1.5,
1.5), order = 0] and normalization using maximum saliency
values. In this study, saliency maps were generated in each input
slice, and visual inspection of the maps was performed to identify
the common regions with high saliency across all slices.

In addition to saliency maps, we examined the effect of
brain size on age prediction, since fetal brain volume is highly
correlated with GA (Huang et al., 2009; Clouchoux et al., 2012). In
each fold, we reduced the brain size in each slice of the test dataset
with five isometric scaling from 0.5 to 0.9 and then predicted
the brain ages with the reduced brain size. Linear regression
analyses were performed between the brain age using the reduced
brain size and GA.

RESULTS

Fetal Brain Age Prediction With
Multiplanar Slices
Supplementary Figure 2 shows the experimental results of the
effects of the number of TTAs. As the number increased, the MAE
decreased until 20 and showed no change thereafter. Thus, we
selected “20 times the TTA” for brain age prediction.
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Among the 10 different class intervals, the mode with
0.2 weeks of class interval showed the lowest MAE [0.125 weeks
(0.875 days); Table 1]. The MAEs increased with class intervals
from 0.4 to 1.0, while similar MAEs were found with class
intervals between 0.1 and 0.4 weeks. The mean and median
showed MAEs of 0.236 and 0.152 weeks, respectively. The
Friedman test showed significantly different absolute PADs
among the three measures (χ2 = 88.26, p < 0.001), and the
mode with 0.2 weeks of class interval had a significantly lower
absolute PAD than the mean (z =−8.153, p< 0.001) and median
(z = −3.211, p = 0.001). With the use of the mode with 0.2 weeks
of class interval, the regression analysis between the predicted
brain age and chronological GA showed an R2 value of 0.999
and p-value of <0.001 (Figure 4A). There was no significant
difference in the absolute PADs among the different age groups
(χ2 = 8.436, p = 0.392) in the Kruskal–Wallis test (Figure 4B).

The distributions of the means and SDs of the absolute PADs
calculated from the randomly selected slices and stacks are shown
in Figure 5. The MAEs and SDs of our method with the three
different measures (mean, median, and mode) were significantly
lower than those of the single-slice and single-stack approaches
(p< 0.001).

Performance of the Deep Learning
Networks With Other Inputs
To correctly compare the prediction performance among the
different CNNs, we averaged the four predicted brain ages in
each stack from our 2D single-channel CNN to obtain a stack-
wise brain age as in the 2D multi-channel and 3D CNNs.
Notably, the stack-wise MAE from our 2D single-channel CNN
was lower than our final result (MAE of 0.125 weeks) because
different aggregation strategies (mean) were applied, and a small
number of slices for aggregation (four slices in each stack)
were used for the stack-wise brain age. The stack-wise MAEs
of our 2D single-channel method, 2D multi-channel, and 3D
approaches were 0.304, 0.979, and 1.114 weeks, respectively

(Table 2). For the stack-wise brain ages, the 2D single-channel
method showed a significantly lower absolute PAD than the 2D
multi-channel (z = −36.15, p < 0.001) and 3D (z = −45.10,
p< 0.001) approaches.

Brain Regional Influence and Whole
Brain Size Effect on Age Prediction
We determined which parts of the input slice were the primary
contributors to predicting brain age using the saliency maps.
Examples of the saliency maps are shown in Figure 6. After
visual inspection of all the saliency maps, the ventricles had a
high saliency value ranging from 0.5 (green) to 1.0 (red) in all
slices. The cerebral cortex had a similar saliency value to the
ventricles in the slices between 15.9 and 30.9 weeks of gestation.
Although the cortex showed a smaller saliency value between 0.1
(purple) and 0.4 (light blue) in the last three slices over 33.5 weeks
of gestation, it was still larger than the other brain regions.
Therefore, we determined that the ventricles and cortex were
important regions for fetal brain age prediction. Additionally, a
strong relationship between brain size and brain age prediction
was found (Supplementary Figure 3). The regression results
showed that a greater reduction in brain size resulted in a
smaller brain age.

Performance on the External Data
Using the external fetal MRIs from TMC, we obtained an MAE
of 0.508 weeks with the use of the mode with 0.2 weeks of class
interval, which was lower than those with the use of the mean
(MAE of 0.670 weeks) and median (MAE of 0.560 weeks). The
mode also showed a high regression coefficient (R2 = 0.992)
between the predicted brain age and GA (Supplementary
Figure 4A). The MAE of our method using the mode was
significantly lower than those of the randomly selected single
slice (p = 0.005) and single stack (p = 0.007) approaches
(Supplementary Figure 4B). A significantly lower SD was found
with our method using the mode than the methods using the

FIGURE 4 | Linear regression model between the chronological age and brain age and box plots of the absolute predicted age differences (PADs) in the age groups.
(A) The mean absolute error (MAE) between the chronological and brain ages was 0.125, and their regression coefficient (R2) was 0.999. (B) Among the age groups,
no significant difference in the absolute PADs was found in the Kruskal–Wallis test. In each age group, the red horizontal line indicates the median of the absolute
PADs, and the bottom and top edges of the box represent the lower quartile and upper quartile of the absolute PADs. The outliers (red crosses) represent the values
that fall outside of the lower or upper boundaries between 1.5 times of the interquartile range, respectively. The black horizontal lines display the boundaries.
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FIGURE 5 | Distributions of the averages and standard deviations of the absolute predicted age difference (PAD) using a single volume or a single slice. During
10,000 random selections, a single volume and a single slice were randomly selected in each subject. The mean absolute errors (MAEs) and standard deviations
obtained using our method (mean, median, and mode) were significantly lower than those using a single volume or a single slice (p < 0.001).

randomly selected single slice (p = 0.002) and single stack
(p = 0.002) (Supplementary Figure 4C). Further, the stack-wise
brain ages were obtained using our 2D single-channel, 2D multi-
channel, and 3D CNNs, and their prediction performances were
compared. Our 2D single-channel CNN showed a significantly
lower stack-wise MAE (0.743 weeks) than the 2D multi-channel
(1.466 weeks, z = −6.48, p < 0.001) and 3D (1.241 weeks,
z =−5.67, p< 0.001) approaches.

DISCUSSION

In this study, we proposed a new method for predicting
fetal brain age using structural fetal brain MRIs. To improve
the prediction performance, we used multiplanar slices in
different orthogonal directions and generated multiple brain age
predictions from a single-channel CNN. For the aggregation
of the multiple predictions from the multiplanar slices, we
calculated various measures of central tendency, and the best
performance was obtained with the mode with 0.2 weeks of
class interval [MAE of 0.125 weeks (0.875 days)]. The proposed
method with multiplanar slices showed a significantly lower
MAE than those with a single slice and a single stack, and
a significantly higher accuracy than the 2D multi-channel and
3D approaches. Furthermore, when applying our method to an
external dataset acquired from a different site and field strength

TABLE 2 | Prediction performances of the deep learning networks using
different inputs.

Approaches MAE (weeks) ± SD

2D single-channel* 0.304 ± 0.459†

2D multi-channel 0.979 ± 1.205

3D 1.114 ± 1.281

*The mean absolute error (MAE) and standard deviation (SD) of the 2D single-
channel were obtained using the stack-wise brain ages. †Significantly lower than
that in the 2D multi-channel and 3D approaches.

of MRI, we found significantly higher accuracy compared to
a single slice, a single stack, 2D multi-channel CNN and 3D
CNN approaches. Using the external test set from TMC, we
found that the optimal method yielded an MAE of 0.506 weeks
(3.556 days).

High-Performance Fetal Brain Age
Prediction Using the 2D Single-Channel
Convolutional Neural Network With
Multiplanar Slices
Previous studies have reported that the prediction of brain
age has the potential to be a crucial biomarker for evaluating
fetal development and health (Namburete et al., 2015; Wu
et al., 2015). Although different datasets were used across
the studies, the proposed method yielded a more accurate
fetal brain age prediction (MAE = 0.125 weeks) than a
deep learning network (MAE = 0.767 weeks) and regression
models using the brain volume (MAE = 0.72 weeks), average
curvedness (MAE = 0.43 weeks), and mean curvature L2 norm
(MAE = 0.47 weeks) used in previous studies (Wright et al., 2014;
Namburete et al., 2015; Wu et al., 2015; Shi et al., 2020). Our
experimental results of the random selection tests showed that
the multiplanar slices yielded a significantly lower mean and SD
of the absolute PAD than a single slice and a single stack. This
may be related to the utilization of 3D spatial information of
the fetal brain that is not available in a single slice or stack. In
addition to the 3D spatial information, the number of slices may
be an important factor for obtaining a low prediction error and
its variance. Signal intensity artifacts induced by unpredictable
head motion and image degradation due to dielectric effects or
poor receiver coil placement can be seen in some slices, which
may produce outliers of brain age prediction when using a small
number of slices. Using multiple slices may reduce the risk of
highly deviated age predictions resulting from selecting a noisy
MRI stack or slice by chance. To validate the performance of the
proposed method, we evaluated the prediction accuracy of the
external test set from TMC. We obtained an MAE of 0.508 weeks
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FIGURE 6 | Saliency map of fetal brain age prediction. Large saliency represents important regions contributing to fetal brain age prediction. For all slices, the cortex
(yellow arrows) and ventricles (white arrows) had larger saliency values than the other brain regions.

using our optimal method, which is lower than that in a previous
study using a deep learning network (Shi et al., 2020).

Among the various measures of central tendency for multiple
predictions, the mode with 0.2 weeks of class interval showed the
lowest MAE compared with the mean and median. This suggests
that identifying the most frequent class from multiple predictions
can be an efficient aggregation strategy to exclude outliers from
noisy slices. For the mode, because the large class intervals lose
detailed patterns of the distribution, the MAE increases when
using a large class interval (0.5 or larger). Conversely, small class
intervals have the risk of generating irregular histograms with
over-represented and empty classes. We found that 0.1 weeks of
class interval showed a similar but higher MAE compared with
0.2 weeks. A class interval smaller than the minimum unit of GA
[0.143 weeks (1 day)] may result in an irregular histogram and
inappropriate mode estimation. We employed 0.2 weeks of class
interval as the optimal size because it is the smallest one, which
is larger than the minimum unit of GA and achieves the lowest
MAE among the intervals.

Using our dataset, we implemented the 2D multi-channel and
3D CNNs used in a previous study (Shi et al., 2020), which may
have an advantage in utilizing 3D spatial information. However,
the 3D approach showed the lowest prediction accuracy among
the three input methods. This may be related to an increase in
the dimensionality of the data, which can leverage the interslice
context but requires more parameters and sample size for reliable
prediction performance (Fu et al., 2019; Bashyam et al., 2020).
Compared to the in-plane resolution (0.8–1.5 mm), the slice
thickness (2–4 mm) of fetal MRIs is relatively large for small
fetal brains. Because of the large slice thickness, brain structures
may not be recognized well, which may lower the performance

of the 3D approach. Motion between slices in fetal MRIs may
also produce incorrect spatial information, which affects the
performance of the 3D volume approach. Similar to the 3D
approach, the 2D multi-channel approach is sensitive to interslice
motion artifacts because the feature map of a slice is calculated
by the weighted summation of the feature maps of the adjacent
slices using convolution. Thus, utilizing 3D spatial information
without motion artifacts and an increase in dimensionality may
allow us to obtain highly accurate brain age prediction results in
our proposed 2D single-channel CNN with multiplanar slices.

Overfitting Issue on the High
Performance of Our Fetal Brain Age
Prediction Method
Learning-based methods might exhibit an extremely high
performance with overfitting of the training data. Because
the proposed method was trained with single-site MRIs, our
highly accurate brain age prediction (MAE = 0.125 weeks)
could be a result of overfitting. However, we adopted several
techniques in this study to increase the prediction performance
without overfitting. First, we ensured that the trained network
was robust to image contrast varying from different sites and
magnetic field strengths. Because gray-scale intensity values
from single-site MRIs show small variations, we increased the
diversity of the image contrast of the data using intensity shift
augmentation when training and testing the network. Second,
several techniques were used to prevent overfitting in training
our 2D single-channel CNN. In the network architecture, we
adopted global average pooling, dropout, early stopping, and
the pre-activation unit to minimize overfitting. Dropout, global
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average pooling, and early stopping are commonly used in deep
learning studies using neuroimaging data (Zhang et al., 2015;
Kamnitsas et al., 2017; Aycheh et al., 2018; Kushibar et al., 2018;
Wachinger et al., 2018; Jonsson et al., 2019; Wang G. et al., 2019;
Wang J. et al., 2019; Bashyam et al., 2020; Ebner et al., 2020; Hong
et al., 2020; Shi et al., 2020). Furthermore, the regularization
impact of the pre-activation unit was shown in a previous study
(He et al., 2016). Using the abovementioned techniques, our
2D single-channel CNN yielded an MAE of 0.410 weeks when
predicting brain age in a single slice (Supplementary Figure 2),
which is similar to other studies on fetal brain age prediction
(Wright et al., 2014; Wu et al., 2015). Our method showed a
relatively lower MAE than a previous single-slice deep learning
method (MAE = 0.767 weeks) (Shi et al., 2020). Generally, deep
learning networks require a large amount of training data, and
the amount of training data is correlated with the performance of
deep learning networks (Zhu et al., 2016; Sun et al., 2017). Since
we used a total of 11,060 multiplanar slices that is 15 times or
more than (Shi et al., 2020), we assumed that a large number of
slices for training may improve the prediction accuracy. Finally,
after training, the prediction accuracy is further improved by
postprocessing. Postprocessing is known to improve the results
of learning-based methods (Liu et al., 2019; Roy et al., 2019;
Hong et al., 2020). In fetal MRIs, the quality of some slices is
not sufficient to obtain an accurate brain age because of motion
artifacts, non-uniform signals, or low signal to noise. Aggregation
of multiple results is commonly employed to improve accuracy
(Roy et al., 2019; Hong et al., 2020) and has the potential to
reduce the risk of erroneous predictions from low-quality slices.
In this study, we applied several strategies for the aggregation of
the multiple predictions from the multiplanar slices and found
an optimal strategy to significantly reduce the MAE from 0.410
to 0.125 weeks. To the best of our knowledge, the postprocessing
step is not associated with overfitting in deep learning networks.
The significant effect of aggregation on age prediction accuracy
was also shown in the external TMC MRI dataset obtained
from a different site and field strength (1.5T). The MAE
across the external MRI slices was 0.852 weeks; however, our
optimal approach significantly reduced the prediction error
(MAE = 0.508 weeks). This result suggests that aggregation
of multiple brain age predictions is an optimal method for
fetal brain age prediction to improve prediction performance.
Nevertheless, the external TMC MRI dataset showed a higher
MAE than our BCH dataset. Since we trained our 2D single-
channel CNN with single-site MRIs, the model still has an
overfitting issue for one particular MRI platform. Including a
large sample of multi-site MRI datasets for training the CNN has
the potential to improve the generalizability of the method.

High Impact of Cortical and Ventricular
Structures and Brain Size on Fetal Brain
Age Prediction
The saliency maps showed that the cortex and ventricles are
important regions for predicting fetal brain age. The cerebral
cortex becomes highly convoluted as folding increases during
gestation, and brain ages can be predicted by quantitative

folding features, such as gyrification index, surface area, and
curvature (Clouchoux et al., 2012; Wright et al., 2014; Wu et al.,
2015). Previous studies have demonstrated that the ventricles
are associated with fetal brain development. Enlargement of
the anterior horns of the lateral ventricle was found in the
second trimester, and thinning of the anterior, inferior, and
posterior horns of the lateral ventricles was reported during
pregnancy (Huang et al., 2009). Furthermore, shrinkage of the
ventricle volume was observed in the late second trimester
(Huang et al., 2009). These previous reports support that our
prediction method identifies and uses the biologically relevant
anatomical regions known to be closely related to fetal brain
age. Compared to the saliency maps of a previous study (Shi
et al., 2020), our saliency maps highlighted similar regions, such
as the cerebral cortex and ventricles. While their saliency maps
(Shi et al., 2020) showed lower saliency values in the ventricles
than in the cerebral cortex, our saliency maps showed relatively
similar values between these regions. This pattern suggests that
the ventricles similarly contribute to predicting fetal brain age
compared to the cerebral cortex. As the ventricles are associated
with fetal brain development (Huang et al., 2009), the relatively
higher saliency values in the ventricles may be related to the
higher prediction accuracy of the proposed method.

In addition to the cortical folding structure and ventricle
volume, we found that the whole brain size plays an important
role in predicting fetal brain age. These results are supported
by previous reports indicating that brain volume increases as
gestation progresses (Huang et al., 2009; Clouchoux et al.,
2012) and is a crucial factor for fetal brain age prediction
(Wu et al., 2015).

Limitation and Future Works
The proposed method showed a highly accurate prediction
performance for fetal brain age in TD fetuses; however, there are
limitations that should be investigated and considered in future
studies. Compared to the MAEs, the SDs were relatively large
across all experiments. To determine the reason for the large SDs,
we performed supplementary experiments to obtain the MAEs
and SDs after excluding the upper 5% of the absolute PADs. The
results indicated that large SDs may be associated with outliers
(Supplementary Tables 1, 2). In the supplementary experiments,
two fetuses consistently had an upper 5% of the absolute PADs
without any specific reasons, such as brain malformation and low
MRI quality. In our future study, we will investigate unrevealed
factors affecting incorrect brain age prediction.

A large sample of multi-site MRI datasets for training a CNN
has potential in improving the generalizability of the method.
Demographic factors, such as parental race and ethnicity,
are related to fetal growth (Bottomley and Bourne, 2009;
Buck Louis et al., 2015) which may influence age prediction.
Thus, their effects on fetal brain age prediction should be
investigated using large datasets in future studies. In our dataset,
a small number of TD fetuses under 21 weeks of GA were
included. Although we employed stratified sampling to balance
the GA distribution between the training and test datasets, the
imbalanced GA distribution of our dataset may be associated with
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the prediction errors in our results. A dataset with a balanced
GA distribution is necessary to improve the performance in
brain age prediction.

The batch size of the 3D CNN (n = 9) was smaller than that
of the 2D single-channel CNN (n = 80) because of hardware
limitations. Small batches are thought to increase the prediction
performance (Arpit et al., 2016; Radiuk, 2017; Masters and
Luschi, 2018; Kandel and Castelli, 2020) but may have a risk
of causing overfitting issue. To precisely assess the prediction
performance of the 3D CNN, we need more hardware resources
to apply the same batch size used in the 2D single-channel
CNN to the 3D CNN. Moreover, the hyperparameters used in
the 3D CNN were the same as those used in the 2D CNN.
The prediction performance of a 3D CNN can be further
improved by optimizing the architecture and hyperparameters
(Payan and Montana, 2015).

Our proposed method should be applied to clinically
abnormal fetuses with clinical interpretation to evaluate the
clinical relevance of PADs. In future studies, the relationship
between PADs and neurodevelopmental outcomes after birth
should be investigated. Finally, systematic errors may occur in
GA estimation with any LMP- or US biometry-based approaches
(Ioannou et al., 2012; Oppenraaij et al., 2015). Since GA was used
as the gold standard, the PAD might be affected by systematic
errors in GA estimation.
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